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Fluctuation statistics of mesoscopic Bose-Einstein condensates: Reconciling the master equation

with the partition function to reexamine the Uhlenbeck-Einstein dilemma
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The atom fluctuation statistics of an ideal, mesoscopic, Bose-Einstein condensate are investigated from
several different perspectives. By generalizing the grand canonical analysis (applied to the canonical ensemble
problem), we obtain a self-consistent equation for the mean condensate particle number that coincides with the
microscopic result calculated from the laser master equation approach. For the case of a harmonic trap, we
obtain an analytic expression for the condensate particle number that is very accurate at all temperatures, when
compared with numerical canonical ensemble results. Applying a similar generalized grand canonical treatment
to the variance, we obtain an accurate result only below the critical temperature. Analytic results are found for
all higher moments of the fluctuation distribution by employing the stochastic path integral formalism, with
excellent accuracy. We further discuss a hybrid treatment, which combines the master equation and stochastic
path integral analysis with results obtained based on the canonical ensemble quasiparticle formalism [Ko-
charovsky et al., Phys. Rev. A 61, 053606 (2000)], producing essentially perfect agreement with numerical

simulation at all temperatures.
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I. INTRODUCTION

The problem of fluctuation statistics in a mesoscopic
Bose-Einstein condensate (BEC) is a rich one—even, some-
what surprisingly, for the noninteracting Bose gas, as well as
for the interacting Bose gas [1]. Take, for example, a trapped
gas of N bosons, and lower the temperature below the critical
temperature 7. to form a condensate. Count the number of
atoms that are in the condensate. Do this many times at the
same temperature and total boson number N to get the sta-
tistics. What is the distribution of the condensed atoms, and
how does it change when moving the temperature through
T,.? The noninteracting, mesoscopic Bose gas is a problem
whose fluctuation characteristics are still not completely un-
derstood. Contrary to standard lore, we stress that the fluc-
tuations are not Gaussian, even in the thermodynamic limit.
The discussion goes back to the Uhlenbeck-Einstein di-
lemma [2,3]: Uhlenbeck’s criticism that Einstein’s expres-
sion for the average boson number (n,) had an abrupt cusp at
T,. The manner in which this cusp is smoothed by fluctua-
tions is of great interest for mesoscopic systems, which is
one focus of the present paper. Even more subtle is the ques-
tion of the higher-order moments of the condensate fluctua-
tions, especially in the vicinity of 7.

Despite the conceptual simplicity of the above question,
the fluctuation statistics are not known analytically, because
while the canonical ensemble partition function can be for-
mally written, it can be accurately calculated only numeri-
cally. We note that the work by Holthaus and Kalinowski
obtains accurate approximations for the first few moments,
employing a refined saddle-point approximation of the ca-
nonical partition function [4]. However, the equation for the
saddle point still has to be solved numerically.
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The time-dependent master equation is an excellent alter-
native approach to attack this question, developed in the pio-
neering papers of Scully [5] (hereafter referred to as CNB1)
and Kocharovsky, Scully, Zhu, and Zubairy [6] (hereafter
referred to as CNB2). This approach is capable of investigat-
ing dynamical phenomena, as well as being a viable option
when we include interactions, or when the system is out of
equilibrium. The master equation approach, within the ca-
nonical framework, has successfully calculated moments of
the fluctuation distribution to good accuracy. Other advan-
tages of this method are that it provides a simple physical
picture of the condensation process with a gas of cold atoms
via a detailed balance of the elementary processes of heating
and cooling, and that the theory shows a vivid analogy be-
tween atomic BEC and the photon laser by demonstrating
that the BEC and laser master equations are identical. This
analogy can explain the atom-laser linewidth [7], and might
also be able to explain the transient dynamics of the phase
transition to the BEC. In the master equation approach, the
cooling of the BEC is accomplished by the noncondensate
interaction with a thermal environment. In typical BEC ex-
periments, the cooling is accomplished with evaporative
techniques. However, in the experiments by Reppy and co-
workers [8], the BEC was cooled by a thermal reservoir as-
sociated with the Vycor glass host—exactly the situation we
presently consider. The master equation takes a given bath
model for the calculation, so one natural question is if a
different bath model alters the physics of the BEC statistics.
While different models will certainly alter the dynamics of
the condensation, we expect the statistics to be robust, just as
the analogous partition function is.

How does all of this relate to traditional statistical phys-
ics, in particular the microcanonical, canonical, and grand
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FIG. 1. (Color online) (Left) The average boson number in the condensate is plotted versus temperature. The master equation approach
(solid line) is compared with numerical simulation of canonical results (dots), as well as the thermodynamic limit (dashed line). (Right) The
variance of the distribution is plotted versus temperature. The grand canonical result (dashed line) deviates near and below the critical
temperature, leading to the grand canonical catastrophe. The results of ter Haar [10] (dash dotted line) and Politzer [11] (small dots) (derived
in the thermodynamic limit) are also shown. The results are shown for N=200 particles in a harmonic trap.

canonical formalism? Recall that Einstein predicted BEC by
analyzing the grand canonical formula [9]. Both grand ca-
nonical ensemble and canonical ensemble approaches de-
scribe the occurrence of BEC equally well in the dramatic
rise of the mean condensate number (n,) in the ground state.
However, near the critical temperature and below, the grand
canonical approach gives grossly different results for the
variance and higher moments, the so-called “grand canonical
catastrophe” illustrated in Fig. 1(b).

The question of fluctuations in Bose-Einstein condensa-
tion has attracted renewed interest. Grossmann and Holthaus
[12,13] previously obtained an analytical expression for the
mean condensate particle number in a harmonic trap for fi-
nite N using the grand canonical approach. However, their
analytical expression does not show a smooth crossover near
T.. Grossmann and Holthaus [12] and Ketterle and Druten
[14] found the crossover behavior only by numerical solution
of the equation for the condensate particle number. Politzer
also obtains an approximate expression for the variance in
the thermodynamic limit [11].

The purpose of the present paper is to report advances on
several fronts. One goal is to connect the master equation
formalism with the partition function analysis in thermal
equilibrium. To this end, we review the master equation for-
malism, and derive an approximate result for the mean con-
densate particle number, which can be expressed in terms of
elementary functions. This result is then connected with stan-
dard statistical mechanics by extending the grand canonical
approach (applied to the canonical ensemble problem) to ob-
tain an approximate result for the mean condensate particle
number that is quite accurate through the critical tempera-
ture. This is done by deriving a self-consistent equation for
the condensate particle number by eliminating the chemical
potential. The equation may be approximately solved, and
the solution exactly coincides with the approximate master
equation result.

Next, we investigate fluctuations, a more subtle problem.
The analogous treatment for the variance via the generalized

grand canonical analysis works quite well for low tempera-
tures, but fails for temperatures near or greater than the criti-
cal temperature. In order to obtain a more accurate analytic
result from the master equation approach, we first reformu-
lated the master equation as a stochastic path integral. The
stochastic path integral formalism [15,16] allows for an ac-
curate approximation of all cumulants of the fluctuation sta-
tistics in terms of elementary functions, by applying the
saddle-point approximation, whose large parameter is the
number of condensed atoms. It is straightforward to general-
ize the results, and present the fluctuation statistics of a gen-
eral boson master equation, with arbitrary heating and cool-
ing coefficients.

Finally, by combining the master equation and stochastic
path integral predictions with the previous results of Ko-
charovsky et al. based on the canonical ensemble quasipar-
ticle formalism [17] (hereafter referred to as CNB3), which
is very accurate at low temperature, we are able to formulate
a hybrid theory, whose results are in near-perfect agreement
with exact numerical simulation. The idea is to use the low-
T results of CNB3 to fix the values of three master equation
parameters via the first three moments. Then the master
equation predictions for several higher moments and cumu-
lants are compared with the numerical results at all tempera-
tures. They are in near-perfect agreement.

The paper is organized as follows. In Sec. II we review
the master equation approach, and derive an approximate
solution for the mean atom number in the condensate. This
solution is connected with standard partition function meth-
ods in Sec. III by extending the grand canonical analysis, and
deriving a self-consistent equation for the mean atom num-
ber, which coincides with the result of Sec. II. In Sec. IV, we
consider a harmonic trap, and give improved analytic results
for the heating coefficient. We go on to apply the extended
grand canonical analysis to the variance of the distribution.
In Sec. V, we give the stochastic path integral treatment of
the problem, which yields approximate expression for all cu-
mulants in terms of the master equation parameters. In Sec.
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VI, we introduce a hybrid theory, combining the predictions
of the master equation and stochastic path integral with those
of CNB3 to obtain excellent agreement with numerical simu-
lation. We conclude in Sec. VII. Appendixes A and B contain
the details of the calculations for the grand canonical ap-
proach, and Appendix C contains the details of the stochastic
path integral calculations.

II. MASTER EQUATION APPROACH

Let us review the results of the master equation approach.
Consider a trapped Bose gas, whose single-particle energy
levels are €,. The master equation formalism begins with the
elementary transitions of atoms between the condensate and
noncondensate. We are primarily interested in the condensate
statistics, and therefore focus on the probability Pn, of having
ng atoms in the condensate, given that there are N total at-
oms. The master equation describing the heating and cooling
processes of a Bose-Einstein condensate is given by [5]

pno == K[Kno(nO + l)pno - Kno—lnopno—l + HnOnOpnO
_Hno+1(n0+ l)pn0+1]7 (1)

where in the low-temperature limit

K, =N-nyg, H,=H, (2)
1

H= , 3

> B (3)

k>0

and « is a rate constant. The steady-state solution for the
distribution is [5]

N! HNo
Pn,= H > 4)
0 (N—ny)! e T(N+1,H)
where
I'(N+1,x)= f Ne ldt (5)

is an incomplete Gamma function. Higher-order moments
may be found via (nf))=2,,0nf)pno. We introduce the notation
u,={(ny—ny)*) for the central moments of the distribution.
The equation for the probability distribution can also be con-
verted to an equation for the mean atom number {n,) to find

(i) == k(= N+ 1+ H)(ng) = N+ (np)]. (6)

Approximating <n(2)):<n0)2, and considering the stationary
case, the solution for (n) is

(ng) = %[N—H—1+V/(N—H—1)2+4N]. (7)

In contrast to CNBI, this approximate answer can be simply
expressed in terms of H and N, yet still catches the smooth
transition in the vicinity of T, (where N—H ~ yN) (see Fig. 2
below). We will show in the next section that this same (ap-
proximate) result can be derived within the context of the
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FIG. 2. (Color online) The average condensate particle number
is plotted versus temperature for N=200 particles in an isotropic
harmonic trap. The approximate analytic result given by Egs. (7) [or
(13)] and (14) (solid line) is compared with the “exact canonical
dots” computed numerically, with good agreement.

grand canonical formalism, and later in Sec. V, how to derive
similar results for all higher moments from the stochastic
path integral formalism.

III. GRAND CANONICAL TREATMENT

In order to see how the same result for the average con-
densate particle number emerges from a modified grand ca-
nonical treatment, we recall that the grand canonical formula
for the average of the total particle number N is [18]

o 1 oo
N=2 —J——= , 8
g Plam _ Z () (8)

where the sum runs over all states of energy €, 8 '=kgT,
and the chemical potential w is related to the mean conden-
sate particle number (n,) as (we assume €,=0)

M:—B‘lln($+1). 9)

Various thermodynamic quantities of the gas such as the
chemical potential u, the internal energy U= [ u dN, and the
specific heat C=dU/dT can be obtained analytically if we
have an analytic expression for (ny). Equation (9) shows that
wm is nonzero for finite NV, in contrast to the thermodynamic
limit N— o where u vanishes.

By using Eq. (9), (ny) can be singled out from Eq. (8) as

N—(no>=2 !

=0 (Wngy+ 1)ePe— 17 (10)

which may be rewritten as
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1 1
(1/ng) + 1)/% &Pk —(no) ((ng) + 1)

N—={(ng) = (11)

This gives a self-consistent equation for the mean particle
number (ng). In the limit (ny)>>1, the term (ng)/({ng)+1)
inside the summation may be approximated by 1. As in the
previous section, we denote the summation over k as

1
ePe—1°

H=2

k>0

(12)
yielding a quadratic equation for the mean number of par-
ticles in the ground state

H

N—<no>=m,

whose solution is

(n0)=%[N—H—1+\/(N—H—1)2+4N], (13)

which exactly coincides with (7), linking the two ap-
proaches. It is natural to ask about the physical significance
of this coincidence. The master equation result is derived
from a particle-number-conserving formalism, which already
has the canonical ensemble property built in. However, the
master equation is solved approximately in Eq. (7) under the
condition of large condensate particle number. On the other
hand, the result of the grand canonical analysis, Eq. (13), is
derived by trading the chemical potential for the average
particle number, which corresponds to imposing the total
particle number constraint on average. The resulting equation
is further solved self-consistently, also under the large-
condensate-number assumption. The coincidence of results
in this approximation, and the excellent agreement with the
numerical canonical ensemble simulation, indicates that a
strict accounting of the canonical ensemble constraint is un-
necessary for the calculation of (n).

One should mention that the trick used in Eq. (11) is
nontrivial. A straightforward expansion in 1/{n) yields very
poor accuracy. We discuss this in Appendix A.

IV. ANALYTIC EXPRESSIONS FOR MEAN CONDENSATE
PARTICLE NUMBER AND VARIANCE WITHIN THE
GENERALIZED GRAND CANONICAL APPROACH

It is of interest to have an accurate analytic expression for
the mean number of particles in a mesoscopic condensate
that is valid for all temperatures. Let us specialize to the case
of an isotropic harmonic trap. Single-particle energy levels
are then €,= i Q(I+m+n), where () is the trap frequency and
k={l,m,n} denotes the quantum numbers. In this case, the
coefficient H can be evaluated approximately by the method
shown in Appendix B. The idea of this method is to first
convert the triple sum into a single sum, and then to approxi-
mate the single sum as an integral. We obtain
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2
He@+<1> +X(n2-ma), (14)
2a a

a

where a=B% (). The first term has been previously obtained
in Ref. [12], and here we find subdominant corrections in a.
Thus, we have an analytical expression for (n,) given by Eq.
(13), where the term N—H —1 can be expressed as

T 3 7T2 N 2/3 T 2
v (1| )

and the critical temperature T,=[N/{(3)]"3% Q/kg has been
introduced. For large N, the second line of (15) may be ne-
glected, and if we also take (N—7—1)>>>4N, then Eq. (13)
reduces to Eq. (8) of Ref. [12]:

{ T\3 N\ 7 T\2
S S NS
T, {3) 2T,

which further reduces to (ng) =~N[1—(T/T,)*] in the thermo-
dynamic limit.

We now consider fluctuations of the number of particles
in the condensate, starting with the variance. The variance of
the condensate particles can be expressed in terms of the

noncondensate variance using the identity ny=N—2;~ 1. In
the grand canonical approach, (n;) can be evaluated from

1 1
()= 2 mePEm = gz, (17)
k

k ny

where Z;=(1—-ePE=)=1 Tt follows from Eq. (17) that

() = 2(mp)* + (my). (18)

We then obtain

2 ={(ng = (n)*) = 2 [n) = ()’ = 2 [(m)” + (my)]

k>0 k>0

zE( 1 1 ) (19)

+
=0 \ (AP —1)*  AeP%—1

where A=1+1/(n,). We have assumed that fluctuations of n;
(k#0) are uncorrelated ((nn,,)={n;){n,,), k # m). This is the
case provided (n,) is much larger then its variance, so that
particle exchange with the condensate reservoir is the main
channel of fluctuations of n;. Near and above 7, the corre-
lations become substantial, which yields the failure of Eq.
(19). Taking the chemical potential u as given in (9) and
using the method described in Appendix B, we find the fol-
lowing analytic expression for the variance in the general-
ized grand canonical analysis:
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FIG. 3. (Color online) The variance of the condensate distribu-
tion is plotted versus temperature for N=200. The approximate ana-
lytic result within the generalized grand canonical approach (solid
line) is compared with the exact dots computed numerically in the
canonical ensemble. The analytic result is in good agreement for
low temperature, but fails at temperatures comparable to the critical
temperature and above. The reason for the high-temperature dis-
crepancy is that the modified grand canonical theory neglects cor-
relations between excited levels.

TAe“? + 8 3 A
1%

~ LT |
8a(Ae> 1) 24> \Ae”?-1

1| | Ae™? -1 In A + dilog(4e?)
+ | —+Inf{ ————|In + dilo .
a| 6 \;"Z glae

(20)

where a=B%() and dilog(x)=[{dt In(z)/(1—-¢). In the limit
kgT>HhQ and (ne)>1, Eq. (20) yields u,~w*/6a
=mT°N/6T2{(3) which agrees with Eq. (11) of Ref. [11].
The analytic results are compared with numerical simula-
tion in Figs. 2 and 3. Figure 2 shows an excellent agreement
between (n,) computed analytically from Egs. (13) and (14)
and the exact numerical simulation obtained in the canonical
ensemble [19]. In Fig. 3 we plot the variance Any as a func-
tion of temperature obtained from Eq. (20) (solid line), as
well as the exact canonical dots obtained from numerical
computation [19]. While the analytic result is good at low
temperature, at temperatures comparable to 7. and above,
there is substantial deviation from the canonical ensemble

PHYSICAL REVIEW A 74, 032506 (2006)

result because correlations between excited levels are
neglected.

V. ANALYTIC EXPRESSION FOR ALL CUMULANTS VIA
THE STOCHASTIC PATH INTEGRAL FORMALISM

While the master equation is a powerful approach, it is
often the case that a simple analytic solution cannot be
found. It is therefore of great interest to pursue alternative
treatments that give an approximate analytic solution of the
master equation that is asymptotically valid in the physically
relevant limit of many particles in the condensate, {(ny)>> 1.
Just such an approach was developed in Refs. [15,16], by
solving the fluctuation statistics problem with a stochastic
path integral. The stochastic path integral formalism is
complementary to the master equation approach as will be
shown below. However, we stress that it can also be applied
in cases where it is impossible to even write down a differ-
ential master equation, as demonstrated in Ref. [16].

The calculational details are given in Appendix C, but the
basic idea is to translate the master equation into the stochas-
tic path integral, whose action functional contains all rate
information, and also imposes local particle conservation.
The fluctuation statistics can then be calculated in saddle-
point approximation by finding the “zero energy lines” of the
dynamics—the statistical trajectory in phase space that is
most likely, similar to the instanton trajectory of Ref. [20].
From this trajectory, the generating function may be found as
an area in phase space.

Rather than solving the original master equation (1), we
skip to the generalization of CNB2 [6], where

Kyy=(N=no)(1+ ), H,=H+N=n)n, (21)

which applies also to higher temperatures, and 7 is defined
as

1

=H! — .
7 k>0 (eﬁek— 1)2

(22)

We introduce the notation «,, for the cumulants of the distri-
bution [21], and define the nonstandard cumulant generating
function Q(\) as

K= 3 O\ |- (23)

According to the calculations in Appendix C, this function is
given by the solution of the equation

(Q+DKp(e* = 1)+ QHp(e™ - 1) =0, (24)
for any K, H. For the special case of (21), the result is

~H+(1+p)(N=1e=Np+ 41 + p)[- p+ ™1+ ) IN+[H - M1 + p)(N=1) + yNJ

o) =

Applying Eq. (23), the average value (x;=(n,)) is given by

—2n+2eM1+ 1)

(25)
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(ngy=(12DI(N=H 1=+ J(N=H - 7= 1)>+4N(1 + n)], (26)

which coincides with (7) in the =0 limit. The second central moment (k,=u,) is given by

M2

in terms of elementary functions.

indistinguishable.

(L D+ HONN=H = = 12 +4N(1 + ) = (L+ L2+ HO +H=N) + n(1 + 2H + N)]

: : (27)
2WIN-H - n-1)>+4N(1 + 7)
I
N-1 N N-1
All higher cumulants and central moments may be easily Py = Z]_\,1 IT F;,l, Zy= >, IT F;f, (31)
computed from (25). Figures comparing these approximate m=ng ng=0 m=ng
results with the exact master equation solution (shown in or
Fig. 1) are not shown, simply because for N=200, they are
N-ng—1+x)) ! (N=ng—1+x,)!
Py = ( 0 D! 0 2) ’ (32)

VI. HYBRID THEORY: COMBINING CNB3 WITH THE
MASTER EQUATION ANALYSIS

We now demonstrate how to combine ideas from the ca-
nonical ensemble quasiparticle formalism 0f_CNB3 [17]
(which works well at low temperature when u, < i1,) with
the physics of the master equation approach, in order to ob-
tain essentially perfect quantitative agreement with the exact
numerical solution of the canonical partition function at all
temperatures for the fluctuation statistics of the Bose gas.

Defining the function F, as the ratio between the prob-
abilities to find ng+1 and n particles in the ground state,

pn0+l
F, =——,
0

pno

(28)

we note that the canonical ensemble constraint is imposed by
Fy=0 because if all the particles are in the condensate, it is
impossible to cool further, or, in other words, the probability
to find N+1 particles in the condensate is equal to zero. It is
then useful to consider an expansion of this function in N
—ng. Rather than Taylor expand, a better approach is to ap-
proximate this function by a ratio of two power series and
then determine both the numerator and denominator coeffi-
cients, a procedure known as a Padé approximation. Padé
approximations are usually superior to Taylor expansions
when functions contain poles, because the use of rational
functions allows them to be well represented. We approxi-
mate

Fpy= 7 (29)
0 Hn0+1
where the functions H,K are both polynomials in N—ny,

H"o =H + 9N - ny) + a(N — ng)?,

K”O:(l + (N = ng) + a(N - ny)?, (30)

and truncate the expansion at second order. Knowledge of
the function F”o allows the construction of the entire distri-

bution,

(N=ng) '[N=no+ (1 + n)/a]!

where x; ,=(7= V7?—4aH)/2a and C is the normalization
constant determined by EnN():o Pny= 1. The functions H,K take
the same form as in the master equation, but now the coef-
ficients H, 7, « are treated as free parameters to be fixed by
comparison with CNB3 [17] at low temperatures.

The further analytic input for the theory is the first three
moments of the distribution described by the heating and
cooling coefficients (30) in the low-temperature limit. These
moments are used to fix the free parameters H, 7, @. The
calculation is done in Appendix C for the complete generat-
ing function using the stochastic path integral formalism, but
here we only reproduce the needed first three:

(ngy=N-"H, (33)
wr=H(l + n+ aH), (34)
my=—H( + p+aH)(1 +2n+4aH). (35)

Comparison with the CNB3 result [17] at low temperature
allows us to obtain the parameters H, 7, a:

H=Eﬁka

k#0
> (27 + 37 + i) 4, (2 + 1)
1 k#0 34 k#0
n=71- - s
2 > (in + i1y.) > ny
k#0 k#0
D (@+i) X Q2+ 3+ i)
1 1 k=0 k#0
a= -
> i\ 2 > ny 2> (ﬁi"'ﬁk)
k#0 k#0 k0

(36)

where i7,=(eP%—1)~!. Knowing these parameters allows the
complete specification of the entire distribution in this ap-
proximation. To sum up, the theory uses (i) the master equa-
tion and stochastic path integral formalism to determine the
first three moments at low temperature, and (ii) the results of
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CNB3 (which works well in the low-temperature limit) to fix
the three undefined parameters. The distribution function
(32) together with Egs. (36) then gives predictions for all
central moments and cumulants [21] at all temperatures.

The theory is put to the test in Figs. 4 and 5 for the first
few central moments and cumulants of a thermal Bose gas in
a harmonic trap, for the mesoscopic case N=200. The hybrid
treatment yields perfect agreement with the exact numerical
dots obtained in the canonical ensemble.

VII. CONCLUSIONS

We have discussed the fluctuation statistics of an ideal
mesoscopic Bose-Einstein condensate from several different
perspectives. First, we have reviewed the master equation
approach, and derive an approximate analytic solution for the
mean condensate particle number. By generalizing the grand
canonical analysis, the same result from the approximate so-
lution of a self-consistent equation has been recovered for
the mean condensate particle number. Improved analytic re-
sults are obtained for the mean condensate particle number in

0 : : : : : : :
00 02 04 06 08 10 12 14
TIT,

CNB3 [17] (dashed line) are also
shown.

the case of a three-dimensional (3D) harmonic trap, which
are quite accurate when compared with numerical calculation
of the canonical partition function result. Analogous treat-
ment of the variance of the distribution in the generalized
grand canonical picture have given results that are very ac-
curate below the critical temperature, but substantially devi-
ate at or above the critical temperature. The reason for this
discrepancy is because correlations of excited energy levels
were neglected in the calculation.

Next, we have presented an (approximate) analytic solu-
tion for the generating function of the fluctuation statistics
from the master equation perspective. This is done by em-
ploying the stochastic path integral formalism, with the
saddle-point approximation, giving results that are asymp-
totically valid in the physically relevant limit of many par-
ticles in the condensate. The general solution is discussed for
arbitrary heating and cooling coefficients, and specific results
are given in terms of elementary functions for the Bose-
Einstein condensate heating and cooling coefficients of
CNB2. These results are in excellent agreement with exact
master equation solution when compared numerically.

~— CNB3

FIG. 5. (Color online) As in

Fig. 4, for the third, fourth, fifth,
and sixth centered moments, de-
noted by {(no—(ny))"), as well as
cumulants «, [21].
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A hybrid theory has been put forth that combines the mas-
ter equation and stochastic path integral with the approach of
CNB3. The theory applies the results of CNB3 in the low-
temperature limit, together with the predictions of the master
equation and stochastic path integral. This is accomplished
by preserving the physical structure of the master equation,
while using the first three moments of CNB3 to fix the nu-
merical values of the heating and cooling parameters. These
predictions are then examined for several higher moments
(or cumulants), at all temperatures. The predictions of this
theory are essentially in perfect agreement with numerical
simulation of the exact canonical partition function.

Finally, we briefly discuss how our methods and results
extend in the presence of weak interactions. As will be
shown in Ref. [22], it is easy to generalize the hybrid ap-
proach to the interacting case and take the first three central
moments (in the low-temperature limit) from CNB3. From
the microscopic master equation point of view, interactions
generally lead to “off-diagonal” transitions in the density ma-
trix, demanding a fully coherent treatment of the problem.
However, it will be demonstrated elsewhere that good agree-
ment with CNB3 (in the applicable low-temperature limit)
may be obtained with only diagonal transitions, where the
heating and cooling coefficients are determined from Bogo-
liubov theory.
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APPENDIX A: GRAND CANONICAL FORMALISM:
SIMPLE EXPANSION WITH TRIPLE SUMMATION

Before calculating the analytic expressions for the aver-
age and variance of the condensate fluctuations, it is instruc-
tive to first take another path, different from the one pre-
sented in Sec. III. Rather than make the step (11), we make
the simple expansion

N—(ng) = E 2

r=1 k>0 (

ePek\ -1
- ( <n0>) 4D - 5D
(A1)
where
Bey

1 e
A(T):E()eﬁT B(T)= >, a1

; (A2)
-1 k>0 -1 )2

The above expansion is in the small parameter eP%/[(ePé
—1){ngy)]. Equation (A1) has the solution

(no) = %[N—A+ V(N-A)?+4B]. (A3)

For an isotropic harmonic trap, €,=#%Q(I+m+n), and since
e~Bmen) < 1 (here a=B#()) we make the series expansion
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FIG. 6. (Color online) The average condensate particle number
is plotted versus temperature for N=200. The approximate analytic
result (A6) within the grand canonical approach (solid line) is com-
pared with the exact canonical dots. The triple sum together with
the simple expansion gives a poor fit.

o0

e —a(l+m+n)
A(T) — 2 - o = 2 2 e (s+1)a(l+m+n)
l,m,n=1 l,m,n=1 s=0
© o 3 0 o] 3
— E (2 e—(s+l)zm) — 2 (2 e—san)
= n=1 s=1 \n=1

] 1 0 3

=2 (— f e—"dz) - —g(s) (A4)
s=1 \a4Jo

where {(n)=3,_,1/s" is the Riemann zeta function and the

conversion to integration is based on the assumption a<<1.

Similarly we find

)

ea(l+m+n)
B(T) = E W E Z (S + l)e—(s+1)a(l+m+n)
l,m,n=1 Lm,n=1 s=0
= 2 (s+1) E e_(”l)an = E S<_f e—szdz>
s=0 n=1 s=1 a a
1
= _3§(2) (A5)
a
Finally, by noting that A(T)=N(TIT,)?, B

=N(T/T.)3¢(2)/1{(3), where T,.=[N/{(3)]'"3#Q/ky is the
critical temperature in the thermodynamic limit, we obtain

w3 1= () [l -G T )

(A6)

For large N, Eq. (A6) reproduces the thermodynamic limit.
However, the triple-sum formula is inaccurate for small N
especially near T,. The result (A6) is plotted in Fig. 6. The fit
is poor because N=200 is not sufficiently large. We note that
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this expansion may be systematically improved by keeping
more terms in the 1/{(n,) expansion, and evaluating the co-
efficients in a similar manner. In the next appendix, this
analysis is improved.

APPENDIX B: GRAND CANONICAL FORMALISM:
IMPROVED EXPANSION WITH SINGLE SUMMATION

The goal of this appendix is to obtain an improved ana-
lytic expression for both the average and variance of the
condensate distribution for an isotropic harmonic trap.
Equation (A1) is obtained from Eq. (10) by neglecting the
terms with 1/(ny)*> and higher under the condition
(ng) > ePé/(eP%—1). For the enhanced expansion (11), it is
not difficult to see that the validity condition is (ng)
+1>> (eP%—1)1, allowing for a better approximation.

After this point, there are two more key steps: (1) convert
the triple summation into a single summation and (2) make
an integral approximation to the single summation. We first
recall that

1
H=k2>0m, (B1)

where for a harmonic trap Be,=a(l+m+n) and we have in-
troduced a=7 ) B. The triple summation can be reduced to a
single summation over s, where s=I[+m+n, and weighting
this sum with the number of ways W to put s quanta into
three boxes, W=(s+2)!/(s!2!)=(s+2)(s+1)/2,

H=§(s+2)(s+1)

2(e®™-1) (B2)

s=1

In order to find an analytical expression for H, we inter-
pret the summation as a Riemann summation, and convert it
(approximately) to an integral using the midpoint rule,
> fe=Jyds f(s+1/2). The midpoint rule gives the better
approximation because it compromises between the lower
and upper summations. Reparametrizing the integral yields

pe [ (B2 ) L
2)pp\d®  a e'-1la

AL In(e“? - 1) (B3)

2
z%+<%> +i(ln2—lna), (B4)

where dilog(x)=[drIn(z)/(1—¢). This derivation gives Eq.
(14), one of our main results.
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Turning to the variance, we proceed in the same manner
to obtain an analytical expression for w,. The conversion
from the triple sum to the single sum yields

_i(s+2)(s+1)( Lot
pa= 2 (Ae® - 1) Ae® -1

>, (B5)

s=1

where A=1+1/(n,). Next, we convert the sum into an inte-
gral as before to yield

fw Aet 1 <x2 3x 2) dx (B6)
=~ ——— | 5+3-+2]|—.
H nAf=12\a*> Ta a
Then we integrate by parts to find
15 1 fw 2x/a+3d 87)
~—m—m-- + — .
2= gaae® 1) " 2a2) ,, A1

The integral in Eq. (B7) can be calculated analytically to find

TAe”? + 8 3 1( A )
=———— 4+ — In| ———
P2 gaAae™ — 1) " 282 "\ Ae? 1

e—A_>lnA + dilog(Ae“/z)] .

(B8)

This derivation gives Eq. (20), another main result.

APPENDIX C: STOCHASTIC PATH INTEGRAL SOLUTION
OF THE MASTER EQUATION

The purpose of this appendix is to provide approximate
expressions for all cumulants of the stationary condensate
fluctuations using elementary functions, starting from the
master equation approach. In order to accomplish this, we
employ the stochastic path integral formalism [15,16].

Consider a general differential master equation of the
form

Pn(t) = E [anPm(t) - WmnPn(t)]a (Cl)

where W,,, is a transition rate from m to n, and P, is the
probability of occupying state n. Applying this equation to
our BEC problem, the microscopic rates to different states
are taken from CNB2 [6]:

Wgng1 = k(L + ) (N +1=ng)ng,

Wno,n0+1 = K[H + 77(N_ ng— ])](n() + 1)’ (Cz)

where n, is the number of particles in the condensate, « is a
rate constant, H is given in (12), and # is given in (22). We
now express this master equation as a stochastic path inte-
gral, by going to a continuous representation where the dis-
crete number of particles in the ground state n; is replaced by
an effectively continuous variable Q,

U(Qf’ Qi’t) = J DQ DX\ exp[S(Qs)\)]’ (C3)
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S(Q.\) = J dt'[- \Q + H(Q,N)]. (C4)
0

The object U is the evolution operator going from one par-
ticle configuration Q; to another particle configuration Qy in
time . It is expressed as a path integral over Q and . The
auxiliary variable \ is a canonically conjugate variable and
imposes local particle number conservation. In the continu-
ous limit, (and suppressing the overall rate constant «) the
CNB2 [6] rates may be expressed as

W(Q'.0)=(1+nN+1-0")0'8Q"-0-1)
+H[H+5pN-0"-DIQ" +DAQ" -0 +1).
(C5)

According to the prescription of Ref. [16], the Hamiltonian
H(Q,\) of the stochastic path integral is found from the
equation

H(Q\) = f dQ' (€@~ _1)W(Q',0).  (C6)

For the rates (C5), we find
HQQ.N=(1+7n(N-0)(Q+1)(-1)
+[H+7(N-0Q)]0(e™-1), (C7)

or for the general master equation (1) with arbitrary coeffi-
cients H,K, we find

H(Q.N) =Kp(Q+ 1)(e*-1)+Hy0(e™-1). (C8)

This result has a simple physical interpretation: On a short
time scale, the elementary transitions into and out of the

PHYSICAL REVIEW A 74, 032506 (2006)

condensate are Poissonian, witnessed by the generators G of
Poissonian statistics, G=I"[exp(£\)—1] [counting an incom-
ing (+) or outgoing (=) boson]. These boson transitions are
described with a rate into the condensate I';,=K,(Q+1), and
a rate out of the condensate Iy, =H Q.

The stochastic path integral (C3) may be evaluated in
saddle-point approximation, where the large parameter of the
expansion is {ny)>> 1, the number of particles in the conden-
sate. Applying this approximation gives the analog of Hamil-
ton’s equations of motion,

Q = (9)\H, )\ =- (9QH (C9)

To solve the problem of instantaneous particle number
statistics in this approximation, we generalize the method of
Ref. [16], following the method of Ref. [20], by first finding
the “zero-energy lines,” implicitly defined by the equation
H(Q,\)=0. For time scales longer than the relaxation time
«!, any Q-distributed initial state will be projected onto the
zero-energy lines. The trivial zero-energy line is given by
No=0 and must exist for the probability distribution to be
normalized. The instantaneous fluctuation statistics (to lead-
ing order) can be found by calculating the statistical action
(C4) along the nontrivial zero-energy line. This action S(y) is
also the generating function of the cumulants of the fluctua-
tion statistics. On the zero-energy line, the Hamiltonian van-
ishes, leaving only the dynamical part of the action,

1 X
S()=- J dt'\(1)QO(t') = f O(\)dx,  (C10)
0 0

and we have changed variables from time to phase space
coordinates. In the case of Bose-Einstein condensation (C7),
the nontrivial zero-energy line Q(\) is given by

—H+(1+7n(N-1)e"-Ny+ \’/46)\(1 + - p+r1+pIN+[H-e"1+ ) (N-1)+ yN]?

o) =

In order to have a generating function, it is unnecessary to
perform the integral (C10) because dS/dx=Q(x). Therefore,
all cumulants of the distribution can be found from
K= 3 QM) o (C12)
This result generalizes the discussion of Ref. [16] for any
two Poissonian processes in series (equilibrium or not), and
is easily generalized to arbitrary elementary processes. Equa-
tions (C11) and (C12) recover Egs. (23) and (25) and are
main results.
In Sec. VI, this same method is used to calculate the cu-
mulants where the heating and cooling coefficients are given
by

K”o =(1+ 7)(N=ng) + a(N —ny)?,

—27p+2eM1+ 7))

; (C11)

H, =M+ (N = no) + a(N = no)*. (C13)
As before, we define Q(\) as the solution of the approximate
zero-energy  equation, e":HQ/ Ky, where the low-
temperature limit allows the approximation Q+1— Q. The
solution is

n—eM1+7)+ \/4&7‘((8)\— D+[7—-(1+ne]?

2a(eh=1)

O\ =N-
(C14)

The first three cumulants are given in Egs. (33)-(35), which
coincide with the first three central moments.

We also briefly note that time-averaged fluctuation statis-
tics may be easily calculated within the stochastic path inte-
gral formalism. Consider a detector that has finite time reso-

032506-10



FLUCTUATION STATISTICS OF MESOSCOPIC BOSE-...

lution. The physical quantity that is of interest is then the
condensate particle number, averaged over some time win-
dow 7,

0.=(1/7) f Tdt’no(t'), (C15)
0

where we take 7 longer than any dynamical time scale, for
simplicity. Following the method of Ref. [16], we find that

PHYSICAL REVIEW A 74, 032506 (2006)

the distribution P(Q,) is approximately given by the expres-
sion

log P(Q,) == 7(\Tiy = \Tou)?, (C16)

where FinzKQT(QT+ 1), I'ow=Hgp O Interestingly, this result
is of the same form as the time-averaged electron fluctua-
tions on a mesoscopic cavity, out of equilibrium [16]. This
similarity of statistics for radically different physical systems
originates from the fact that both systems can be described as
two Poissonian processes in series.
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