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Decoy states have recently been proposed as a useful method for substantially improving the performance of
quantum key distribution �QKD� protocols when a coherent-state source is used. Previously, data postprocess-
ing schemes based on one-way classical communications were considered for use with decoy states. In this
paper, we develop two data postprocessing schemes for the decoy-state method using two-way classical
communications. Our numerical simulation �using parameters from a specific QKD experiment as an example�
results show that our scheme is able to extend the maximal secure distance from 142 km �using only one-way
classical communications with decoy states� to 181 km. The second scheme is able to achieve a 10% greater
key generation rate in the whole regime of distances. We conclude that decoy-state QKD with two-way
classical postprocessing is of practical interest.
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I. INTRODUCTION

Quantum key distribution �QKD� allows two users, com-
monly called Alice �sender� and Bob �receiver�, to commu-
nicate in absolute security in the presence of an eavesdropper
Eve. Unlike classical cryptography, the security of QKD is
based on the fundamental principles of quantum mechanics,
rather than unproven computational assumptions.

The best-known QKD protocol—the Bennett-Brassard
1984 �BB84� scheme—was published in 1984 �1�. In the
BB84 protocol, Alice sends Bob a sequence of single pho-
tons each of which is randomly prepared in one of two con-
jugate bases. Bob measures each photon randomly in one of
two conjugate bases. Alice and Bob then publicly compare
the bases and keep only those results �bits� for which they
have used the same basis. They randomly test a subset of
those bits and determine the quantum bit error rate �QBER�.
If the QBER is larger than some prescribed value, they abort
the protocol. Otherwise, they proceed to the classical data
postprocessing �which consists of error correction and pri-
vacy amplification� and generate a secure key. The security
of the BB84 protocol has been rigorously proven in a num-
ber of papers �2–4�; see also �5�.

The security proof in �4� shows that the BB84 protocol
can be successively reduced from an entanglement distilla-
tion protocol �EDP�. This idea is relevant to this paper since
our data postprocessing schemes are based on EDPs. We
remark that the EDP was first discussed in �6�, that its rel-
evance to the security of QKD was emphasized in �7�, and
that this connection was established rigorously in �3�. The

EDPs proposed earlier use local operations and one-way
classical communication �1-LOCC�. Later, Gottesman and
Lo provided security proofs of standard quantum key distri-
bution schemes by using an EDP with local operations and
two-way classical communication �2-LOCC� �8�. They
showed that the BB84 protocol using 2-LOCC can tolerate a
higher bit error rate than 1-LOCC �see also �9��. On the other
hand, Gerd, Vollbrecht, and Verstraete proposed another EDP
that uses a 2-LOCC-based recurrence scheme �10�. Although
their scheme was originally proposed as an EDP, we will use
it here in a QKD to increase the key generation rate.
�It should be noted that the EDP approach is only one of
several approaches to security proofs of QKD. Other useful
approaches to security proof can be based on, for example,
communication complexity �11�, quantum memory �12,13�,
or direct information-theoretic argument �14�.� Recently, it
has been demonstrated �15� rigorously that one can generate
a long secure key even when the amount of distillable en-
tanglement in a quantum state is arbitrarily small. In other
words, secure key generation is strictly weaker than en-
tanglement distillation. The universal composability of quan-
tum key distribution has been proven in �16�.

In summary, QKD is secure in theory. Much of the inter-
est in QKD is due to its potential in near-term real-life ap-
plications. Indeed, commercial optical-fiber-based quantum
cryptographic products are already on the market �17�.

Meanwhile, experimentalists have done many QKD ex-
periments, such as �18–20�. The key issue in QKD experi-
ments is whether they are really secure. Standard security
proofs are often based on perfect devices, such as perfect
single-photon sources. All devices are imperfect in real
implementations, such as imperfect single-photon sources
and highly lossy channels. It is thus important to study the
security of QKD with imperfect devices. Substantial
progress has been made in the subject �21–24�.

Unfortunately, with the method of Gottesman, Lo, Lüt-
kenhaus, and Preskill �GLLP� �23�, QKD can only be proven
to be secure at very limited key generation rates and dis-
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tances. It came as a big surprise that a simple solution to the
problem—the decoy-state method—actually exists. The de-
coy method was first discovered by Hwang �25�, and made
rigorous by Lo and co-workers �26,27�, and also �28,29�. In
addition, Zhao et al. demonstrated experimental implemen-
tation of a QKD protocol using one decoy state �30�.

The usefulness of decoy-state protocols over non-decoy-
state protocols has previously been demonstrated �26,27�,
within the context of 1-LOCC, for an imperfect source. Since
2-LOCC is known to be superior to 1-LOCC for a perfect
source �8–10�, it would be interesting to study the usefulness
of decoy-state protocols with 2-LOCC, for an imperfect
source. This is the main goal of this paper. Indeed, as we will
show, decoy-state protocols with 2-LOCC are superior to
decoy-state protocols with only 1-LOCC in realistic situa-
tions. Specifically, in this paper, we develop two data post-
processing schemes for the decoy method of �26,27� by ap-
plying two 2-LOCC EDPs, the Gottesman-Lo EDP �8� and
the recurrence scheme �10�. Both methods are superior to the
random hashing 1-LOCC EDP �for the rest of the paper, we
will simply call this the 1-LOCC EDP� with ideal devices in
two different aspects: the Gottesman-Lo EDP was shown to
be able to achieve a higher tolerable bit error rate, while the
recurrence method was shown to be able to achieve a higher
key generation rate. We will show in this paper that the same
conclusion holds in the case of imperfect devices. In particu-
lar, depending on the distance in a QKD experiment, one can
use our Gottesman-Lo EDP-based data post-processing
scheme in the long-distance region or our recurrence-based
data postprocessing scheme in the short-distance region to
increase the key generation rate.

We note that a recent and independent analysis of com-
bining B steps with the GLLP method and decoy states is
given in �31�. That data postprocessing scheme is the same
as our first scheme, which is aimed at increasing the maximal
secure distance. On the other hand, in this paper, we also
propose a second scheme, which is aimed at increasing the
key rate at short distances.

The organization of this paper is as follows. We first re-
view entanglement distillation in Sec. II and some existing
techniques for realistic QKD in Sec. III. We then investigate
the tolerable error rates and the upper bounds of secure dis-
tance and key generation rate in Sec. IV. Sections V and VI
contain the main results of the paper. Specifically, we de-
velop two data postprocessing schemes, one with the B steps
from Gottesman and Lo �8� �see Sec. V�, and the other with
recurrence �see Sec. VI�. Our simulation �based on the
Gobby-Yuan-Shields �GYS� experiment �19�� shows that
with B steps from the Gottesman-Lo EDP, the maximal se-
cure distance can be extended to 180 km compared with
140 km with 1-LOCC, and the key generation rate increased
by more than 10% in the whole regime of distances. With our
QKD model, we also consider statistical fluctuations on the
estimated parameters when the data have finite length �see
Sec. VII�. The result shows that the B step can extend the
maximal secure distance and the recurrence can raise the key
generation rate after taking statistical fluctuations into ac-
count. Although, in this paper, we focus on the BB84 proto-
col, our schemes can be applied to other QKD protocols as
well.

II. REVIEW OF ENTANGLEMENT DISTILLATION

In this section, we review Shor and Preskill’s security
proof of QKD and two EDPs based on 2-LOCC �the
Gottesman-Lo and recurrence EDPs� assuming that ideal
single-photon sources are used. In Secs. V and VI, we gen-
eralize these two schemes for realistic setups.

The idea of the Shor-Preskill �4� security proof of QKD is
to apply an EDP to show that the leaked information about
the final key is negligible. Here we will explain how to ana-
lyze the security of EDP-based QKD.

In the EDP-based QKD protocol, Alice creates n+m pairs
of qubits, each in the state

��� =
1
�2

��00� + �11�� ,

the eigenstate with eigenvalue 1 of the two commuting op-
erators X � X and Z � Z, where

X = 	0 1

1 0

, Z = 	1 0

0 − 1



are the Pauli operators. Then she sends half of each pair to
Bob. Alice and Bob sacrifice m randomly selected pairs to
test the error rates in the X and Z bases by measuring X
� X and Z � Z. If the error rates are too high, they abort the
protocol. Otherwise, they conduct the EDP, extracting k
high-fidelity pairs from the n noisy pairs. Finally, Alice and
Bob both measure Z on each of these pairs, producing a k-bit
shared random key about which Eve has negligible informa-
tion. The protocol is secure because the EDP removes Eve’s
entanglement with the pairs, leaving her negligible knowl-
edge about the outcome of the measurements by Alice and
Bob.

In the EDP, after the qubits’ transmission, Alice and Bob
will share the state with density matrix

� =�
q00 � � �

� q10 � �

� � q11 �

� � � q01

� , �1�

normalized with q00+q10+q11+q01=1. Here the x’s denote
arbitrary numbers, all of which are not necessarily the same,
and the density matrix is in the Bell basis:

��00� =
1
�2

��00� + �11�� ,

��10� =
1
�2

��01� + �10�� ,

��11� =
1
�2

��01� − �10�� ,
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��01� =
1
�2

��00� − �11�� . �2�

Since the EDPs we consider in this paper do not make use of
the off-diagonal elements in Eq. �1� to extract entanglement,
it is sufficient to characterize the density matrix by only the
diagonal elements �q00,q10,q11,q01�. In fact, any shared state
can always be transformed into a diagonal form by local
operations and classical communications �32�. The density
matrix is now a classical mixture of the Bell states �ij with
probabilities qij. Therefore, the bit and phase error rates are
given by

�b = q10 + q11,

�p = q11 + q01. �3�

A QKD protocol based on a Calderbank-Shor-Steane
�CSS� �33� EDPs can be reduced to a “prepare-and-measure�
protocol �BB84� �4�. CSS codes correct bit errors and phase
errors separately, which respectively turn out to be the bit
error correction and privacy amplification in the context of
QKD �4�. Thus the key rate of this 1-LOCC based data post-
processing scheme is given by �4,34�,

RCSS = q�1 − H2��b� − H2��p�� , �4�

where q depends on the implementation �1/2 for the BB84
protocol, because half the time Alice and Bob bases are not
compatible, and if we use the efficient BB84 protocol �35�,
we can have q1�, �b and �p are the bit flip error rate and
the phase flip error rate, and H2�x� is the binary entropy
function,

H2�x� = − x log2�x� − �1 − x�log2�1 − x� .

In summary, there are two main parts of the EDPs: bit flip
error correction �for error correction� and phase flip error
correction �for privacy amplification�. These two steps can
be understood as follows. First Alice and Bob apply an error
correction, after which they share the same key strings but
Eve may still keep some information about the key. Alice
and Bob then perform the privacy amplification to expunge
Eve’s information from the key. We remark that the key gen-
eration rate achieved by Eq. �4� requires only 1-LOCC.

A. Gottesman-Lo EDP

Gottesman and Lo �8� introduced an EDP based on
2-LOCC for use with QKD and showed that it can tolerate a
higher bit error rate than 1-LOCC based EDP’s. B and P
steps are two primitives in the Gottesman-Lo EDP, and the
EDP consists of executing a sequence of B and/or P steps,
followed by random hashing. The random hashing part is a
1-LOCC EDP. The main objective for the extra B and P steps
is to reduce the bit and/or phase error rates of qubits so that
the random hashing can work to extract secure keys. This is
the reason why the Gottesman-Lo EDP is able to tolerate a
higher initial bit error rate than 1-LOCC EDPs. The defini-
tions of B and P steps are as follows.

Definition of B step [8]. This is shown in Fig. 1. After

randomly permuting all the Einstein-Podolsky-Rosen �EPR�
pairs, Alice and Bob perform a bilateral XOR �BXOR� opera-
tion between EPR pairs and measure the target qubits in the
Z basis. This effectively measures the operator Z � Z for each
of Alice and Bob, and detects the presence of a single bit-flip
error. If Alice’s and Bob’s measurement outcomes disagree,
they discard the remaining EPR pair; otherwise, they keep
the control qubit.

Since the B step involves only the measurement of Z
� Z, it can be used in the prepare-and-measure BB84 proto-
col. Classically, the B step simply involves random pairing
of the key bits, say x1 ,x2 on Alice’s side and y1 ,y2 on Bob’s
side, and the computation of the parity of each pair of bits,
x1 � x2 and y1 � y2. Both Alice and Bob announce the pari-
ties. If their parities are the same, they keep x1 and y1; oth-
erwise, they discard x1, x2, y1, and y2. We can see that the B
step is very simple to implement in data postprocessing.

Suppose Alice and Bob input a control qubit
�q00

C ,q10
C ,q11

C ,q01
C � and a target qubit �q00

T ,q10
T ,q11

T ,q01
T � with

bit error rates �b
C and �b

T and phase error rates �p
C and �p

T,
respectively. After one B step, the survival probability pS is
given by

pS = �q00
C + q01

C ��q00
T + q01

T � + �q10
C + q11

C ��q10
T + q11

T �

= �1 − �b
C��1 − �b

T� + �b
C�b

T, �5�

and the density matrix �q00� ,q10� ,q11� ,q01� � of the output control
qubit is given by

q00� =
q00

C q00
T + q01

C q01
T

pS
,

q10� =
q10

C q10
T + q11

C q11
T

pS
,

q11� =
q10

C q11
T + q11

C q10
T

pS
,

q01� =
q00

C q01
T + q01

C q00
T

pS
. �6�

Equations �6� can be derived from Table II of �32�. The cor-
responding bit error rate �b and phase error rate �p can be
obtained from Eq. �6� by

�b� = q10� + q11� =
�b

C�b
T

pS
,

FIG. 1. Alice and Bob choose two half EPR pairs and input the
quantum circuit as shown above. They discard both control and
target qubits if they disagree on the outcomes of measurement on
the target qubits. On the other hand, they keep the control qubits as
surviving qubits if their measurement outcomes agree.

DECOY-STATE QUANTUM KEY DISTRIBUTION WITH… PHYSICAL REVIEW A 74, 032330 �2006�

032330-3



�p� = q11� + q01� . �7�

Definition of P step [8]. Randomly permute all the EPR
pairs. Afterward, group the EPR pairs into sets of three, and
measure X1X2 and X1X3 on each set �for both Alice and Bob�.
This can be done �for instance� by performing a Hadamard
transform, two bilateral XOR operations, measurement of the
last two EPR pairs, and a final Hadamard transform. If Alice
and Bob disagree on one measurement, Bob concludes that
the phase error was probably on one of the EPR pairs which
was measured and does nothing; if both measurements dis-
agree for Alice and Bob, Bob assumes that the phase error
was on the surviving EPR pair and corrects it by performing
a Z operation.

Without a quantum computer, Alice and Bob are not able
to perform the P steps, so the EDP cannot depend on the
results of P steps. When the P step is implemented classically
in the BB84 protocol, the phase errors are not detected or
corrected �i.e., the phase-flip operation Z is not applied�. The
P step then will be reduced as follows. Alice and Bob ran-
domly form trios of the remaining qubits and compute the
parity of each trio, say x1 � x2 � x3 by Alice and y1 � y2 � y3
by Bob. They now regard those parities as their new bits for
further processing.

Since before P steps Alice and Bob will do random per-
mutation, for simplicity, we assume the input three qubits
have the same density matrix �q00,q10,q11,q01�. After one P
step, the density matrix �q00� ,q10� ,q11� ,q01� � of the output qubit
is given by

q00� = q00
3 + 3q00

2 q01 + 3q10
2 �q00 + q01� + 6q00q10q11,

q10� = q10
3 + 3q10

2 q11 + 3q00
2 �q10 + q11� + 6q00q10q01,

q11� = q11
3 + 3q10q11

2 + 3q01
2 �q10 + q11� + 6q00q11q01,

q01� = q01
3 + 3q00q01

2 + 3q11
2 �q00 + q01� + 6q10q11q01, �8�

which is given in Appendix C of �8�. So the bit error rate and
phase error rate will be given by

�b� = q10� + q11� = 3�b�1 − �b�2 + �b
3,

�p� = q11� + q01� = 3�p
2�1 − �p� + �p

3. �9�

Here we emphasize that the B and P steps are important
elements of the Gottesman-Lo EDP. After B and P steps, the
Gottesman-Lo EDP will be the same as the regular 1-LOCC
EDP.

B. Recurrence EDP scheme

Here we review another two-way EDP, the recurrence
scheme �10�. Similar to the B step in the Gottesman-Lo EDP,
the recurrence scheme reduces the bit error rate of the EPR
pairs before passing them to the 1-LOCC-based random
hashing for the distillation of maximally entangled EPR
pairs. However, there are two main differences between these
two EDP schemes. The first is how the bit error syndrome of
a target EPR pair in a bilateral XOR operation is learned. In

the Gottesman-Lo EDP, Alice and Bob simply measure the
target EPR pair in the Z basis and compare their results to
learn the bit error syndrome �see Fig. 1�. In the recurrence
scheme, Alice and Bob group the bit error syndromes of all
target EPR pairs together and learn all the syndromes using
random hashing. The second difference is that the recurrence
scheme requires some extra maximally entangled EPR pairs
to begin with for learning the bit error syndromes, whereas
no such extra pairs are required in the Gottesman-Lo EDP.
We note that the recurrence methods have been studied in
various papers, such as �7,36–38�.

The steps for the recurrence protocol are as follows.
�1� Alice and Bob perform two BXOR operations on two

noisy EPR pairs and one perfect maximally entangled EPR
pair. Specifically, the first BXOR operation is performed on
one noisy EPR pair as the source and the perfect EPR pair as
the target, and the second BXOR operation is performed after
the first BXOR operation using the other noisy EPR pair as the
source and the same target.

�2� They do random hashing on the target EPR pairs to
learn the parities of the noisy EPR pairs. Note that only a
portion of the target EPR pairs have to be measured in order
to learn all the parities. This is different from the B step
approach.

�3� They do error correction and privacy amplification
separately for even-parity and odd-parity EPR pairs.

In the prepare-and-measure scenario, the first two steps
are as follows. Alice and Bob randomly pair up the key bits,
and for each pair they compute the parity. They each com-
press their own sequence of parities by using random hash-
ing, encrypt the resulting hash values using the one-time pad
with some preshared secret bits, and send the encrypted re-
sults to each other. Note that they use the same sequence of
secret bits to encrypt their own sequence of hash values.
They learn the parities of the original noisy EPR pairs by
adding the other party’s encrypted sequence to their own
encrypted sequence of hash values. Once they know the pari-
ties, they perform error correction and privacy amplification
on the even-parity and odd-parity key bits separately. Note
that the secret bits used up in the process should be returned
to the secret bit pool by using the newly generated secret
bits.

The key generation rate using the recurrence EDP with a
single-photon source is given by

R = q�−
1

2
H2�pS� −

1

2
pSH2	�b

C�b
T

pS

 + K� �10�

where q is defined similarly as in Eq. �4�, pS �given in Eq.
�A2�� is the probability of getting even parity, and �b

C ��b
T� is

the bit error rate of the control �target� EPR pair. Here, the
first term in the brackets corresponds to the extra perfect
EPR pairs borrowed, the second term corresponds to error
correction, and the third term K �given in Eq. �A12�� corre-
sponds to privacy amplification. In Appendix A, we review
the recurrence EDP in detail and develop the key rate
formula.
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III. REVIEW OF REALISTIC QKD

In this section, we set up a model for realistic QKD, and
review the ideas of the GLLP and decoy-state QKDs.

A. Realistic QKD setup

In this section, we present a widely used fiber-based QKD
system model. All later simulations of QKD are based on this
model. In order to describe a real-world QKD system, we
need to model the source, transmission and detection follow-
ing �21� �see also �27��.

1. Source

The laser source used in the QKD experiment can be
modeled as a weak coherent state. Assuming that the phase
of each pulse is totally randomized, the photon number of
each pulse follows a Poisson distribution with a parameter �
as its expected photon number set by Alice. Thus, the density
matrix of the state emitted by Alice is given by

�A = �
i=0

�
�i

i!
e−��i��i� , �11�

where �0��0� is the vacuum state and �i��i� is the density ma-
trix of the i-photon state for i=1,2 , . . .. The states with only
one photon �i=1� are normally called single-photon states.
The states with more than one photon �i�2�, on the other
hand, are called multiphoton states. Here, we assume Eve
receives all the pulses sent by Alice. Eve performs some
arbitrary operations and sends either a vacuum or a qubit to
Bob. This is the squash operation introduced by GLLP �23�.
Consequently, we denote the qubits coming from these three
states as vacuum qubits, single-photon qubits, and multipho-
ton qubits.

A vacuum qubit is a qubit sent by Eve when Alice sent a
vacuum state. �In the case without Eve’s presence, it is some
random qubit stemming from the dark counts of Bob’s de-
tector or other background contributions.� Thus, it does not
contribute to the key generation. Due to photon-number
splitting �PNS� attacks �39–42�, multiphoton states are not
secure for the BB84 protocol. Here is a key observation of
this QKD model: the final secure key can be extracted only
from single-photon qubits.1 Besides the BB84 protocol, this
is true for most present QKD protocols, such as the Ekert
1991 �44�, the Bennett 1992 �45�, and the six-state �46� pro-
tocols. One exception is the Scarani-Acin-Ribordy-Gisin
2004 �SARG04� protocol �47�, in which two-photon states
can also contribute to the secure key generation rate �43,48�.

2. Transmission

For optical-fiber-based QKD systems, the losses in the
quantum channel can be derived from the loss coefficient 	

measured in dB/km and the length of the fiber l in km. The
overall transmittance is given by


 = 
Bob10−	l/10, �12�

where 
Bob denotes the transmittance in Bob’s side, includ-
ing the internal transmittance of the optical components and
detector efficiency. Here we assume a threshold single-
photon detector on Bob’s side. That is to say, we assume that
Bob’s detector can tell whether there is a click or not. How-
ever, it cannot tell the actual photon number of the received
signal, if it contains at least one photon.

It is reasonable to assume independence between the be-
haviors of the i photons in i-photon states. Therefore the
transmittance of an i-photon state 
i with respect to a thresh-
old detector is given by


i = 1 − �1 − 
�i �13�

for i=0,1 ,2 , . . ..

3. Yield

Define Yi to be the yield of an i-photon state, i.e., the
conditional probability of a detection event at Bob’s side
given that Alice sends out an i-photon state. Note that Y0 is
the background rate, which includes detector dark counts and
other background contributions such as the stray light from
timing pulses.

The yield of the i-photon state Yi mainly comes from two
parts, the background and the true signal. Assuming that the
background counts are independent of the signal photon de-
tection, then Yi is given by

Yi = Y0 + 
i − Y0
i � Y0 + 
i. �14�

Here we assume Y0 �typically 10−5� and 
 �typically 10−3�
are small.

The gain of an i-photon state Qi is given by

Qi = Yi
�i

i!
e−�. �15�

The gain Qi is the product of the probability of Alice sending
out an i-photon state �which follows a Poisson distribution�
and the conditional probability of Alice’s i-photon state �and
background� that will lead to a detection event in Bob’s de-
tector.

4. Quantum bit error rate

The error rate of i-photon states ei is given by

ei =
e0Y0 + ed
i

Yi
�16�

where ed is the probability that a photon hits the erroneous
detector. ed characterizes the alignment and stability of the
optical system. Experimentally, even at distances as long as
120 km, ed is independent of the distance �19�. In what fol-
lows, we will also assume that ed is independent of the trans-
mission distance. We will assume that the background is ran-
dom. Thus the error rate of the background is e0= 1

2 . Note
that Eqs. �13�–�16� are satisfied for all i=0,1 ,2 , . . ..

1That only single-photon qubits contribute to the secure key is
only true for a security proof based on the EDP approach �which is
what we use in this paper�. It may not be true in other approaches,
e.g., the communication complexity approach, as noted in Ref. �43�.
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The overall gain is given by

Q� = �
i=0

�

Yi
�i

i!
e−�. �17�

The overall QBER is given by

E� =
1

Q�
�
i=0

�

eiYi
�i

i!
e−�. �18�

Without Eve, a normal QKD transmission will give

Q� = Y0 + 1 − e−
�,

E�Q� = e0Y0 + ed�1 − e−
�� . �19�

B. GLLP idea

We review the idea of GLLP �23� briefly here. GLLP give
a security proof of the BB84 QKD when imperfect devices
�such as imperfect single-photon sources� are used. There are
two kind of qubits discussed by GLLP, tagged and untagged
qubits. Tagged qubits are those that have their basis informa-
tion revealed to Eve, i.e., tagged qubits are not secure for
QKD. On the other hand, untagged qubits are secure for
QKD. In the BB84 protocol, qubits coming from single-
photon states are untagged while those from multiphoton
states are tagged because Eve, for instance, can perform PNS
attacks �39–42� on the multiphoton states to acquire their
basis information. The essential idea of GLLP is that Alice
and Bob can apply privacy amplification to tagged and un-
tagged qubits separately. Note that the idea of the tagged
state was �perhaps implicitly� introduced in �21�.

The data postprocessing of GLLP is performed as follows.
First, Alice and Bob apply error correction to all qubits, sac-
rificing a fraction H2��� of the key, which is represented in
the first term of Eq. �20�. Second, in principle, Alice and Bob
can distinguish the tagged and untagged qubits, so they can
apply the privacy amplification on the tagged and untagged
states separately. One can imagine executing privacy ampli-
fication on two different strings, the qubits stagged and suntagged
arising from the tagged qubits and the untagged qubits, re-
spectively. Since the privacy amplification is linear �the pri-
vate key can be computed by applying the C2 parity check
matrix to the qubit string�, the key obtained is the bitwise
XOR operation

suntagged � stagged

of keys that could be obtained from the tagged and untagged
qubits separately �23�. If suntagged is private and random, then
it does not matter if Eve knows anything about stagged—the
sum will be still private and random. Thus, one needs to
apply privacy amplification to the untagged bits alone.

We define the residue of data postprocessing to be the
ratio of the final key length to the sifted key length �in an
asymptotic sense�. The residue of this data postprocessing
scheme is given by

rGLLP = max�− f���H2��� + ��1 − H2��p��,0� �20�

where � is the overall quantum bit error rate, � is the frac-
tion of untagged qubits ��=1−�, where � is the fraction of
tagged qubits defined by GLLP �23��, �p is the phase error
rate of the untagged qubits, f�·� is the error correction effi-
ciency as a function of error rate �49�, normally f�x��1 with
Shannon limit f�x�=1, and H2�x� is the binary entropy func-
tion.

We can further extend GLLP’s idea to the case of more
than two classes of qubits, i.e., several kinds of qubits with
flag g, which generalizes the concept of tagged and untagged
qubits. The procedure of data postprocessing is similar: do
the overall error correction first and then apply the privacy
amplification to each case. So the privacy amplification part
can be written as

�
g

�gH2��p
g� �21�

where one needs to sum over all cases with flag g, �g is the
probability of the case with flag g and �g�g=1, and �p

g is
the phase error rate of the states with flag g. Finally, the
residue of data postprocessing is given by

r = max�− f���H2��� + �
g

�g�1 − H2��p
g��,0� . �22�

Applying the QKD model described in Sec. III A here,
�=E� and the key generation rate is given by

R = qQ�r , �23�

where Q� and E� are the gain and QBER of the signal state,
and q is defined similarly as in Eq. �4�.

C. Decoy states

For the BB84 protocol, the single-photon state is the only
source of final secure keys, i.e., the untagged qubits come
from single-photon qubits. So the fraction and error rate of
untagged qubit are given by

� = Q1/Q�, �p = e1, �24�

where Q1 is given in Eq. �15�, e1 is given by Eq. �16�, and
Q� is given by Eq. �17�. By substituting Eq. �20�, we can
rewrite Eq. �23� into

R = qrQ� � q�− Q�f�E��H2�E�� + Q1�1 − H2�e1��� ,

�25�

which is given in Eq. �11� of �26�.
Q� and E� can be measured directly from experiment.

The question is how to estimate Q1 and e1 accurately. In
principle, Eve can perform a nondemolition photon-number
measurement on the qubits and she may change the yields
�Yi in Sec. III A� of the qubits depending on the measure-
ment outcomes. That is, the yields of qubits, in general, may
depend on the photon number. Moreover, Eve can adjust the
error rates as she wishes.

The key idea of decoy states is that, instead of just using
one coherent state for key transmission, Alice and Bob
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choose some decoy states with different expected photon
numbers �� in Sec. III A� to test the channel transmittance
and error rate. We emphasize here that decoy states have
exactly the same properties other than average photon num-
bers, so that there is no way for Eve to discriminate between
the signal states and decoy states before Alice publicly an-
nounce them. Consequently, we have Yi�decoy�=Yi�signal�
and ei�decoy�=ei�signal�.

Specifically, the overall gain and the overall QBER in
Eqs. �17� and �18� can be estimated for a fixed � in the
experiment by Alice and Bob. By changing � over many
values, a set of linear equations in the form of Eqs. �17� and
�18� with unknowns Yi and ei are obtained. Thus, Alice and
Bob can easily solve for Yi and ei from these equations. For
the BB84 protocol, they are interested only in Y1 and e1.
With the decoy state, Alice and Bob can estimate the yields
and error rates of single-photon states �Y1 and e1� accurately.

Here we will briefly review the results of decoy-state pro-
tocols. Details can be seen in �26,27�. In the asymptotic
decoy-state case �26�, we assume that infinite decoy states
are employed by Alice and Bob, so they can solve the infinite
number of linear equations in the form of Eqs. �17� and �18�
to get all values of �Yi� and �ei� accurately. In the simulation,
we will simply take the values of Eq. �14� and �16� directly.

In the practical case, Alice and Bob need to use only two
decoy states, a vacuum and weak decoy state. Then they can
bound Y1 and e1 by �Eqs. �34� and �37� in �27��

Y1 �
�

� − 2	Qe − Q�e� 2

�2 −
�2 − 2

�2 Y0
 , �26�

e1 �
EQe − e0Y0

Y1
,

where  is the expected photon number of the weak decoy
state. We remark that when →0, Eqs. �26� will asymptoti-
cally approach Eqs. �14� and �16�.

IV. BOUNDS

In QKD experiments, we are interested in maximizing
three quantities—the tolerable error rates, the key generation
rate, and the maximal secure distance. In this section, we will
give these three bounds due to the QKD setup model dis-
cussed in Sec. III A.

A. Bounds of error rates

Here, we will consider the bounds of error rates �bit error
rate �b and phase error rate �p�, assuming a laser source that
emits a fixed number of photons in each pulse �e.g., a basis-
dependent single-photon source�. The upper bounds can be
derived by considering some simple attacks �such as the
intercept-resend attack� and determining the QBER caused
by these attacks. The lower bounds can be determined by the
unconditional security proof assuming that Eve is performing
an arbitrary attack allowed by the law of quantum mechanics
and Alice and Bob employ some special data postprocessing
schemes �such as the Gottesman-Lo EDP described in Sec.

II A�. One lower bound, obtained by considering the
Gottesman-Lo EDP, is 18.9% �8�. For the BB84 protocol, an
upper bound, obtained by considering an intercept-resend at-
tack, is 25%.

Here, we consider the lower bound in a general setting
where the error rates are characterized by ��b ,�p�. In general,
the bit error rate �b can be measured by error testing, but the
phase error rate �p cannot be directly observed from the
QKD experiment. In order to guarantee security, Alice and
Bob have to bound �p with the knowledge of �b. For the
BB84 protocol with an ideal single-photon source, due to the
symmetry between the X and Z bases, one can show that the
bit error rate and the phase error rate are the same, i.e.,

�b = �p. �27�

In general, for other protocols or with nonideal sources �in-
cluding coherent sources�, the bit and phase error rates are
different. For example, even for the BB84 protocol, when a
basis-dependent source is used, Eq. �27� may not hold. In
this case, according to Eq. �9� of �34�, due to the concavity of
the right-hand side of the equation, it is not hard to show �see
Appendix B� that �b and �p have the relation

�F � ��1 − �b��1 − �p� + ��b�p, �28�

where F is the fidelity between the two states with two bases
�X and Z� sent by Alice, and it is the single parameter that
characterizes the basis dependency of the source. Thus, Alice
and Bob can upper bound �p �denoted as �p

u� with this in-
equality, given �b. Clearly, when �p=�b, the inequality will
always be satisfied, i.e., �p=�b is a particular solution of Eq.
�28�. Therefore, in general we have �p

u��p. In the follow-
ing, we use �p to denote the upper bound �p

u for simplicity.
Given a QKD protocol and a laser source, Alice and Bob

can estimate the phase error rate �p from the bit error rate �b
according to the protocol and the source. We investigate the
highest error rates that a data postprocessing scheme can
tolerate. Figure 2 shows the tolerable error rates of the
Gottesman-Lo EDP compared to the 1-LOCC EDP scheme,
illustrating the superior performance of the Gottesman-Lo
EDP over the 1-LOCC EDP. The boundaries of error rates
are found by searching through the regime of

�b � �p, �b + �p � 1/2 �29�

such that positive key rates are obtained. The reason we are
interested in the region specified by the second inequality in
Eq. �29� is as follows. We can assume that the error rates �b
and �p are less than 1/2, otherwise Alice and Bob can flip the
qubits. Also, if �b+�p�1/2, then all the diagonal elements
of the density matrix in Eq. �1� that Alice and Bob share are
no greater than 1/2 �by setting q11=0�. Thus, the diagonal-
ized density matrix is separable �32� and the Gottesman-Lo
EDP cannot distill any pure EPR pairs.

The input to the Gottesman-Lo EDP is �q00,q10,q11,q01�
with q00+q10+q11+q01=1 �see Sec. II A�. But Alice and Bob
only know �b=q10+q11 and �p=q11+q01 from their error test.
There is one free parameter q11. In Appendix C of �8�, the
authors have proved that q11=0 is the worst case when �b
=�p. Following that proof, we can show that q11=0 is the
worst case when the condition of Eq. �29� is satisfied. That
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is, given ��b ,�p�, if we check the input �1−�b−�p ,�b ,0 ,�p�
for the Gottesman-Lo EDP and get a positive key rate, then
we can safely claim that the Gottesman-Lo EDP can tolerate
the error rates of ��b ,�p�.

To determine the tolerable bit error rate of a particular
protocol, one should first obtain the relationship between the
bit error rate and the phase error rate, and plot it in Fig. 2.
The intersections between this curve and the boundary
curves �the 1-LOCC and the Gottesman-Lo curves� indicate
the tolerable QBER for the corresponding EDPs. For ex-
ample, for the BB84 protocol with a perfect single-photon
source, we have �b=�p, which is the dashed line plotted in
Fig. 2. We can immediately read off from the figure that an
initial bit error rate of 18.9% is tolerable using the
Gottesman-Lo EDP �8�, while an error rate of 11.0% is tol-
erable using the 1-LOCC EDP. In general, the Gottesman-Lo
EDP gives rise to higher tolerable error rates than does the
1-LOCC EDP.

For protocols having constraints on q11, such as the six-
state protocol �46� and the SARG04 protocol with a single-
photon source �43,47,48�, the tolerable QBER can go beyond
the boundary curves shown in Fig. 2.

We wrote a computer program to exhaustively search for
the optimal B-P sequence up to 12 steps. The precision of the
program is 10−15.

B. Distance upper bound

Let us come back to the realistic QKD setup model dis-
cussed in Sec. III A. An upper bound on the bit error rate of
the single-photon state is 25%, above which the BB84 pro-
tocol is broken by the intercept-resend attack. The maximal
secure distance then can be bounded by the distance when

the bit error rate of the single-photon state reaches 25%.
The error rate of the single-photon state e1 is given in Eq.

�16�,

e1 =

ed
 +
1

2
Y0


 + Y0
,

where ed is the intrinsic error rate of the detector in Bob’s
side, 
 is the overall transmittance, and Y0 is the background
rate. Thus, e1 exceeds 25% when


 �
0.25Y0

0.25 − ed
. �30�

In the case of GYS �19�, the fiber loss is 	=0.21 dB/km,
ed=3.3%, and Y0=1.7�10−6; then the upper bound of secure
distance is 208 km.

C. Key generation rate upper bound

According to our model, the final secure key can be de-
rived only from single-photon qubits. To derive the upper
bound of the key generation rate, we assume that Alice and
Bob can distinguish the single-photon qubits from other qu-
bits �vacuum and multiphoton qubits�. So they can perform
the classical data postprocessing only on to the single-photon
qubits. One upper bound of key generation rate is given by
the mutual information between Alice and Bob �50�,

RU = Q1�1 − H2�e1�� , �31�

where Q1 is the yields of single-photon states and e1 is the
error rate of single-photon states.

Note that the above two upper bounds, Eqs. �30� and �31�,
assume that �a� Alice and Bob cannot distinguish background
counts and true signal counts and �b� a secure key can only
be extracted from the single-photon states. Also, these two
bounds are general upper bounds regardless of the technique
used for combating the effect of imperfect devices such as
the decoy-state technique.

V. DECOY+GLLP+GOTTESMAN-LO EDP

In this section, we propose a 2-LOCC-based data postpro-
cessing protocol with the form of a sequence of B steps,
followed by error correction and privacy amplification, as
discussed in Sec. II A. This scheme is a generalization of the
Gottesman-Lo scheme to the case of imperfect devices. The
reasons why we skip P steps here are as follows. First, from
the simulation in Sec. IV A, we found that P steps are not as
useful as B steps. Second, considering only B steps can sim-
plify the procedure of the data postprocessing scheme. The
procedure of this data postprocessing is as follows:

�1� Alice and Bob perform a sequence of B steps to the
sifted keys �corresponding to r̃B in Eq. �32��.

�2� They calculate the variables �such as QBER, un-
tagged qubit ratio� after the B steps.

�3� They perform overall error correction �corresponding
to the first term in Eq. �32��.

FIG. 2. Plot of the secure regions in terms of error rates for
1-LOCC and Gottesman-Lo EDPs. The regions under the solid lines
are proven to be secure due to 1-LOCC EDP, and Gottesman-Lo
EDP schemes �for the region under the solid line and dashed line�,
respectively. For the 1-LOCC EDP, we use Eq. �4�. For the
Gottesman-Lo EDP, we use Eqs. �6� and �8�. In the Gottesman-Lo
EDP, we optimize the B-P sequence up to 12 steps.
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�4� They perform privacy amplification �corresponding to
the second term in Eq. �32��.

In the following, we will discuss how to calculate the
residue of this data postprocessing scheme.

In the decoy protocol, there are three kind of qubits:
vacuum, single-photon, and multiphoton qubits, described in
Sec. III A. We emphasize again here that the final secure key
can only be distilled from untagged qubits �single-photon
qubits�.

Since either of the two inputs of a B step has three pos-
sibilities, the outcomes of a B step then have nine possibili-
ties. Only the case where both inputs are untagged qubits has
a positive contribution to the final secure key and all other
privacy amplification terms in Eq. �22� will be zero. That is,
at the end of some B steps and bit error correction, privacy
amplification can be applied only to the remaining qubits that
come from the case where both inputs are untagged qubits.
In other words, an output qubit after a subsequence of B
steps is “untagged” if and only if �a� it passes all B steps and
�b� it is generated from the case where all initial input qubits
are single photon-qubits. Therefore, the residue ratio of data
postprocessing can be expressed, according to Eq. �22�, as

r = max„r̃B�− f��̃�H2��̃� + �̃�1 − H2��̃p
untagged���,0…

�32�

where �̃ is the overall QBER, r̃B is the overall survival resi-

due, �̃ is the fraction of untagged states in the final survival

states, and �̃p
untagged is the phase error rate of the untagged

states, after a sequence of B steps. In the following, we will
show how these variables change on performing B steps.

An arbitrary B step
Let us consider how the various quantities �fraction of

untagged states �, QBER of overall surviving states �, bit
error rate �untagged, and phase error rates �p of the untagged
states� are transformed under one step in a B step sequence.

Before a B step, the fraction of untagged states is �, the
overall QBER is �, the bit error rate of the untagged states is
�untagged, and the phase error rate of the untagged states is �p.
According to Eq. �5� the overall survival probability pS and
the survival probability of the untagged states pS

untagged after
one B step are given by

pS = ��2 + �1 − ��2� ,

pS
untagged = ��untagged

2 + �1 − �untagged�2� . �33�

Then the residue after one B step is given by

rB =
1

2
pS. �34�

The factor 1
2 in Eq. �34� due to the fact that Alice and Bob

keep only one qubit from a survival pair. Then, after a B step
the fraction of untagged states �� is given by

�� =
�2pS

untagged

pS
. �35�

The change of overall QBER �� is given by

�� =
�2

�2 + �1 − ��2
. �36�

Before the first round of B step, the initial density matrix of
untagged state is �1−2e1+q11,e1−q11,q11,e1−q11�, where e1

is the error rate of single-photon states. From Appendix C of
�8�, we know that q11=0 is the worst case for B steps. Thus
we can conservatively choose �1−2e1 ,e1 ,0 ,e1� as the initial
input density matrix. If only B steps are performed, q11=0
will always be satisfied, according to Eq. �6�. So the input
untagged qubits for any round of B steps has the form of

�q00,q10,q11,q01� = �1 − �untagged − �p,�untagged,0,�p� .

�37�

The bit error rate of untagged states �untagged� depends only on
the input �untagged,

�untagged� =
�untagged

2

�untagged
2 + �1 − �untagged�

2 . �38�

According to Eqs. �6�, �7�, and �37�, the phase error rate of
untagged states is

�p� = q11� + q01� =
2q10q11 + 2q00q01

�q10 + q11�2 + �q00 + q01�2

=
2�p�1 − �untagged − �p�

�untagged
2 + �1 − �untagged�2 . �39�

Equations �33�–�39� are valid for a general B step. Alice
and Bob can perform a sequence of B steps as described
above and then do the error correction and privacy amplifi-
cation. Once all these quantities are obtained, the key gen-
eration rate can be calculated from Eq. �32�.

To illustrate the improvement made by introducing B
steps, we numerically calculated the key generation rate as-
suming the parameters in the GYS experiment �19�. Note

that the overall QBER �̃ in Eq. �32� never exceeds 10%. The
value of f�e�=1.22 is the upper bound according to �49�. The
parameters used for simulation are listed in Table I.

From Fig. 3, we can see that there is a nontrivial exten-
sion of the maximal secure distance after introducing B
steps. We remark that the key generation rate decoy-state
protocol with one B step is higher than the one with 1-LOCC
from the distance around 132 km. The maximal secure dis-
tance using four B steps is 181 km, which is not far from the
upper bound of 208 km given in Sec. IV B. Even with only
one B step, the maximal secure distance can be extended
from 142 to 162 km. Thus, B steps are very useful in QKD
data postprocessing.

TABLE I. Parameters of GYS experiment �19�.

Wavelength �nm� 	 �dB/km� 
Bob ed Y0

1550 0.21 4.5% 3.3% 1.7�10−6
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VI. DECOY+GLLP+RECURRENCE EDP

In this section, we propose a second 2-LOCC-based data
postprocessing scheme based on the recurrence scheme �10�,
which is reviewed in Sec. II B. Our scheme is a generaliza-
tion of the recurrence scheme to the case of imperfect
sources.

In Sec. III B, we give a formula, Eq. �22�, for the key
generation rate using the idea of GLLP. Let us combine re-
currence with Eq. �22�. So, instead of just taking care of one
kind of qubit, we need to apply privacy amplification to sev-
eral groups of qubits separately, i.e., we will have several Ki
in Eq. �A6�. After the recurrence, the data postprocessing
residue rate becomes

r = −
1

2
f�pS�H2�pS� −

1

2
pS f	�2

pS

H2	�2

pS

 + �

i

�iKi,

�40�

where pS is the even-parity possibility given in Eq. �A2� with
�b

C=�b
T=�, � is the overall QBER before the recurrence, f�·�

is the error correction efficiency, and �i and Ki are the prob-
ability and the residue of the qubit groups with label i after
privacy amplification, respectively. Here, Alice and Bob first
check the parity corresponding to the first term of Eq. �40�.
Second, they apply overall error correction to the qubits with
even parity, corresponding to the second term of Eq. �40�.
Third, they measure one of the qubits in those pairs with odd
parity to obtain the error syndrome of another qubit. After-
ward, they can group the surviving qubits into several groups
with labels i. Finally, they perform privacy amplification on
each group with label i, corresponding to the last term of Eq.
�40�.

Consider the decoy-state case, Alice and Bob have three
kinds of input qubits: vacuum qubits �V�, single-photon qubit
�S�, and multiphoton qubits �M�. The input parameters for
recurrence are listed in Table II.

Thus, the outcome of one round of recurrence will have
nine cases. Clearly, if neither input is a single-photon qubit,
the outcome will have no contribution to the final key. Alice
and Bob need only apply Eq. �A12� to calculate the residues
Ki for the five cases: V � S, S � V, S � S, S � M, M � S. The
probabilities of occurrence, �i, for the five cases are, respec-
tively, �V�, ��V, �2, ��M, and �M�. Once we know Ki
and �i, we can then determine the overall residue r using Eq.
�40� �details are shown in Appendix C�:

r � − B + C − Fa �41�

where

B =
1

2
f�pS�H2�pS� +

1

2
pSf	�2

pS

H2	�2

pS

 ,

C =
3

4
�V� + �2�1 − e1 + e1

2� +
1

2
��M�2 − e1 − eM + 2e1eM� ,

D1 =
3

4
�V� +

1

2
�2�2 − e1� +

1

2
��M�2 − eM� ,

D2 =
3

4
�V� +

1

2
�2�1 + e1� +

1

2
��M�eM + 1� ,

Fa = D1�1 − e1�H2	 e1 − a

1 − e1

 + D2e1H2	 a

e1

 , �42�

with equality when q11
V =1/4 and q11

M =eM /2. In order to get a
lower bound of the key generation rate R, we maximize Fa
over a by using a bisection method as discussed in Appendix
C.

Figure 4 shows the key generation rate as a function of
the transmission distance for the GLLP+decoy+1-LOCC,
GLLP+decoy+one B step, and GLLP+decoy+recurrence
methods. Recurrence does have some improvement �more
than 10%� in the key generation rate over 1-LOCC for short
distances, and it also increases the maximal secure distance
by 6 km. We remark that recurrence is useful even in the
short-distance regime.

FIG. 3. �Color online� Plot of the key generation rate as a func-
tion of the transmission distance with the data postprocessing
scheme of GLLP+decoy+B steps method. The parameters used are
from the GYS experiment �19� listed in Table I. The GLLP
+decoy+B steps scheme surpasses the scheme with 1-LOCC at a
distance of 132 km. The maximal secure distance using four B steps
is 181 km, which is not far from the upper bound of 208 km.

TABLE II. Input parameters of three kinds of qubits for recur-
rence. Following Eqs. �15� and �17�, the fractions of each group are
given by �V=Q0 /Q�, �=Q1 /Q�, and �M =1−�V−�. �V /2
+e1�+eM�M =� is the overall QBER.

Qubit Fraction �b �p q11

V �V 1/2 1/2 q11
V

S � e1 e1 a

M �M eM 1/2 q11
M
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VII. STATISTICAL FLUCTUATIONS

In a realistic QKD experiment, only a finite number of
signals are transmitted. Thus, the estimations of Y1 and e1
have certain statistical fluctuations. These statistical fluctua-
tions in decoy-state QKD with 1-LOCC are analyzed in �27�
and also �28�. In this section, we will consider statistical
fluctuations for the two data postprocessing schemes with
2-LOCC discussed in Secs. V and VI.

As pointed out in �27�, considering statistical fluctuations
of QKD is a hard problem. Here we will follow the standard
error analysis technique to analyze statistical fluctuations as
used in �27�. We can incorporate statistical fluctuations in the
two 2-LOCC data postprocessing schemes decoy+GLLP
+B steps and decoy+GLLP+recurrence.

In �27�, Q1 and e1 are bounded when taking statistical
fluctuations into account. As for the postprocessing with
2-LOCC described in Sec. V, the inputs of the B steps are Q�

and E�, which can be measured directly from experiment,
and Q1 and e1, which are estimated by the decoy method.
Evidently, one should take the lower bound of Q1 and the
upper bound of e1 to lower bound the key rate R. Thus the
procedure will be as follows: first, with the decoy method,
one can lower bound Q1 and upper bound e1, and then input
the four parameters �Q�, E�, Q1, and e1� into the data post-
processing of the GLLP+decoy+B step method to extract
secure keys.

As for the case of recurrence, from Table II, Alice and
Bob have to estimate Q0 besides the four parameters dis-
cussed above. From Eq. �41�, it is not clear which bounds of
Q0 one should pick up to lower bound the key rate. One can
clearly see that lower bounding Eq. �41� is a hard problem.

Instead of going to tedious mathematical calculations here,
we have a plausible argument based on our physical intu-
ition. First of all, single-photon qubits are “good” qubits in
our discussion. So we reasonably assume that Alice and Bob
can safely use the lower bound of Q1 and the upper bound of
e1 to lower bound the key rate. As discussed in �51�, the
vacuum decoy state can have positive contribution in the
privacy amplification procedure. Also, in the Appendix of
�27�, we proved that one should take the lower bound of Y0
to lower bound the key generation rate in the 1-LOCC case.
Thus, here we take the lower bound of Q0 to estimate the key
rate.

The results are shown in Fig. 5. Here, we assume that
Alice and Bob use 6�109 pulses. These pulses are randomly
selected as signal and decoy states. The distribution among
the signal states, vacuum states, and weak decoy states was
found by an exhaustive search for the optimal one. Then, we
use ten standard deviations to bound Q, E, and Y0, and
substitute the worst-case values of these into

Q1 � Q1
L,,0 =

�2e−�

� − 2	Qe − Q�e� 2

�2 −
�2 − 2

�2 Y0
 ,

e1 � e1
U,,0 =

EQe − e0Y0

Y1
L,,0

�43�

to bound Q1 and e1. Here,  is the expected photon number
of the weak decoy states, and Q and E are the gain and
QBER of the weak decoy states. We can see that with statis-
tical fluctuations, the improvements of 2-LOCC are still no-
table.

FIG. 4. �Color online� Plot of the key generation rate as a func-
tion of the transmission distance, GLLP+decoy+recurrence method
vs GLLP+decoy+1-LOCC method. Recurrence does have some
improvement over 1-LOCC in the whole regime of distances. In
particular, the recurrence method increases the key generation rate
by more than 10% in our simulation. The maximal secure distance
for each case is 142.8 km �1-LOCC�, 149.1 km �recurrence�, and
163.8 km �one B step�, respectively. Here we consider the
asymptotic decoy-state QKD case with infinitely long signals. The
parameters used are from the GYS experiment �19� listed in Table I.

FIG. 5. �Color online� Plot of the simulation results for three
data postprocessing schemes of the decoy-state protocol, decoy+1
-LOCC, decoy+one B step, and decoy+recurrence, considering sta-
tistical fluctuations. The maximal secure distances of three schemes
are 120, 125, and 147 km, respectively. The parameters used are
from the GYS experiment �19� listed in Table I.
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VIII. CONCLUSION

We have developed two data postprocessing schemes for
decoy-state QKD using 2-LOCC, one based on B steps and
the other based on the recurrence method. The distance of
secure QKD is crucial in practical applications. Therefore,
our decoy+B steps postprocessing protocol, which we have
shown to be able to increase the maximal secure distance of
QKD from about 141 to about 182 km �using parameters
from the GYS experiment �19��, proves to be useful in real-
life applications. Moreover, our work shows that recurrence
protocols are useful for increasing the key generation rate in
a practical QKD system in the whole regime of distances.
While we have focused our modeling on a fiber-based QKD
system, our general formalism applies also to open-air QKD
systems.

We have shown that similar conclusions hold even with
statistical fluctuations in the experimental variables for the
decoy+B step scheme. For the decoy+recurrence scheme,
although we do not have a rigorous argument, physical intu-
ition suggests that similar conclusions hold in the case of
considering statistical fluctuations as well. We conclude that
using two-way classical communication is superior to using
one-way for our decoy-state QKD schemes.

In addition, we provided the region of bit error rates and
phase error rates that are tolerable by using the
Gottesman-Lo EDP scheme. Also, we calculated the upper
bounds on distance and on the key generation rate of a real
QKD setup based on our model.
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APPENDIX A: KEY RATE OF THE RECURRENCE
SCHEME WITH AN IDEAL SOURCE

In this section, we review the recurrence EDP and develop
the key generation rate formula given by

R = qr , �A1�

where q depends on the implementation of the QKD �1/2 for
the BB84 protocol, because half the time the Alice and Bob
bases are not compatible� and r is the residue, which we will
find in the following. We use the same notation as in Sec. II
and consider a Bell diagonal state �q00,q10,q11,q01�.

1. Parity check

As the first step of recurrence, Alice and Bob check the
parity of two pairs �labeled as the control qubit C and target
qubit T�. They will get even parity if the two pairs are in one
of the states

0000,0001,0100,0101,1010,1011,1110,1111,

and will get odd parity if they are in one of the states

0010,0011,0110,0111,1000,1001,1100,1101,

where the first two bits represent the control qubit, and the
last two bits represent the target qubit. That is, ij represents
the Bell state ��ij� as given in Eq. �2� with i , j=0,1. For
example, 1110 means that there is a bit error and a phase
error in the control qubit ���11��, and a bit error and no phase
error in the target qubit ���10��. Thus, the probability to get
even parity is given by

pS = �q00
C + q01

C ��q00
T + q01

T � + �q10
C + q11

C ��q10
T + q11

T �

= �1 − �b
C��1 − �b

T� + �b
C�b

T, �A2�

where �b
C=q10

C +q11
C and �b

T=q10
T +q11

T are the bit error rates of
the input control and target qubits, respectively. During the
parity check, the number of pure EPR pairs �or secret bits�
that Alice and Bob need to sacrifice is given by

1

2
H2�pS� , �A3�

where 1
2 is due to the fact that Alice and Bob compute the

parity of two-qubit pairs at one time.
After the parity check, the qubits are divided into two

groups, qubits with even parity and those with odd parity. In
the following, we will discuss the error correction and pri-
vacy amplification of these two groups separately. The recur-
rence protocol appearing in �10� only performs error correc-
tion on qubits with even parity.

2. Error correction

For even-parity qubits, we can see that the bit error syn-
drome of control qubits will be the same as that of target
qubits. Thus, Alice and Bob need to do error correction on
only the control �or target� qubits. According to Eq. �7�, the
bit error rate of control qubits after recurrence is given by

�̃b
C =

�q10
C + q11

C ��q10
T + q11

T �
pS

=
�b

C�b
T

pS
�A4�

where pS is the probability of even parity in the recurrence
given by Eq. �A2�. Therefore, Alice and Bob need to sacri-
fice a fraction

1

2
pSH2��̃b

C� =
1

2
pSH2	�b

C�b
T

pS

 �A5�

to do the overall error correction. The factor 1
2 is due to the

fact that control qubits have the same error syndrome as
target qubits.

Therefore the residue of data postprocessing, similar to
Eq. �20�, can be expressed as

r = −
1

2
H2�pS� −

1

2
pSH2	�b

C�b
T

pS

 + K �A6�

where pS is given in Eq. �A2� and K is the residue of privacy
amplification, which we will focus on in the following.

3. Privacy amplification

Alice and Bob perform privacy amplification to the qubits
with even and odd parity separately.
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a. Even parity

Now, Alice and Bob already know the bit error syndrome.
The control and target qubits have the same bit error syn-
dromes, but may have different phase error syndromes. Thus,
Alice and Bob can divide the even-parity qubits into four
groups: control qubits with bit error syndrome 0 and 1, and
target qubits with bit error syndrome 0 and 1, and treat these
groups separately in the privacy amplification step. The
probability of each group �summing together the even-parity
probabilities given in Eq. �A2�� is given by

�q00
C + q01

C ��q00
T + q01

T �
2

,
�q10

C + q11
C ��q10

T + q11
T �

2
,

�q00
C + q01

C ��q00
T + q01

T �
2

,
�q10

C + q11
C ��q10

T + q11
T �

2

with phase error rate

q01
C

q00
C + q01

C ,
q11

C

q10
C + q11

C ,
q01

T

q00
T + q01

T ,
q11

T

q10
T + q11

T .

Since the error syndrome of each group of qubits is known to
Alice and Bob, privacy amplification can be applied to the
different groups separately. Then, Alice and Bob should sac-
rifice a fraction

�q00
C + q01

C ��q00
T + q01

T �
2

H2	 q01
C

q00
C + q01

C 

+

�q10
C + q11

C ��q10
T + q11

T �
2

H2	 q11
C

q10
C + q11

C 

+

�q00
C + q01

C ��q00
T + q01

T �
2

H2	 q01
T

q00
T + q01

T 

+

�q10
C + q11

C ��q10
T + q11

T �
2

H2	 q11
T

q10
T + q11

T 
 �A7�

to do the privacy amplification. Given the bit and phase error
rates of input control and target qubits �p

C=q11
C +q01

C and �p
T

=q11
T +q01

T , Eq. �A7� can be written as

1

2
�1 − �b

C��1 − �b
T��H2	�p

C − q11
C

1 − �b
C 
 + H2	�p

T − q11
T

1 − �b
T 
�

+
1

2
�b

C�b
T�H2	q11

C

�b
C 
 + H2	q11

T

�b
T 
� . �A8�

Thus the privacy amplification residue of even-parity qu-
bits is given by

Keven = pS −
1

2
�1 − �b

C��1 − �b
T��H2	�p

C − q11
C

1 − �b
C 


+ H2	�p
T − q11

T

1 − �b
T 
� −

1

2
�b

C�b
T�H2	q11

C

�b
C 
 + H2	q11

T

�b
T 
� .

�A9�

b. Odd parity

It turns out that pairs with odd parity during the recur-
rence can also contribute to the final key �10�. Instead of
including them in the error correction, Alice and Bob mea-
sure one of the two qubits and hence they know the bit error
syndrome of the remaining qubit. They can then proceed
with privacy amplification on those qubits.

Suppose Alice and Bob always choose to measure the
target qubits and obtain the error syndrome of the control
qubits. Similarly to the even-parity case, now, Alice and Bob
can divide the control qubits with odd parity into two parts
according to the bit error syndrome. The probability of each
part is given by

�q00
C + q01

C ��q10
T + q11

T �
2

,
�q10

C + q11
C ��q00

T + q01
T �

2
,

with phase error rate

q01
C

q00
C + q01

C ,
q11

C

q10
C + q11

C .

With the same argument as Eq. �A7�, the number of qubits
that need be sacrificed for privacy amplification is given by

�q00
C + q01

C ��q10
T + q11

T �
2

H2	 q01
C

q00
C + q01

C 

+

�q10
C + q11

C ��q00
T + q01

T �
2

H2	 q11
C

q10
C + q11

C 

=

1

2
��1 − �b

C��b
TH2	�p

C − q11
C

1 − �b
C 
 + �b

C�1 − �b
T�H2	q11

C

�b
C 
� .

�A10�

So the privacy amplification residue of odd-parity qubits
is given by

Kodd =
1

2
�1 − �b

C��b
T�1 − H2	�p

C − q11
C

1 − �b
C 
�

+
1

2
�b

C�1 − �b
T��1 − H2	q11

C

�b
C 
� . �A11�

Therefore, the privacy amplification residue K in Eq.
�A6�, by adding Eq. �A9� and Eq. �A11� and substituting Eq.
�A2�, is given by

K = Keven + Kodd = 1 −
1

2
�1 − �b

C��b
T −

1

2
�b

C�1 − �b
T�

−
1

2
�1 − �b

C�H2	�p
C − q11

C

1 − �b
C 
 −

1

2
�b

CH2	q11
C

�b
C 


−
1

2
�1 − �b

C��1 − �b
T�H2	�p

T − q11
T

1 − �b
T 


−
1

2
�b

C�b
TH2	q11

T

�b
T 
 . �A12�

Note that there are two free parameters q11
C and q11

T in Eq.
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�A12�, which should be minimized over to lower bound the
key rate.

APPENDIX B: SECURITY AGAINST
BASIS-DEPENDENT SOURCE

Here we derive Eq. �28� in Sec. IV. Rewriting Eq. �9� of
�34� gives

�F � ��1 − �bx��1 − �pz� + ��bx�pz, �B1�

where F is the fidelity between the two states with two bases
�X and Z� sent by Alice, �bx is the QBER of X-basis states
from error testing, and �pz is the phase error rate of Z-basis
states.2 Similarly, we have another inequality between the
QBER of Z-basis states �bz and the phase error rate of
X-basis states �px,

�F � ��1 − �bz��1 − �px� + ��bz�px. �B2�

Adding Eqs. �B1� and �B2� gives

�F �
1

2
���1 − �bx��1 − �pz� + ��bx�pz + ��1 − �bz��1 − �px�

+ ��bz�px� � ��1 − ��bx + �bz�/2��1 − ��pz + �px�/2�

+ ���bx + �bz�/2��pz + �px�/2 = ��1 − �b��1 − �p�

+ ��b�p, �B3�

where the second inequality is due to the concavity of the
function ��1−x��1−y�+�xy in �0,1�� �0,1� and we have
used the definitions �b� ��bx+�bz� /2 and �p� ��pz+�px� /2.
Here we assume that the number of received qubits with Z
basis and X basis is the same.

APPENDIX C: RESIDUE FOR THE DECOY+GLLP
+RECURRENCE SCHEME

We calculate the residues Ki in Eq. �40� for the five cases
V � S, S � V, S � S, S � M, and M � S. Here, we apply each
case, with parameters shown in Table II, in Eq. �A12� to
calculate each Ki.

V � S. The probability of this case is �VS=�V�:

KVS = 1 −
1

4
−

1

4
H2�1 − 2q11

V �

−
1

4
H2�2q11

V � −
1

4
�1 − e1�H2	 e1 − a

1 − e1

 −

1

4
e1H2	 a

e1



�
1

4
−

1

4
�1 − e1�H2	 e1 − a

1 − e1

 −

1

4
e1H2	 a

e1

 �C1�

with equality when q11
V =1/4. This is due to the concavity of

the function H2�·�.
S � V. The probability of this case is �VS=�V�:

KSV � 1 −
1

4
−

1

2
�1 − e1�H2	 e1 − a

1 − e1

 −

1

2
e1H2	 a

e1



−
1

4
�1 − e1�H2�1 − 2q11

V � −
1

4
e1H2�2q11

V �

�
1

2
−

1

2
�1 − e1�H2	 e1 − a

1 − e1

 −

1

2
e1H2	 a

e1

 �C2�

with equality when q11
V =1/4.

S � S. The probability of this case is �VV=�2:

KSS = 1 − e1�1 − e1� −
1

2
�1 − e1�H2	 e1 − a

1 − e1

 −

1

2
e1H2	 a

e1



−
1

2
�1 − e1�2H2	 e1 − a

1 − e1

 −

1

2
e1

2H2	 a

e1

 . �C3�

S � M. The probability of this case is �SM =��M:

KSM = 1 −
1

2
e1�1 − eM� −

1

2
eM�1 − e1� −

1

2
�1 − e1�H2	 e1 − a

1 − e1



−
1

2
e1H2	 a

e1

 −

1

2
�1 − e1��1 − eM�H2	1 − 2q11

M

2 − 2eM



−
1

2
e1eMH2	q11

M

eM

 �

1

2
−

1

2
�1 − e1�H2	 e1 − a

1 − e1



−
1

2
e1H2	 a

e1

 , �C4�

with equality when q11
M =eM /2.

M � S. The probability of this case is �MS=�M�:

KMS = 1 −
1

2
eM�1 − e1� −

1

2
e1�1 − eM�

−
1

2
�1 − eM�H2	1 − 2q11

M

2 − 2eM

 −

1

2
eMH2	q11

M

eM



−
1

2
�1 − e1��1 − eM�H2	 e1 − a

1 − e1

 −

1

2
e1eMH2	 a

e1



�
1

2
−

1

2
eM�1 − e1� −

1

2
e1�1 − eM�

−
1

2
�1 − e1��1 − eM�H2	 e1 − a

1 − e1

 −

1

2
e1eMH2	 a

e1

 ,

�C5�

with equality when q11
M =eM /2.

Therefore, after combining the GLLP �23�, decoy �26�,
and recurrence �10� methods, the data postprocessing residue
rate will be given by, substituting Eqs. �C1�–�C5� into Eq.
�40�,

2Note that we have used different notations from those in Ref.
�34�. By letting �1=�bx and �ph=�pz, and substituting Eq. �3� of
�34�, we can recover Eq. �9� of �34� from Eq. �B1�.
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r = −
1

2
f�pS�H2�pS� −

1

2
pSf	�2

pS

H2	�2

pS

 + KVS + KSV + KSS + KSM + KMS � −

1

2
f�pS�H2�pS� −

1

2
pSf	�2

pS

H2	�2

pS



+ �V��1

4
−

1

4
�1 − e1�H2	 e1 − a

1 − e1

 −

1

4
e1H2	 a

e1

� + �V��1

2
−

1

2
�1 − e1�H2	 e1 − a

1 − e1

 −

1

2
e1H2	 a

e1

� + �2�1 − e1�1 − e1�

−
1

2
�1 − e1�H2	 e1 − a

1 − e1

 −

1

2
e1H2	 a

e1

 −

1

2
�1 − e1�2H2	 e1 − a

1 − e1

 −

1

2
e1

2H2	 a

e1

� + ��M�1

2
−

1

2
�1 − e1�H2	 e1 − a

1 − e1



−
1

2
e1H2	 a

e1

� + ��M�1

2
−

1

2
eM�1 − e1� −

1

2
e1�1 − eM� −

1

2
�1 − e1��1 − eM�H2	 e1 − a

1 − e1

 −

1

2
e1eMH2	 a

e1

� �C6�

with equality when q11
V =1/4 and q11

M =eM /2. In order to sim-
plify this formula, we define some variables:

B =
1

2
f�pS�H2�pS� +

1

2
pSf	�2

pS

H2	�2

pS

 ,

C =
3

4
�V� + �2�1 − e1 + e1

2� +
1

2
��M�2 − e1 − eM + 2e1eM� ,

D1 =
3

4
�V� +

1

2
�2�2 − e1� +

1

2
��M�2 − eM� ,

D2 =
3

4
�V� +

1

2
�2�1 + e1� +

1

2
��M�eM + 1� . �C7�

Thus Eq. �41� can be expressed as

r = − B + KVS + KSV + KSS + KSM + KMS � − B + C − Fa

�C8�

where

Fa = D1�1 − e1�H2	 e1 − a

1 − e1

 + D2e1H2	 a

e1

 �C9�

with equality when q11
V =1/4 and q11

M =eM /2.

To lower bound r in Eq. �C8�, we need to find the maxi-
mum value of Fa over the free variable a. We are interested
in the range of a� �0,e1� with e1�1/2. Note that Fa is a
concave function of a in the valid range, since a sum of two
concave functions is also a concave function, and reflecting
and shifting a concave function is also a concave function.
Thus, we can take the derivative of Fa with respect to a and
set it to zero to find the maximum of Fa. Differentiating Fa
with respect to a gives

dFa

da
= D1�log2	 e1 − a

1 − e1

 − log2	1 −

e1 − a

1 − e1

�

+ D2�log2	1 −
a

e1

 − log2	 a

e1

� .

Setting 2dFa/da=1gives

	1 − e1

e1 − a
− 1
−D1	 e1

a
− 1
D2

= 1.

Denoting the left-hand side as f�a�, f�a� is a decreasing func-
tion of a since dFa /da is a decreasing function of a. There-
fore, we can use the bisection method to find a such that
f�a�=1. The initial range for the bisection method is �0,e1�.
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