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We investigate the state space of bipartite qutrits. For states which are locally maximally mixed we obtain an
analog of the “magic” tetrahedron for bipartite qubits—a magic simplex W. This is obtained via the Weyl
group which is a kind of “quantization” of classical phase space. We analyze how this simplex W is embedded
in the whole state space of two qutrits and discuss symmetries and equivalences inside the simplex W. Because
we are explicitly able to construct optimal entanglement witnesses we obtain the border between separable and
entangled states. With our method we find also the total area of bound entangled states of the parameter
subspace under intervestigation. Our considerations can also be applied to higher dimensions.
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I. INTRODUCTION

In 1935 Erwin Schrödinger stated already that “entangle-
ment is the quintessence of the quantum theory.” The late
discoveries and developments in many distinct branches of
physics show its immense validity. It is the basis for quantum
cryptography, quantum teleportation, and maybe, if realiz-
able, quantum computation. It has also triggered a new field:
quantum information.

The main problem for composite systems is how to find
out if a given state is separable or not and thus to character-
ize the border between separability and entanglement. While
we have for the simplest composite system—two two-level
systems �2�2 systems� or bipartite qubits—a necessary and
sufficient criterion for separability, the Peres criterion, it is
for higher dimensions only a necessary criterion �except 2
�3�. The criterion states that every separable density matrix
is mapped into a positive semidefinite matrix by partial trans-
position �PT�, i.e., by a transposition on one of the sub-
systems. The reason why it fails for higher dimensions is that
for these systems a completely positive map cannot be char-
acterized by transposition alone and, moreover, these
systems show more aspects of entanglement.

It is obvious that the knowledge of the state space
is the key ingredient to understand entanglement and
therefore for developing and optimizing new applications.
Moreover, it will help in understanding the relation of
different entanglement measures.

In this paper we focus on bipartite qutrits �3�3 systems�.
We concentrate on the set of locally mixed states with
a quasiclassical structure and construct a geometrical
picture of the state space. The quasiclassical structure
fits also exactly into the conditions needed for teleportation
and dense coding, e.g., Refs. �1–3�. While these sets of
states have been noted already in Refs. �4,5�, only little
is known about its structure concerning entanglement,
witnesses, positive partial transposition �PPT�, and possible
bound entanglement.

For two qubits four orthogonal Bell states can be used to
decompose every locally mixed state and a geometric picture
can be drawn. In such a geometrical approach the Hilbert-
Schmidt metric defines a natural metric on the state space,
e.g., Refs. �6,7�. Via diagonalizing every locally mixed state
can then be described by three real parameters which can be
used to identify the density matrix by a point in a three-
dimensional real space. The positivity condition forms a tet-
rahedron with the Bell states at the corners and the totally
mixed state, the trace state, in the origin. Via reflection one
obtains another tetrahedron with reflected Bell states at the
corners, see, e.g., Ref. �11�. The intersection of both sim-
plexes gives an octahedron where all points inside and at the
border represent separable states because they are the only
ones invariant under reflection and thus positive under PT.
While for qubits this characterizes the separable set of lo-
cally mixed states fully we show in this paper that the analog
to the octahedron for qutrits is not quite that simple and in
addition not all locally maximally mixed states can be
imbedded.

The simplex for bipartite qutrits lives in a nine-
dimensional Euclidean space where the borders are given by
the positivity condition of density matrices. We construct
two polytopes and prove that they are an inner �kernel
polytope� and an outer fence �enclosure polytope� to the bor-
der of separability. The boundary achieved by taking the set
of all states which are positive under PT has not only linear
faces and corners but also curved parts. Then we explicitly
show how to construct optimal witnesses and apply them to
certain states and show that there are regions where there is
bound entanglement, i.e., entanglement which cannot be dis-
tilled by local operation and classical communication
�LOCC�.

The paper is organized as follows. We present first
the construction of the set of states we are analyzing, the
magic simplex W. Then we discuss how the set is embedded
in the whole set of states. We proceed with analyzing the
rich structure of symmetries inside W: the symmetry
of a discrete classical phase space. Here we focus on describ-
ing the boundary of separability by calculating optimal
witnesses. The optimization is done analytically and also
numerically. Further, we added an Appendix for more
details.
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Many of our considerations can be extended to pairs of
qudits. In order to be as concrete as possible we postpone
generalizations to higher dimensions and more abstract
analyses to a following companion paper.

II. CONSTRUCTION OF THE MAGIC SIMPLEX W

Throughout this paper we focus on two parties with
three degrees of freedom, e.g., “qutrits.” Take any maximally
entangled pure state vector in the Hilbert space C3 � C3

for defining a “Bell-type state.” Denote this vector
as �0,0. Choose the bases ��0� , �1� , �2�� in each factor such
that

�0,0 =
1
	3



s

�s� � �s� . �1�

On the first factor in the tensorial product—the side of
Alice—we consider actions of the Weyl operators. They are
defined by

Wk,��s� = wk�s−���s − �� , �2�

w = e2�i/3. �3�

Throughout this paper the letters �s , t , j ,k ,� ,m ,n , p ,q� de-
note the numbers 0,1,2. Calculations with them are to be
understood as “modulo 3.” So “1+2”=0, “2�2”=1,
“−1”=2, etc.

The transformations which we consider take place on the
first factor, on the side of Alice. Bob’s side is, in our defini-
tion, inert. This is not really an asymmetry. For the Bell state
�0,0 every action of an operator A on the side of Alice is

equivalent to the action of a certain Ã on the side of Bob.
Concerning the Weyl operators the equivalent action is

W̃k,�=w−2k�Wk,−�. Changing the roles of Alice and Bob, i.e.,
the flip transformation is therefore equivalent to a local
reflection combined with a phase factor, but with no
change of the total set of the produced states. The phase
factors will disappear in the projection operators to be
defined in Eq. �8�, and the reflection is one of the symmetries
studied in Sec. IV.

The actions of the Weyl operators—we simplify the
notation and write Wk,���� meaning �Wk,� � 1����—produce
on the whole nine Bell-type state vectors,

�k,� = Wk,��0,0. �4�

The Weyl operators obey the Weyl relations

Wj,�Wk,m = wk�Wj+k,�+m, �5�

Wk,�
† = Wk,�

−1 = wk�W−k,−�, �6�

W0,0 = 1 . �7�

We remark that the Weyl operators and the unitary group
which they form appear sometimes in disguise, under names
like “generalized spin operators,” “Pauli group,” and
“Heisenberg group” �8,9�.

The original use of the Weyl operators, in the chapter
“Quantenkinematik als Abelsche Drehungsgruppe” of Ref.
�10�, was the “quantization” of classical kinematics. �Both
continuous and discrete groups have their appearance there.�
In the Appendix we present a physics model for the bipartite
system of qutrits, which may help to visualize the ideas,
concerning the interplay of quasiclassical and quantum
structures.

The set of index pairs �k ,�� is the discrete classical phase
space; � denotes the values for the coordinate in “x space,” k
is the values of the “momentum,” see also Fig. 1.

To each point in this space is associated a projection
operator

Pk,� = ��k,����k,�� . �8�

This projection operator is the density matrix for a Bell-type
state. The mixtures of these pure states form our object of
interest, the magic simplex,

W = �
 ck,�Pk,��ck,� � 0, 
 ck,� = 1� , �9�

with the nine pure states Pk,� at the corners. As a geometrical
object it is located in an eight-dimensional hyperplane of the
nine-dimensional Euclidean space �A=
ak,�Pk,� �ak,��R�,
equipped with a distance relation 	Tr�A−B�2. Specifying the
origin A=0 in this Euclidean space, it is also equipped with
a norm, the Hilbert-Schmidt norm 	A2, and the inner product
Tr�AB�=
ak,�bk,�.

The geometric symmetry of this simplex for the qutrits
is larger than the symmetry which is related to the
underlying algebraic relations. The latter one is equal to
the symmetry of the classical phase space. This is studied in
Sec. IV.

FIG. 1. Here we plotted the points Pl,k of the discrete classical
phase space. l denotes the values of the x coordinate and runs
from 0 to 2 and k “quantizes” the momentum and runs also from 0
to 2. From one fixed point, e.g., P0,0, all possible lines are drawn.
Thus the phase space can be divided into four bundles where
each bundle consists of three parallel lines. In Sec. IV we show that
transformations inside the simplex W are equivalent to transforma-
tions in this phase space and that the lines are all equivalent in the
sense that each line may be transformed into any other one. This
enables us to study the geometry of separability in the magic
simplex W.
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III. HOW IS W EMBEDDED IN THE SET OF STATES?

W contains only states which are locally maximally
mixed, i.e., every partial trace gives the unit matrix times the
normalizing constant. Furthermore, it contains the maximal
possible number of mutually orthogonal pure states. While
this characterization is sufficient for qubits, defining the
magical tetrahedron or any locally unitary transform of it,
this is not so for the qutrits. More explicitly for qubits every
locally maximally mixed state can be embedded into a
magical tetrahedron, while for the qutrits we observe the
following:

�i� There exist locally maximally mixed states, which
cannot be diagonalized with maximally entangled pure
states, the Bell-type states.

�ii� Even if such a maximally mixed state is decompos-
able into orthogonal Bell-type states, it may be inequivalent
to any of the states in W.

�iii� There are maximal sets of nine mutually orthogonal
Bell states, which do not build an equivalent of W.

Examples are presented in the Appendix.
We remark that there are other ways to characterize

the density matrices, by expanding them into products of
operators which are a basis for the space of matrices. The use
of products of Weyl operators in Ref. �5� is closely related
to the construction in this paper. And it is the analog to
the use of products of Pauli matrices, e.g., Ref. �11�, consid-
ered as forming a group. Another method has been tried,
considering the analog of Pauli matrices as generators of
SU�2�. This leads to using the Gell-Mann matrices, e.g., Ref.
�6�, generators of SU�3�.

There are several ways to characterize a special unitary
equivalent of one of the versions of W. One is already given
by the construction: Choose one of the Bell states, and
choose some basis on one side. Another way would be a
choice of fixed special Bell states which have to be repre-
sented. There is a precise statement about the restrictions and
the freedom to do this:

Theorem 1. Every pair of mutually orthogonal Bell states
can be embedded into a version of W. Such a pair fixes
the appearance of a certain third Bell state. A fourth state
can then be embedded, if it is orthogonal to the first three.
Then, with four different Bell states, all elements of W are
fixed.

Proof. Choose one vector out of the pair as �0,0. Take a
Schmidt decomposition of this vector and of � the second
one with the same basis on Bob’s side:

�0,0 =
1
	3



s

��s� � ��s�, � =
1
	3



s

��s� � ��s� .

Consider the unitary operator U=
s��s���s�, acting on the
first factor. Orthogonality of the Bell states implies

3��0,0��� = TrU = 0.

This is possible only if the eigenvalues of U are the three
numbers �ei	wk� with some common phase factor 	. Now let
��s�� be the eigenvectors of U, and fix W1,0=e−i	U. This im-
plies P1,0= ������. Note that there are still three phase fac-
tors not fixed, one for each basis vector. Nevertheless, the

projector P2,0=W1,0P1,0W1,0
† is defined unambiguously. The

fourth Bell state has a Schmidt decomposition 1
	3


s�
s� � �s�.
Observe that the orthogonality to the first three states implies

sw

ks�s �
s�=0 for each k, and so �s �
s�=0 for each s. To-
gether with the orthogonality of the 
s, this implies that ei-
ther �
s�=ei��s��s+1�, or �
s�=ei��s��s+2�. Now fix the phases
for each �s�, such that all ��s�=�, and the fourth Bell state is
implemented as either P0,1 or as P0,2. So all the ingredients
for the construction of W are fixed. �

That the special choice of the positions in the phase
space makes no difference for the total set of elements
is made clear by consideration of the symmetries inside
W.

IV. SYMMETRIES AND EQUIVALENCES INSIDE W

We consider linear symmetry operations mapping
W onto itself that can be implemented by local transforma-
tions of the Hilbert space. So separability remains
unchanged. We show that the transformations of W can be
considered as transformations of the quasiclassical discrete
phase space.

Letting the Weyl operators act on Alice’s side gives the
phase space translations:

Tm,n: Pk,l � Pk+m,�+n = Wm,nPk,�Wm,n
† . �10�

The action is a discrete “Galilei transformation.” The quan-
tization, expressed in the phase factors of the Weyl relations,
disappears due to the combined action of Wm,n and its ad-
joint. In the Appendix we present the Weyl operators in ma-
trix form, and also their relations to the phase space. As
usual, we take the “x coordinate” � as horizontal and the
“momentum coordinate” k as vertical.

For all the other special operations P0,0 stays fixed. This is
no general restriction, since translations may shift each of the
points in phase space to the origin. Now we have to use the
help of operators acting on Bob’s side. For every linear op-

erator A on Alice’s side there exists an operator Ã acting on
the other party, such that

A��0,0� = Ã��0,0� . �11�

They are related through transposition in the preferred basis:

�s�A�t� = �t�Ã�s� .

So, for every local unitary U

UŨ†��0,0� = ��0,0� . �12�

Thus every unitary transformation of the Weyl operators can
be lifted to a unitary transformation of W:

Wm,n = ei�UWk,�U†, �13�

ÞPm,n = UŨ†Pk,�U†Ũ . �14�

This follows in detail from
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UŨ†Pk,�U†Ũ = UŨ†Wk,�P0,0Wk,�
† ŨU†

= UWk,�Ũ†P0,0ŨWk,�
† U†

= UWk,�U†UŨ†P0,0U†ŨUWk,�
† U†

= Wm,nP0,0Wm,n
† . �15�

First consider

UR: �s� �
1
	3



t

w−st�t� .

It effects the quarter rotation of phase space
�counterclockwise�

R:Pk,� � P�,−k. �16�

Then consider

UV: �0� � �0�, �1� � �1�, �2� � w2�2� ,

it lifts to the vertical shear

V:Pk,� � Pk+�,�. �17�

Combined action perfects the horizontal shear

H = R−1V−1R: Pk,� � Pk,�+k. �18�

Now, for the following reflections we have to consider anti-
unitary transformations of the Hilbert space—unless we
want to use the flip, the exchange of Alice’s and Bob’s side.
The simplest one in our preferred basis is the vertical
reflection

S: Pk,� � P−k,�. �19�

It is implemented by complex conjugations



s

as�s� � 

s

as
*�s� �20�

on both factors. Their tensorial product gives global complex
conjugation

C: 

s,t

as,t�s� � �t� � 

s,t

as,t
* �s� � �t� . �21�

Obviously

C−1 = C, CWk,���� = W−k,�C���, P−k,� = CPk,�C .

We notice that this antiunitary transformation is also compat-
ible with the Weyl relations. Since it acts globally, on both
factors, it is positivity, separability, and PPT preserving. All
the structural properties of W which are of interest are sym-
metric under vertical reflection. Hence they are also symmet-
ric under combined action with other transformations, which
give new kinds of reflections, as horizontal reflection

RSR−1:Pk,� � Pk,−� �22�

and diagonal reflection

RS: Pk,� � P�,k. �23�

All the transformations are “linear” or “affine” mappings of

the phase space. Phase space lines (�k ,�� , �k+m ,�+m� ,
�k+2m ,�+2m�) are mapped onto lines. Note that the se-
quence of the three points in a line can be rearranged in any
way. With the right relabeling of the indices modulo three
one gets again the special prescribed form. Let us collect our
results and state the following theorem.

Theorem 2. The group of symmetry transformations of W
is equal to the group of affine transformations of the
quasiclassical phase space which is formed by the indices

�k

�

 � �m n

p q

 �k

�

 + � j

r

 , �24�

where mq− pn�0, with all calculations done with integers
modulo 3. For mq− pn=1 the transformation of the Hilbert
space is unitary, for mq− pn=−1 it is antiunitary.

Proof. Pure phase space translation by �j ,r� is the second
part, combined with the unit matrix, m=q=1, n= p=0. The
generating elements for the first part of transformations and
the corresponding matrices are �in this proof we use “−1”
for “2”�

quarter rotation: R ↔ � 0 1

− 1 0

 , �25�

vertical shear: V ↔ �1 1

0 1

 , �26�

vertical reflection: S ↔ �− 1 0

0 1

 . �27�

All the invertible matrices can be generated. This can be seen
first by looking at the numbers of zeros. Maximally two ze-
ros, in relative diagonal positions, are possible, as in R and
S. One zero is possible, as in V. There may be different
positions of the zeroes, but they can be moved by the diag-
onal reflection, applied from the left and/or from the right.
The case with no zero in the matrix is represented by VH.
Finally there are different distributions of signs, but they
cannot be changed individually, since this would not give
invertible matrices. The signs can be changed pairwise, for
each column or row, by the vertical reflection S, and by
RSR−1, applied from the left and/or from the right. �

The group structure of the combined transformations can
be written in matrix notation:

�k

�

1
� � �m n j

p q r

0 0 1
� �k

�

1
� . �28�

The lines in the discrete phase space play also an important
role in connection with the mutually unbiased bases, see
Refs. �9,12,13�. In Fig. 1 we visualize all possible lines for
one phase space point. Thus we have for the whole phase
space four bundles—called “striations” or “pencils” in Refs.
�12,13�, respectively—each one with three parallel lines.
This makes 12 special sets out of
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�9

3

 = 84

subsets with three points of the phase space. The lines are all
equivalent in the sense that each line may be transformed
into any other one. More general, we have

Theorem 3. In the classes of subsets of phase space
points, there is just one equivalence class of single points,
one of pairs, two classes of triples, and two of quadruples.
The equivalence relations are moreover valid also for
the complementary sets with five to eight points. Inside each
pair and inside each triple, there is total symmetry under
permutations.

Proof. We move the subsets to special chosen places in
phase space. Consider one point of the subset after the other,
in any order. Translation brings the first one to the origin �0,
0�. The shear transformations bring the second one to �1, 0�.
If these two are part of a line, the third one has then been
moved automatically due to the linearity of the transforma-
tions, together with the first two, to the point �2, 0�, complet-
ing this vertical line. If the third �or fourth� point is not in a
line with the first pair, it is movable with horizontal reflection
and vertical shear to the place �0, 1�, without changing the
arrangements of the line with �=0. In the case of four points,
with the vertical line at �=0 not yet completed, we have
several cases: If the fourth point is either at �2, 2� or at �0, 2�,
it completes another line, and we can start again, moving this
line to the preferred vertical one, and the remaining point as
done above. In case the fourth point is not yet at �1, 1�,
where we want to place it, completing a square, it is either at
�2, 1� or at �1, 2�, and it can be moved by shear, together with
one of the others, to form the preferred square. These are the
cases, where no complete line is contained in the subset of
four.

The inner symmetries of pairs and triples are now implic-
itly proven, since the sequence of moving their points can be
chosen arbitrarily. �

V. GEOMETRY OF SEPARABILITY

We now proceed to the question of separability. We start
with a rough analysis of an inner and outer fence in W. Then
we concentrate on the border given by PPT. In particular we
show that the test for positivity under PT reduces to a check
for positivity of a 3�3 matrix. As an example we study the
entanglement of mixtures of the total mixed state and two
orthogonal Bell-type states. We then explicitly describe the
construction of witnesses and analyze the strategy to opti-
mize them. We apply our method to the above state and find
for some mixtures bound entanglement. As an further ex-
ample we discuss a density matrix which is a mixture of the
total mixed state and three orthogonal Bell states where two
of them are equality weighted.

A. Two polytopes as inner and outer fences for separability

The most mixed separable state, with density matrix
�= 1

91, lies at the center of W,

� =
1

9

k,�

Pk,�, �29�

since the �k,� form an orthonormal basis. The separable
states with the largest distance to the center are defined by
the lines in the phase space.

Theorem 4. The 12 outermost separable states in W have
the density matrices


line =
1

3 

�k,��� line

Pk,�. �30�

Proof. This is a special case of the more abstract general
statement in Eq. �36� of Ref. �5�. For a more concrete
demonstration, consider the vertical phase space line
��k ,���= ��0,0� , �1,0� , �2,0��:

Pk,�=0 =
1

3

s,t

wk�s−t��s,s��t,t� , �31�

where we now write �s , t� for �s� � �t�. With 
kw
k�s−t�=3	s,t

one gets


line = 1
3


k

Pk,0 = 1
3


s

�s,s��s,s� , �32�

obviously a separable state.
It lies in each one of the three hyperplanes Bp,0 in our

Euclidean space, defined by

Bp,q = ��ck,���cp,q = 1
3� . �33�

Bp,0 intersects the line of isotropic states �1−���+�Pp,0,
exactly at the border between separable and entangled states
at �= 1

4 , see also Ref. �4�. This hyperplane is therefore the
proper entanglement witness, reduced to our subspace of
Hermitean matrices. Each state outside is entangled, and it is
only the center of the triangle with the Pp,0 at the corners
which is a separable state.

By the equivalence relations stated in Theorem 3, all these
considerations are valid for each one of the 12 phase space
lines. Now the witness hyperplanes intersect also at the cen-
ters of the other 72 �=84−12� triangular faces, but the states
there are not separable. This is easily checked by showing
that they are not PPT. This is done explicitly in the next
section, Sec. V B. �

The nine pairs of hyperplanes

Bp,q = ��ck,���cp,q = 1
3� �34�

and Ap,q = ��ck,���cp,q = 0� �35�

enclose all the separable states of W. They define the enclo-
sure polytope as

��ck,��� all cp,q � �0, 1
3�� . �36�

It has the same geometric symmetry as the simplex W,
which has nine corners. Intersections of the Bp,q hyperplanes
in triples give 84 vertices. In each of the Bp,q there lie 28 of
these vertices, the other 56 lie in Ap,q.

Of these 84 vertices, only 12 are separable states. All the
convex combinations of these 12 are again separable states.
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They form the kernel polytope

�
 = 

lines �

��
line ���� � 0, 
 �� = 1� . �37�

It has 12 vertices, which are the 
line. Each hyperplane Bp,q
contains four of them. The other eight are in Ap,q and define
a full seven-dimensional convex body. This may be com-
pared to the four triangular faces of the qubit octahedron
lying inside the triangles of the magical tetrahedron. The
other four, out of all eight, lie in witness planes, see Refs.
�11,14�. Here is one more of the many differences between
qubits and qutrits �compare with Ref. �15��: We do not have
the geometric rotation-reflection symmetry between the bor-
dering planes. In the witness hyperplane Bp,q there is only a
three-dimensional face �a tetrahedron� with four vertices of
the kernel polytope.

That the bordering face in A0,0 of the kernel polytope is
seven-dimensional can be seen by looking in the Euclidean
space of Hermitean matrices at the eight vectors vp,q, with
�p ,q�� �0,0�. Such a vector vp,q is defined as pointing from
1
8 �1− P0,0�, the center of the face of W in A0,0, to Pp,q, one of
the eight vertices of the seven-dimensional simplicial face of
W. The center of this face of W is also the center of the eight
vertices in A0,0 of the kernel polytope. The vector is now
representable as a linear combination of the 
line, phase space
lines through �p ,q� not containing �0,0�. By equivalences
and symmetries it is sufficient to demonstrate this for one
example:

2v2,2 = − ��P1,0 + P2,1 + P0,2� + �P0,1 + P1,2 + P2,0��

−
1

3
��P1,0 + P1,1 + P1,2� + �P2,0 + P1,1 + P0,2�

+ �P0,1 + P1,1 + P2,1�� +
1

3
��P2,0 + P2,1 + P2,2�

+ �P1,0 + P0,1 + P2,2� + �P0,2 + P1,2 + P2,2�� . �38�

This consideration is, by equivalence, valid for the maximal
face in any Ap,q.

Every set of phase space points characterizes a face of W,
with dimension one less than the number N of points. So the
types of faces of the kernel polytope, surfacing in a face of
W, correspond to equivalence classes of sets of phase space
points. For N=7 there are five vertices 
line, given by the
different lines formed by subsets of the seven prescribed
points. It is not difficult to classify: For N=6 there are two
types, one type giving faces containing three vertices 
line,
the other two. For N=5 there are two types, one containing
two vertices, the other only one. For N=4 either one vertex
or none is present; N=3 is either a phase space line, giving
one vertex at the symmetry center, or another triple with no
kernel vertex. Also the edges, N=2, contain no vertex.

Note that the facts about isotropic states of qutrits, and the
witness hyperplanes Bp,q which we use, as above in Theorem
4, are found by us in a different way as a byproduct of our
special methods. See the next two sections, Secs. V B and
V C, where we proceed to find out more about the border
between the separable and the entangled states.

B. PT of our 9Ã9 matrices

We represent the density matrices in the basis of product
vectors

�s − �,s� = �s − �� � �s� �39�

and order them into groups of three, according to �. Inside
each group we order according to s. So the global Hilbert
space is represented as a direct sum,

C�=0
3

� C�=1
3

� C�=2
3 . �40�

The projectors

Pk,� = 1
3


s,t
wk�s−t��s − �,s��t − �,t� �41�

do not mix the subspaces. A general matrix of W splits
therefore into the direct sum


 = 

k,�

ck,�Pk,� = �

k

ck,0Pk
 � �

k

ck,1Pk
 � �

k

ck,2Pk

�42�

with the 3�3 matrices

P0 =
1

3�1 1 1

1 1 1

1 1 1
�, P1 =

1

3� 1 w* w

w 1 w*

w* w 1
� ,

P2 =
1

3� 1 w w*

w* 1 w

w w* 1
� . �43�

Partial transposition is now the linear mapping

�s − �,s��t − �,t� � �t − �,s��s − �,t� = �m − s,s��m − t,t�

with m = s + t − � . �44�

It produces a new grouping of the basis vectors �m−s ,s�,
according to m, and a new splitting of the global Hilbert
space as

Cm=0
3

� Cm=1
3

� Cm=2
3 . �45�

The most general element of W is


 = A�=0 � A�=1 � A�=2 �46�

with

A =
1

3� d a* a

a d a*

a* a d
�, d� = 


k

ck,�, a� = 

k

wkck,�.

�47�

Partial transposition maps, as is demonstrated in the
Appendix, such a matrix 
 into
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B � B � B, B =
1

3�d0 a2 a1
*

a2
* d1 a0

a1 a0
* d2

� �48�

with three times the same 3�3 matrix. Thus a test for PPT
of 
 reduces to a check for positivity of the matrix B.

Now we apply the method and use the Peres criterion of
Ref. �16�: PPT, the positivity under partial transposition, is a
necessary condition for separability. So NPT, nonpositivity
under partial transposition, implies entanglement. The
missing detail in the proof of Theorem 4, that the 72 trian-
gular faces of W not corresponding to phase space lines
contain no separable point, is contained in the following.

Theorem 5. Consider a five-dimensional face F of W,
opposite to a triangular face which contains a separable
point. F is spanned by the six Bell-type states Pk,� which are
not located on the phase space line giving the separable state
in the triangular face. The only entangled states in F, includ-
ing its bordering faces, are two 
line, and the edge joining
them.

Proof. By equivalence, we may assume that it is the ver-
tical line with �=2, which gives the separable state in the
triangular face, and which stays empty in F= �
=
kck,0Pk,0

+
kck,1Pk,1�. The face F contains 
line�=0 and 
line�=1, and the
edge joining them ��
line�=0+ �1−��
line�=1�.

The general matrix, see Eq. �46�, in F is 
=A�=0 � A�=1
� 0. It is transformed by PT, see Eq. �48�, to three times,

B =
1

3�d0 0 a1
*

0 d1 a0

a1 a0
* 0

� .

This is only then positive, if a0=a1=0. That, in turn, implies,
by Eq. �47�, c0,0=c1,0=c2,0=�, and c0,1=c1,1=c2,1=1−�. All
other 
 are NPT, hence entangled.

The cases of centers of triangular faces not corresponding
to a phase space line are represented by c0,0=c1,0=c0,1= 1

3 ,
with nonvanishing a0 and a1. �

In geometric terms, this theorem is a statement about the
N−1-dimensional faces of W, spanned by N vertices with
Bell-type states. Up to N=4 there appear at most single
separable points. For N=5 and N=6 we have to distinguish
the equivalence classes. Already for N=5, in the class not
contained in a face F treated above, there appear new prob-
lems: Around the center, the state with coefficients
c0,0=c1,0=c2,0=c0,1=c0,2= 1

5 , there is a full four-dimensional
set of states, which are outside the kernel polytope, but PPT.
This can be observed by looking at the matrix B, obtained by
PT of this center. It has the coefficients d0= 3

5 , a0=0,
a1=a2=d1=d2= 1

5 . These coefficients allow for small
variations, without destructing the positivity of B.

In the next application, looking into the interior of W, we
study entanglement of mixtures of two orthogonal Bell-type
states and �. Note the generality of this case: We use the
methods developed for W, but, as it follows from our Theo-
rem 1, we can choose any pair of mutually orthogonal Bell
states, without reference to any special version of W. To
apply our methods, we represent the state as


 =
1 − �� + ��

9
1 + �P1,0 + �P2,0, with

�1 + 8� − 8� � 0, 1 − � + 8� � 0� . �49�

This gives, besides a1=a2=0, the nonvanishing matrix ele-
ments

d0 =
1 + 2�� + ��

3
,

d1 = d2 =
1 − �� + ��

3
,

a0 = −
� + �

2
+ i

	3

2
�� − �� .

Now, 
 is PPT, if B�0

Û0 � d1
2 − �a0�2 = 1

9�1 − 2�� + �� − 5
4 �� + ��2� − 3

4 �� − ��2.

�50�

This describes, when the inequality is replaced by an equal-
ity, a nonlinear border between PPT and NPT states. Special
points on this border are

�i� isotropic states, �=0, border point at �= 1
4 ,

�ii� middle line, �=�, border point at �+�= 2
5 .

Now, PPT is, for qutrits, no longer sufficient to guarantee
separability, see Refs. �17–19�; “bound entanglement” may
occur. So we have to use more specialized methods, to study
the faces not covered by the Theorem 5, and to analyze the
interior of W.

C. Constructions of witnesses

An entanglement witness EW
 gives a criterion, to show
that a certain state with density matrix 
 is not contained in
SEP, i.e. the set of separable states �see Ref. �20��,

�EW
� = �K = K†� " � � SEP: Tr��K� � 0, Tr�
K� � 0� .

�51�

In this paper we are mostly interested in the structure of SEP.
It is a convex set, and as such completely characterized by its
tangential hyperplanes. The tangents itself are at the border
of a larger set of hyperplanes which do not cut SEP. So we
extend the meaning of witness and define SW, the set of
structural witnesses:

SW = �K = K† � 0� " � � SEP: Tr��K� � 0� . �52�

Similarly, we define TW
, the set of tangential witnesses for
a state on the surface of SEP,

TW
 = �K = K† � 0� " � � SEP:

Tr��K� � 0, Tr�
K� = 0� . �53�

The set SW is convex and closed. It is also a linear cone:
K�SW, a�0, ÞaK�SW. Therefore the bounded set
�K�SW, TrK†K�1� contains all the mathematical informa-
tion about SW; especially that its boundary, that is, TW, is
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closed. Also, that for every K the family ��K− �1−���� has
to intersect the boundary at some TW
. In geometric terms:
in each family of parallel hyperplanes, in the Euclidean
space of Hermitean matrices, there are two tangential planes.
Moreover, because of convexity, closedness, and bounded-
ness of SEP: For every K in the boundary of SW, there exists
at least one 
�SEP, such that K is a TW
. The boundary of
SEP is our object of main interest.

Here we analyze SEP�W, and the symmetries of W are
an important tool. That a symmetry of a state is reflected in
symmetries of its witnesses seems intuitively clear, and has
been used already �Ref. �5��. We use this correspondence of
symmetries in several details, so we formulate it explicitly.

Theorem 6. Consider a symmetry group G, implemented
by unitary and/or antiunitary operators Vg. Suppose that 
 is
G invariant, that is for all g we have Vg
Vg

−1=
.
1. If 
 is entangled, there exists a G-invariant EW
.
2. If 
 is on the surface of SEP, there exists a G-invariant

TW
.
3. The subset of G-invariant elements of SEP is

completely characterized by the subset of G-invariant
elements on the surface of SW, which is the set of
G-invariant TW
.

4. All the same is true, when SEP is replaced by the set of
PPT states, entanglement by NPT.

Proof. We use the symmetrizing twirl operation, see Ref.
�4�, K� �K�G. Here we use only finite discrete groups, so the
Haar measure is just summation, and

�K�G =
1

�G�
g

VgKVg
−1, �54�

where �G� is the number of elements in G. For every invariant

 we have

Tr�K
� = Tr�K�
�G� = Tr��K�G
� .

If K is an EW
, then also �K�G is an EW
, proving number 1.
If 
 is on the surface of SEP, there exists a TW
, say K, such
that Tr�K
�=0. Then also �K�G is a TW
, proving number 2.
The set SW is convex and spanned by all convex combina-
tions of TW
. The same is true for the subset of invariant
structural witnesses; they are spanned by all convex combi-
nations of invariant tangential witnesses, on the surface. The
invariant density matrices form also a closed convex set, of
lower dimension. It is completely characterized by its
tangential hyperplanes in this lower dimensional space.
These are given through the invariant SW’s. This proves
number 3. To prove number 4, one observes that the
PPT states form a closed convex set, and that the distinction
between PPT and NPT is invariant under unitary and
antiunitary transformations. �

For applications using the symmetries inside of W, we
use later also the phase space reflections, implemented by
local antiunitaries. So we had to consider also this kind of
group action.

As a first application we consider the group of unitaries
Uk,�=2Pk,�−1 and their products. They are reflections,
Uk,�

2 =1. Our object W is pointwise invariant under this

group, and its linear span is the largest set with this property.
So, to study witnesses characterizing W, we have to consider
the invariant operators

K = 

k,�

�k,�Pk,�. �55�

This is sufficient to obtain all facts about the structure of SEP
and PPT in W. Note: K is an EW
 for some state, if at least
one �k,��0.

Now, once more, we use the “magic” of Bell-type states.
Theorem 7. The operator

K = 

k,�

�k,�Pk,� �56�

is a structural witness if " ��C3 the operator

M� = 

k,�

�k,�Wk,�������Wk,�
−1 �57�

is not negative. K is, moreover, a TW for some 
�W, if
$ �, such that det M�=0.

Proof. Each separable state is a convex combination of
pure product states �� ,���� ,��. So K is a SW, if

��,��K��,�� " �,� � 0.

Now we use the definitions defined in Sec. II,

Pk,� = 1
3


s,t
Wk,��s,s��t,t�Wk,�

−1

and calculate

��,��Pk,���,�� = 1
3


s,t
���Wk,��s����s��t����t�Wk,�

−1 ���

= 1
3 ���Wk,�������Wk,�

−1 ��� ,

giving

��,��K��,�� = 1
3 ���M���� . �58�

Here we defined the vector ��C3 as ���=
s���s��s�, with
the complex conjugated expansion coefficients of �. This is
true for all � is then obviously true for all �, and vice versa.

If det M�=0, there exists an eigenvector � with eigen-
value 0. So K is TW
 for a density matrix we can define
explicitly by


 = ���,����,���G.

We use here the group G with the Uk,� which we used in the
first application of Theorem 6, so 
�W. On the other hand,
if $ 
 such that K is TW
, one may expand 
= ��� ,���� ,��
+
rest, with 
rest also being separable. Then

TrK
 = 1
3 ���M���� + TrK
rest = 0.

Each of the contributions has to vanish; so � is an eigenvec-
tor of M� with eigenvalue 0, and det M�=0. �

First application of the Theorem 7: The well-known
optimal EW for a Bell-type state. Consider P0,0. We use
the symmetry of the phase space subgroup where we fix
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one point, e.g., �k ,��= �0,0�, and mix all the other phase
space points. An invariant witness has to have the form
K=�P0,0+�1. This gives

M� = ������� + 3����21 . �59�

We have used the representation of the unit operator on the
global Hilbert space as 1=
k,�Pk,�. This gives then as contri-
bution to M� on C3 the operator 
k,�Wk,�������Wk,�

−1 . This
operator is invariant under the Weyl group, and its trace is
9���2. This can only give 3���21, as the contribution to M�.
The eigenvalues of M�, for normed �, are �+3�, �, �. So, if
�=−3�, K is the isotropic witness, i.e., TW
 for


 = 1
4 P0,0 + 3

4� . �60�

In this determination of EW, the choice of � was completely
irrelevant. This is connected with the high symmetry of P0,0.

In a next application we consider fewer symmetries. We
use the same methods as in Sec. IV, in the equations from
Eqs. �11�–�15�. Let G, implemented by local unitaries or an-

tiunitaries VgṼg
−1, be the invariance group for 
, an element

of W. Choosing an invariant witness K, associated to the set
of matrices M�, then every M� is unitarily equivalent to M
,

with 
=Vg
−1�. This is seen by applying VgṼg

−1 from left and
its inverse from the right onto K in Eq. �58�, and calculating
its action onto the matrix M�.

For states and their witnesses which are located on a line
in phase space, with an eventual part proportional to � or 1,
this brings essential simplification. By equivalence, we may
consider the line ��0, 0�¯�2, 0��. All the Wk,0, consequently
the Pk,0, and of course also the unit operator, are invariant
under the group of unitaries 
se

i	�s��s��s�. The consequence is
that each M� is equivalent to M ��� with real valued
non-negative vector ���.

For general witnesses there remain the phase space trans-

lations Vg, combined with Ṽg as local unitary operators. They
act onto the Weyl operators by multiplication with phase
factors which cancel in the action onto K. The consequence
for equivalences of M� are the symmetries of det M� under
cyclic permutation �s��s+1, and the discrete phase twirling
�s�ws�s. One knows therefore that the determinant de-
pends on the �s and their conjugates in the form of symmet-
ric polynomials, invariant under the discrete phase twirling.
This allows permutation-symmetric sums with contributions
from ��s�2, from �0

2�1
*�2

*, etc. But it forbids contributions as
�s

2, �0
2�1�2

*, etc.
Combining these results, it is not difficult to calculate the

determinants for witnesses located on the phase space line
�=0, mixed with 1: Consider

K = �
1

3
1 + 


k

�kPk,0, �61�

related, when ���=1 to the matrices M�=�1
+
k�kWk,0������Wk,0

−1 . The matrix is written explicitly in the
Appendix. The determinant works out as

det M� = �3 + ���2��0 + �1 + �2��2 + 3���0�2��1�2 + ��1�2��2�2

+ ��2�2��0�2���0�1 + �1�2 + �2�0��

+ 27��0�2��1�2��2�2�0�1�2. �62�

The analysis follows in the next sections.

D. Some details in the structure, analytical

The strategy for the exploration of the structure of SEP is
to find the set of tangential witnesses as follows: Analyze the
operators K=
k,��k,�Pk,� by way of studying the set of ma-
trices M� associated to each single K. If these matrices are
positive for all �, then K is a SW. If there is a �, such that
det M�=0, then K is a TW. If one has “enough” TW
s, one
can determine the �
� in the boundary of SEP. Consequently,
they obey TrK
=0. How many of these witnesses are
“enough,” depends on the symmetry of the subset of states
one is studying. High symmetry restricts and simplifies the
study.

We study the subset of states with components located on
a phase space line, mixed with �. By equivalence, it is suf-
ficient to study one special line. We choose that with �=0.
The states are 
=�
k�k,0Pk,0+ �1−��� with 
k�k,0=1. Each
of these states is invariant under vertical shear and horizontal
reflection. This symmetry group implies that we may restrict
the study of witnesses to

K = �
1

3
1 + 


k

�kPk,0, �63�

as at the end of Sec. V C. Note that the parameter � cannot
be negative for witnesses, since TrK
line��0=� /3, but TrK�
should be non-negative for separable states. And we know
already, that all the 
line are separable, Theorem 4.

Especially simple are those operators, where �=0: K is a
TW, if all �k�0. Because, if all the factors �k are nonzero,
then each M� is a sum of positive operators. But, if one of
them is negative, then, with �=
s

1
	3 �s�, the matrix M� has a

negative eigenvalue. Such a K with non-negative �k is no
EW, but tangential to the face of W spanned by the Pk,��0. In
the study of the operators with ��0, it is enough to consider
�=1, because the witnesses form a cone, all parameters may
be scaled. The investigation, whether M��0, is now done
by investigation of the characteristic polynomial �c���
=det�M�−��. Since M� is Hermitian, this polynomial,
�c���=� j�� j −��, has only real zeros � j. We have to de-
mand that they are not negative, and this is the case if and
only if

�i� the second derivative of �c at �=0 is not negative,
�ii� the first derivative there is not positive,
�iii� �c��=0� is not negative.
These are conditions for SW. To get TW, we need one

eigenvalue equal to zero, and strengthen the last condition to
�iv� �c��=0�=0.
The characteristic polynomial is given by replacing

� with 1−� in Eq. �62�. We use real valued � and the
abbreviations

A ª �0�1 + �1�2 + �2�0, B ª �0�1�2,
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fA ª 3��0
2�1

2 + �1
2�2

2 + �2
2�0

2�, fB ª 27�0
2�1

2�2
2. �64�

The conditions for a tangential witness are given by
calculating the derivative �c, using ���=1,

�v� 3+
k�k�0,
�vi� 3+2
k�k+min��AfA��0,
�vii� 1+
k�k+min��AfA+BfB�=0.

The minima over normalized wave functions � are evaluated
in the Appendix:

min��AfA� = min�0,A� , �65�

min��AfA + BfB� = min�0, 3
4A,A + B� . �66�

Because of Eq. �65�, the first of the conditions as stated
above for witnesses is weaker than the second one. And the
parameters for TWs have to fulfill only one inequality and
one equation:

3 + 2�0 + 4� + min�0,A� � 0 �67�

1 + �0 + 2� + min�0, 3
4A,A + B� = 0; �68�

where we use now the parameters

� = 1
2 ��1 + �2�, 	 = 1

2 ��1 − �2� . �69�

Using them we get

A = 2�0� + �2 − 	2, A + B = 2�0� + �2 + �0�2. �70�

In the search for TW
 for 
 symmetric under vertical reflec-
tion, i.e., �10=�20, one can restrict the search to operators K
which have the same symmetry, that is, they have 	=0. We
explore the set of witnesses starting from the isotropic wit-
ness, with �=1, �0=−1, �=	=0. First we list all those TWs
one gets, then we indicate the “proof.”

In the set of results we find four distinguished regions for
the parameters:

�a� � = 1, � � 0, �0 = − 1;

�b� � = 1, 0 � � � −
2

3
, �0 = − 1 − 2� �

1

3
;

�c� � = 1, � = −
2

3
, �0 �

1

3
;

�d� � = 0, � � 0, �0 = 1 − � � 0.

In the parameter region �a� one has A=�2−2��−1, so the
left-hand side of Eq. �67� is positive; and min�0, 3

4A ,A+B�
=−2�, so Eq. �68� is true. At one end of the region, i.e., in
the limit �→�, one may rescale the parameters and observe
that they approach �=�0=0, ��0, one end of region �d�. At
the other end of region �a�, which is also the beginning of
region �b�, the common witness at the edge of these regions
is the isotropic witness with �=0 and �0=−1, corresponding
to the hyperplane B0,0, defined in Eq. �33� and in Eq. �34�. In
the parameter region �b�, succeeding �a�, neither A nor
A+B is negative, since ��0, as long as ��− 2

3 , with �0
related to � by Eq. �68�. In the succeeding region �c� one has
A�0, and 3

4A�A+B. At the end of this region rescaling
leads here, in the limit �0→�, to �=�=0, �0�0, this is the

other end of region �d�. The round trip is finished.
For regions �a�–�c�, we get EWs, except for �=�0=− 1

3 in
region �b�. There we get the TW
 for all the 
 in the
triangular face of W with the Pk,0 at the vertices.

The linearity of the relations implies that in each regional
set of witnesses each K is a TW
 for �at least� one common

. For each K at and end point of a region, there exists a
linear face of SEP, for which K is tangential �21�.

The vertex points of SEP, corresponding to the linear
regions of the witness parameters, are

�a� �a=�+ 2
9 P0,0− 1

9 P1,0− 1
9 P2,0;

�b� �b=
line�=0;
�c� �c= 3

4
��− 1

9 P0,0+ 2
9 P1,0+ 2

9 P2,0�;
�d� �d= 3

2 ��−
line�=0�= 1
2 �
line�=1+
line�=2�.

The hyperplane B0,0, corresponding to the isotropic wit-
ness, contains four 
line, associated with the four phase space
lines through the phase space point P0,0. One of them is �b;
the other three have �a in their middle:

�a = 1
3� 1

3 �P0,0 + P0,1 + P0,2� + 1
3 �P0,0 + P1,1 + P2,2�

+ 1
3 �P0,0 + P2,1 + P1,2�� .

The part of the boundary of SEP between �b and �c is out-
side the kernel polytope and inside the enclosure polytope. It
crosses the ray from � to 1

2 �P1,0+ P2,0� at �mid= 1
5 �3�+ P1,0

+ P2,0� �see also Fig. 2�.

E. Some details in the structure, numerical

Our method of numerical analysis is a variation of the
strategy we use in the previous section. There we calculate
first the whole set of tangential witnesses K, then we find the

 on the border of SEP via the condition Tr�
K�=0. Here we
use this condition from the beginning and reduce in this way

FIG. 2. �Color online� Here the space of the density matrices

= �1−�−���+�P0,0+ �

2 �P1,0+ P2,0� is shown. The green triangle
shows the positivity condition. The blue lines are the inner fence
�kernel polytope� and the outer fence �enclosure polytope� for the
boundary of separability. The dotted area shows the values of � and
� which are positive under PT. Here PPT equals separability.
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the set of parameters which have to be varied. We find that
explicitly in the following way.

Let us here consider again the density matrix

= �1−�−���+�P1,0+�P2,0 where the state space is visu-
alized in Fig. 3. Via Theorem 7 the operator K=1+aP00
+bP10+cP20 is a structural witness if the matrix

M� = 1 + aW0,0������W0,0 + bW1,0������W1,0 + cW2,0���

����W2,0

is non-negative "�. We are, moreover, interested in the tan-
gential witness, therefore we search for Tr�
K�=0 which

leads to a=
3+b�1+8�−��+c�1−�+8��

�+�−1 . Consequently, we have to
search for the border where for a given � and the variation
over b, c, and � one eigenvalue of M� changes from nega-
tive to positive �the two others are positive�. The found mini-
mal � characterizes then the border state for which a sepa-
rable state changes to an entangled state, and K is the
tangential entanglement witness. We did not include any fur-
ther symmetry constraints into the calculation and found that
the analytical symmetry results as described in the previous
section and in the Appendix are confirmed, e.g., we have
only to vary over real vectors �. In the region where no
bound entanglement was found, the optimized parameter �
agreed with the PPT calculated � numerically up to 10−8.
The largest difference between the PPT boundary and the
separability boundary is of the order of 10−2 and decreases to
zero for � or � approaching 0, the isotropic state, see Fig. 3.

VI. SUMMARY AND CONCLUSIONS

We consider the state space of two qutrits where we re-
strict ourselves to locally maximal mixed states. Whereas for
qubits every locally maximally mixed state can be diagonal-
ized by the magic Bell states and therefore embedded into a
magical tetrahedron, this is not true for qutrits. However, we
show that a kind of analog to the magic tetrahedron can be
defined for qutrits: the magical simplex W.

Starting from a certain maximally entangled pure state, a
Bell-type state, we obtain by applying only on Alice side the
Weyl operators nine other orthogonal Bell-type states. The
Weyl operators are used to describe the discrete classical
phase space. This discrete classical phase space representing
the algebraic relations of the Weyl operators enables us to
describe the local transformations of the state space of inter-
est and are very useful for several proofs in this paper. The
mixtures of all Bell-type states form the simplex W which is
then the main object of our investigations.

We show explicitly how to construct a version of W. A
certain version is fixed by defining three Bell-type states. The
simplex W can be embedded in a nine-dimensional Euclid-
ean space equipped with a Hilbert-Schmidt norm and an
inner product.

Transformations of W onto itself can be considered as
transformations of the discrete classical phase space. Thus
the symmetries and equivalences can be studied by this
means.

Then we investigate the question of the geometry of sepa-
rability. We start with constructing two polytopes, an inner

�kernel polytope� and an outer �enclosure polytope� fence for
separability. They define linear entanglement witnesses but
are in general not optimal. The outer fence, the closure
polytope, has the same geometric symmetry as W.

Hereupon we explicitly study two representative cases.
We consider the state space of all density matrices which are
mixtures of the total mixed state and two Bell states. We
apply the partial positive transformation on one subsystem
�PPT� which detects entanglement. The obtained witness
is no longer a linear one. We show how entanglement wit-
nesses can be constructed and apply it to the density matrices
under consideration. We find after optimizing the entangle-
ment witness by analytical and independently by numerical
methods that there is indeed bound entanglement for nega-
tive mixtures of one of the Bell states. The result is also
visualized in Fig. 3.

The second case we study is the state space of density
matrices which are mixtures of the total mixed state, one Bell
state and an equal mixture of two other Bell states. We find
that it has only linear entanglement witnesses and that no
bound entanglement can be found, visualized in Fig. 2.

Summarizing, we could give a full geometric structure
of the subset of bipartite qutrits under investigation. We
think that this will help to find a good characterization of
the whole state space and to investigate measures for
entanglement for higher dimensional systems.
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APPENDIX

1. A physical model

Each party has a system consisting of a ring-shaped mol-
ecule. In this ring there are three symmetric located possible
places for a single itinerant particle. Locating this particle at
any of these places corresponds to our three basis vectors �s�.
In the entangled state, described by the vector �k,�, the index
� denotes the angular correlations between Alice’s and Bob’s
particles. Concerning measuring of locations, for �=0 they
are to be measured at the places at the same angles. For the
two other cases, Alice’s particle is rotated relative to Bob’s.
So the number � is the quantum number for the observable
sBob−sAlice; and the index k is the quantum number for the
total angular momentum �component orthogonal to the
rings�. Again “−1” =2, due to the finiteness of the system.
These two operators commute, while their individual contri-
butions from one party do not; comparable to the commuting
of xB−xA with pB+ pA. The set of their eigenvalue pairs �k ,��
is the discrete classical phase space.

2. Examples of maximally mixed states which
do not fit into W

An example for the observation 1 in Sec. III: Define

= 1

3 ������+ 2
3 ������, with ���= �0� � �0�, and ���= 1

	2
��1�
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� �1�+ �2� � �2��. This density matrix is in a unique way
diagonalized, with non-Bell states.

As an example for the observation 2 we consider

=
c���������, with three different orthonomal normalized
Bell vectors �� and three different expansion factors c�.
Since such an expansion is just the expansion into projectors
onto eigenvectors, it is unique. So, if 
 can be embedded into
W �or a unitary equivalent�, the expansion must be an
expansion into the Pk,� �or into a unitarily equivalent set�.

Now we give an example of three Bell-type projectors
which cannot together be embedded into W: Take two of the
projectors as P0,0 and P1,0, the third one as ������, with
���= 1

	3

sw

2s 1
3 �2�s�+2�s−1�− �s+1�� � �s�. This is a Bell vec-

tor, orthogonal to �0,0 and �1,0. But it is not orthogonal to
�2,0, so ������ cannot be any Pk,�. Now try a transformation
and embed the first two projectors as P0,0= Pk,�� and P1,0
= Pk+m,�+n� into a unitary equivalent version of W. Consider
the mapping between these projectors by Weyl operators. As
the following equation shows, they are fixed up to a phase:

P1,0 = Pk+m,�+n� = �U � 1�Pk,�� �U � 1�† = �U � 1�P0,0�U†
� 1� .

�A1�

Taking the matrix elements with �s� � �t�, identifying U with
Wm,n� , and comparing with the relation between P0,0 and P1,0
gives the equations

�s�Wm,n� �t� = �s�U�t� = ei��s�W1,0�t� = ei�ws	s,t. �A2�

And this implies, by applying Wm,n� once more, that
Pk+2m,�+2n� = P2,0, and the third Bell state does not fit into the
equivalent version of W either.

An example for the observation �3�: Take the three Bell
states �k,2 out of W and replace them by

�k =
1
	3



s

wks�s�s − �� � �s� .

They are orthogonal, span the same subspace as the deleted
�k,2, but define other states, unless the phase factors �s are
chosen in a very special way. Together with the remaining
�k,0 and �k,1 they form a complete set of orthogonal Bell
vectors, but nothing equivalent to W.

3. Matrices representing the Weyl operators

The basis vectors are

�0� = �1

0

0
�, �1� = �0

1

0
�, �2� = �0

0

1
� . �A3�

The Weyl operators Wk,�, arranged according to the appear-
ance of the indices in the phase space are

k = 2, �1 0 0

0 w* 0

0 0 w
�, �0 1 0

0 0 w*

w 0 0
�, � 0 0 1

w* 0 0

0 w 0
� ,

k = 1, �1 0 0

0 w 0

0 0 w*�, � 0 1 0

0 0 w

w* 0 0
�, �0 0 1

w 0 0

0 w* 0
� ,

k = 0, �1 0 0

0 1 0

0 0 1
�, �0 1 0

0 0 1

1 0 0
�, �0 0 1

1 0 0

0 1 0
� ,

� = 0 1 2. �A4�

Complex conjugation interchanges the lines k=2 and k=1.
The transformation producing unitary operators are

represented as

UR =
1
	3�1 1 1

1 w* w

1 w w*�, UV = �1 0 0

0 1 0

0 0 w*� . �A5�

4. Partial transposition

The basis elements are the product vectors �s−� ,s�. They
are arranged in groups of three, according to �. Inside each
group the ordering is according to s. The index pairs
�s−� ,s� denoting the rows are written on the left side. Partial
transposition induces a new splitting of the Hilbert space in
subspaces. They are characterized by m, when we write the

FIG. 3. �Color online� Here the space of the density matrices

= �1−�−���+�P1,0+�P2,0 is shown. The green triangle shows
the positivity condition. The axes joining � and P10 or P20 represent
the isotropic states. The blue lines are the inner fence �kernel poly-
tope� and the outer fence �enclosure polytope� for the boundary of
separability. The dotted area shows the region of � and � where 
 is
PPT. For both parameters � ,��0 PPT gives the boundary between
separable and entangled states. For � or � negative we find bound
entanglement which can be seen in the enlarged picture. The dashed
curve shows the border of PPT and for the points the witnesses
were explicitly numerically calculated, see Sec. V E.
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index pairs now as �m−s ,s�. We mark the different m by different typefaces; a for m=0, a for m=1, a for m=2 �But the
numbers are the same, independent of the typeface!�:

�0,0�
�1,1�
�2,2�

�2,0�
�0,1�
�1,2�

�1,0�
�2,1�
�0,2�

�
d0 a0

* a0 0 0 0 0 0 0

a0 d0 a0
* 0 0 0 0 0 0

a0
* a0 d0 0 0 0 0 0 0

0 0 0 d1 a1
* a1 0 0 0

0 0 0 a1 d1 a1
* 0 0 0

0 0 0 a1
* a1 d1 0 0 0

0 0 0 0 0 0 d2 a2
* a2

0 0 0 0 0 0 a2 d2 a2
*

0 0 0 0 0 0 a2
* a2 d2

�� �A6�

�0,0�
�1,1�
�2,2�

�2,0�
�0,1�
�1,2�

�1,0�
�2,1�
�0,2�

�
d0 0 0 0 0 a2 0 a1

* 0

0 d0 0 a2 0 0 0 0 a1
*

0 0 d0 0 a2 0 a1
* 0 0

0 a2
* 0 d1 0 0 0 0 a0

0 0 a2
* 0 d1 0 a0 0 0

a2
* 0 0 0 0 d1 0 a0 0

0 0 a1 0 a0
* 0 d2 0 0

a1 0 0 0 0 a0
* 0 d2 0

0 a1 0 a0
* 0 0 0 0 d2

� . �A7�

5. Matrix M� for witnesses on a line, mixed with the unit

We use real valued �s. This is possible because of the invariances as described at the end of Sec. V C:

� � + �0
2��0 + �1 + �2� �0�1��0 + w*�1 + w�2� �0�2��0 + w�1 + w*�2�

�1�0��0 + w�1 + w*�2� � + �1
2��0 + �1 + �2� �1�2��0 + w*�1 + w�2�

�2�0��0 + w*�1 + w�2� �2�1��0 + w�1 + w*�2� � + �2
2��0 + �1 + �2�

� . �A8�

6. Minima for the functions of �, used in Sec. V D

We use real valued, normalized wave functions � and
describe them with the two parameters

z = �0
2 � �0,1� , �A9�

x =
1

2
��1

2 − �2
2� � �−

1 − z

2
, +

1 − z

2
� . �A10�

The minima of the functions of � can be evaluated as
minima of functions of z and x in the triangular region de-
termined in Eqs. �A9� and �A10�. The functions defined in
Sec. V D in Eq. �64� are

fA =
3

4
�1 + 2z − 3z2� − 3x2, �A11�

fB = 27z� �1 − z�2

4
− x2
 . �A12�

Because of the terms quadratic in x, the extrema are attained
either at the boundary of the triangle, or at the line x=0. One
finds the minimum of fA at the triangle vertices, equal to 0.
The maximum is attained in the center, at z= 1

3 , equal to 1.
Now one has to respect the sign of A:

min
x,z

�AfA� = min�0,A� . �A13�

In the combinations of fA with fB also the maximum of fA at
the border of the triangle comes into consideration. It is
found at the center of a border line and it is equal to 3

4 .
The non-negative function fB is zero along the whole

boundary and has its maximum, equal to 1, at the center. The
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minimum of AfA+BfB is zero, attained at a vertex, if both A
and B are non-negative. It is attained at the center, and equal
to A+B, if both A and B are nonpositive. For different signs
of A and B one has to analyze AfA+BfB along the line x=0.
Consider

fA + CfB = 3
4 �1 − z��1 + 3z + 9Cz�1 − z��

as functions of z, depending on the parameter C=B /A. For
every C they have fixed values at z=0—there they are
3
4—and at z=1—where they are 0. For every C the first
derivative at z= 1

3 is zero. There is either a local
minimum—if C�− 1

3—a local maximum—if C�− 1
3—or a

saddle point. Now we consider the function with special val-
ues of the parameter C: For C=−1, it is zero at z=1/3, which
is a local minimum. For C=−1/4, the local maximum at
z=1/3 is equal to the maximal value 3

4 at the border, at

z=0. Inside the region 0�z�1 the set of functions is point-
wise monotone increasing in the parameter C. So for C in
between the special values, the minimum is zero, the maxi-
mum is 3

4 , both attained at the border. For C�−1, the mini-
mum, 1+C, is attained at the center, the maximum, 3

4 , at the
border. For C�− 1

4 , the minimum, zero, is attained at a ver-
tex, the maximum, 1+C, at the center.

The result can be stated in a unified way as the equation

minx,z�AfA + BfB� = min�0, 3
4A,A + B� . �A14�

It means that the search for the minimum over all � can be
reduced to considering only three different vectors:

�1

0

0
�,

1
	2�1

1

0
�,

1
	3�1

1

1
� . �A15�
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