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In this work, we investigate the problem of a secretly broadcasting of a three-qubit entangled state between
two distant partners. The interesting feature of this problem is that starting from two-particle entangle states
shared between two distant partners we find that the action of a local cloner on the qubits and the measurement
on the machine state vector generates three-qubit entanglement between them. The broadcasting of entangle-
ment is made secret by sending the measurement result secretly using cryptographic scheme based on orthogo-
nal states. Further we show that this idea can be extended to generate three-particle entangled states between
three distant partners.
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I. INTRODUCTION

The No cloning theorem is one of the most fundamental
theorems in quantum computation and quantum informa-
tion�1�. The theorem states that there does not exist any pro-
cess, which turns two distinct nonorthogonal quantum states
�, � into states � � �, � � �, respectively. These restrictions
can be successfully utilized in quantum cryptography �2�.
Although we cannot copy an unknown quantum state per-
fectly one can always do it approximately. Beyond the no-
cloning theorem, one can clone an arbitrary quantum state
perfectly with some nonzero probability �3�. In the past
years, much progress has been made in designing a quantum
cloning machine. A first step towards the construction of an
approximate quantum cloning machine was taken by Buzek
and Hillery �BH� in 1996 �4�. They showed that the quality
of the copies produced by their machine remain the same for
all input states. This machine is popularly known as the uni-
versal quantum cloning machine �UQCM�. Later this UQCM
was proved to be optimal �5�: After that the different sets of
quantum cloning machines such as the set of universal quan-
tum cloning machines, the set of state dependent quantum
cloning machines �i.e. the quality of the copies depend on the
input state�, and the probabilistic quantum cloning machines
were proposed. Entanglement �6�, the heart of quantum-
information theory, plays a crucial role in computational and
communicational purposes. Therefore, as a valuable resource
in quantum-information processing, quantum entanglement
has been widely used in quantum cryptography �7,8�, quan-
tum superdense coding �9�, and quantum teleportation �10�.
An astonishing feature of quantum-information processing is
that information can be “encoded” in nonlocal correlations
between two separated particles. The more “pure” is the
quantum entanglement, the more “valuable” is the given
two-particle state. Therefore, to extract pure quantum en-
tanglement from a partially entangled state, researchers have
done a lot of work inthe past years on purification procedures
�11�. In other words, it is possible to compress locally an
amount of quantum information. Now generally a question
arises: whether the opposite is true or not, i.e., can quantum

correlations be “decompressed?” This question was tackled
by several researchers �12,13� using the concept of “broad-
casting of quantum inseparability.” Broadcasting is nothing
but a local copying of nonlocal quantum correlations. That is
the entanglement originally shared by a single pair is trans-
ferred into two less entangled pairs using only local opera-
tions. Suppose two distant parties A and B share two-qubit
entangled states

��� = ��00�AB + ��11�AB, �1�

where � is real and � complex and the parameters satisfying
the relation �2+ ���2=1. The first qubit belongs to A and the
second belongs to B. Each of the two parties now perform
local copiers on their own qubit and then it turns out that for
some values of �, �1� nonlocal output states are inseparable,
and �2� local output states are separable.

In a classical theory one can always broadcast information
but in quantum theory, broadcasting is not always possible.
Barnum et al. showed that noncommuting mixed states can-
not be broadcasted �14�. However, for pure states broadcast-
ing is equivalent to cloning.

Buzek et al. �12� were the first who showed that the de-
compression of initial quantum entanglement is possible, i.e.,
that from a pair of entangled particles, two less entangled
pairs can be obtained by a local operation. That means that
inseparability of quantum states can be partially broadcasted
�cloned� with the help of local operation. They used optimal
universal quantum cloners for local copying of the sub-
systems and showed that the nonlocal outputs are inseparable
if
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Further, Bandyopadhyay et al. �13� studied the broadcasting
of entanglement and showed that only those universal quan-
tum cloners whose fidelity is greater than 1

2
�1+�1

3
� are suit-

able because only then the nonlocal output states become
inseparable for some values of the input parameter �. They
proved that an entanglement is optimally broadcast only
when optimal quantum cloners are used for local copying
and also showed that broadcasting of entanglement into more
than two entangled pairs is not possible using only local*Corresponding author. E-Mail address: satyyabrata@yahoo.com
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operations. Ghiu investigated the broadcasting of entangle-
ment by using local 1→2 optimal universal asymmetric
Pauli machines and showed that the inseparability is opti-
mally broadcast when symmetric cloners are applied �15�.

Motivated from the previous works on broadcasting of
entanglement, we investigate the problem of the secretly
broadcasting of a three-qubit entangled state between two
distant partners with an universal quantum cloning machine
and then the result is generalized to generate secret entangle-
ment among three parties. Three-qubit entanglement between
two distant partners can be generated as follows: Let us sup-
pose that the two distant partners share an entangled state
���12=� �00�+� �11�. The two parties then apply the optimal

universal quantum cloning machine on their respective qu-
bits to produce a four-qubit state ���1234. One party �say,
Alice� then performs measurement on her quantum cloning
machine state vectors. After that she informs Bob about her
measurement results using Goldenberg and Vaidman’s quan-
tum cryptographic scheme based on orthogonal states. Get-
ting measurement results from Alice, an other partner �say,
Bob� also performs measurements on his quantum cloning
machine state vectors and using the same cryptographic
scheme, he sends his measurement outcomes to Alice. Since
the measurement results are interchanged secretly so Alice
and Bob share secretly a four-qubit state. They again apply
the cloning machine on one of their respective qubits and
generate a six-qubit state ���125346. Therefore, each party has
three-qubit states. Among six-qubit states, we interestingly
find that there exists two three-qubit states shared by Alice
and Bob which are entangled for some values of the input
parameter �2.

In the second part, we investigate the problem of secret
entanglement broadcasting among three distant parties. To
solve this problem, we start with the result of the first part,
i.e., we assume that the two distant partners �say, Alice and
Bob� shared a three-qubit entangled state. Without any loss
of generality, we assume that among three qubits, two are
with Alice and one with Bob. Then Alice teleports one of the
qubits to the third distant partner �say, Carol�. After the
completion of the teleportation procedure, we find that the
three distant partners shared a three-qubit entangled state for
the same values of the input parameters �2 as in the first part
of the protocol. In broadcasting of inseparability, we gener-
ally use the Peres-Horodecki criteria to show the inseparabil-
ity of nonlocal outputs and separability of local outputs.

Peres-Horodecki theorem. �16,17�: the necessary and suf-
ficient condition for the state �̂ of two spins 1

2 to be insepa-
rable is that at least one of the eigenvalues of the partially
transposed operator defined as �m,	,n


T =�m
,n	 is negative.
This is equivalent to the condition that at least one of the two
determinants

W3 = ��00,00 �01,00 �00,10

�00,01 �01,01 �00,11

�10,00 �11,00 �10,10
� and

W4 = �
�00,00 �01,00 �00,10 �01,10

�00,01 �01,01 �00,11 �01,11

�10,00 �11,00 �10,10 �11,10

�10,01 �11,01 �10,11 �11,11

�
is negative. For the security of the broadcasting of entangle-
ment, we use Goldenberg et al. quantum cryptographic
scheme which was based on orthogonal states �18�. The
cryptographic scheme is described in Fig. 1.

All the previous works on the broadcasting of entangle-
ment deals with the generation of two two-qubit entangled
states starting from a two-qubit entangled state using either
an optimal universal symmetric cloner �4,5� or a asymmetric
cloner �19,20�. The generated two-qubit entangled state can
be used as a quantum channel in quantum cryptography,
quantum teleportation, etc. The advantage of our protocol

FIG. 1. Pictorial representation of the cryptographic scheme is
shown in the given figure. The cryptographic scheme based on a
Mach-Zehnder interferometer. The device consists of two-particle
sources S0 and S1, a beam-splitter BS1, two mirrors, two storage
rings SR1 and SR2, a beam-splitter BS2, and two detectors D0 and
D1. The device is tuned in such a way that, if no eavesdropper is
present, a particle emitted by S0 �S1� is finally detected by D0
�D1�.
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over other protocols of broadcasting is that we are able to
provide a protocol which generates a secret quantum channel
between distant partners. The introduced protocol generates
two three-qubit entangled states between two distant partners
starting from a two-qubit entangled state and also provides
the security of the generated quantum channel; not only that,
we also generalize our protocol from two parties to three
parties and show that the generated three-qubit entangled
states can serve as a secured quantum channel between three
distant parties. Now to hack the quantum information, hack-
ers have to do two things: First, they have to gather knowl-
edge about the initially shared entangled state and secondly,
they have to collect information about the measurement re-
sults performed by two distant partners. These two tasks are
very difficult to implement in our protocol by the third party
Eve. Therefore, the quantum channel generated by our pro-
tocol is more secured and hence can be used in various pro-
tocols viz. quantum key distribution protocols �21,22�.

We then distribute our work in the remaining three sec-
tions. In sec. II, we present our idea with a specific example
for the broadcasting of a three-qubit entangled state shared
between two distant partners. In Sec. III, we generalize this
idea to generate a three-qubit entangled state shared between
three distant parties. To implement the idea, we use the con-
cept of entanglement swapping. The last section is devoted to
the conclusion.

II. SECRETLY BROADCASTING OF A THREE-QUBIT
ENTANGLED STATE BETWEEN

TWO DISTANT PARTNERS

In this section, first we define broadcasting of three-qubit
entanglement, open entanglement, and closed entanglement.
Let the previously shared entangled state �1� described by the
two-qubit density operator be �13. Using a BH quantum clon-
ing machine twice by the distant partners �Alice and Bob� on
their respective qubits, they generate a total six-qubit state
�125346 between them. Therefore, Alice has three qubits 1, 2,
and 5 and Bob possesses three qubits 3, 4, and 6.

Definition 1. The three-qubit entanglement is said to be
broadcast if �i� any of the two local outputs �say ��12,�15� in
Alice’s side and ��34,�36� in Bob’s side� are separable and
�ii� one local output �say, �25 in Alice’s side and �46 in Bob’s
side� is inseparable and associated with these local insepa-
rable output; two nonlocal outputs �say ��23,�35� and
��14,�16�� are inseparable.

Definition 2. An entanglement is said to be closed if each
party has nonlocal correlation with other parties. For in-
stance, any three-particle entangled state described by the
density operator �325 is closed if �32, �25, and �35 are en-
tangled states. Otherwise, it is said to be an open entangle-
ment �see Fig. 2�.

Now we are in a position to discuss our protocol for the
secretly broadcasting of a three-qubit entangled state. We
start the protocol with a two-qubit entangled state ���13
shared between two distant partners popularly known as Al-
ice and Bob �see Fig. 3�. Particles 1 and 3 are possessed by
Alice and Bob, respectively. Alice and Bob then operate the
quantum cloning machine on their respective qubits. After

the cloning procedure, Alice performs a measurement on the
quantum cloning machine state vector and sends the mea-
surements results to Bob. After getting measurement results
from Alice Bob performs measurements on his quantum
cloning marine state vector and sends the measurement re-
sults to Alice. Consequently, the two distant partners share a
four-qubit state ���1234. Now Alice has two qubits 1 and 2 and
Bob 3 and 4, respectively. Both of them again operates the
quantum cloning machine on one of the qubits that they pos-
sess. As a result, the distant parties now share a six-qubit
state ���125346 in which three qubits 1, 2, and 5 possessed by
Alice and the remaining three qubits 3, 4, and 6 possessed by
Bob. Now if there exists two three-qubit entangled states
between two distant partners for some values of the input
parameter �2, then only we can secretly broadcast a three-
qubit entangled state using only the universal quantum clon-
ing machine. The word “secretly” is justified by observing an
important fact that the transmission of measurement results
from Alice to Bob and Bob to Alice has been done by using
Goldenberg and Vaidman’s quantum cryptographic scheme.
Therefore, the messages regarding measurement results can
be transmitted secretly between two distant partners. Hence,
the broadcasted three-qubit entangled state is only known to
Alice and Bob and not to the third party “Eve.” As a result,
these newly generated three-qubit entangled states can be
used as a secret quantum channel in various quantum cryp-
tographic scheme.

Now to understand our protocol more clearly, we again
discuss the whole protocol below by considering a specific
example.

Step 1. Let the two-particle entangled state shared by two
distant partners Alice and Bob be given by

���13 = ��00� + ��11� , �3�

where � is real and � is complex with �2+ ���2=1.
Step 2. The BH quantum copier is given by the transfor-

mation

FIG. 2. In this figure, an open entanglement is shown. The en-
tanglement is open in the sense that there is no direct entanglement
between the qubits c and b.

FIG. 3. Alice and Bob initially share a two-particle entangled
state ���13.

BROADCASTING OF THREE-QUBIT ENTANGLEMENT¼ PHYSICAL REVIEW A 74, 032323 �2006�

032323-3



�0����Q� → �2
3 �00��Q0� +

1
�3

��+��Q1� , �4�

�1����Q� → �2
3 �11��Q1� +

1
�3

��+��Q0� , �5�

where ��+�=1/�2��01�+ �10� and �Q0�, �Q1� are orthogonal
quantum cloning machine state vectors.

Alice and Bob then operate the BH quantum cloning ma-
chine locally to copy the state of their respective particles
�see Fig. 4�. Therefore, after operating the quantum cloning
machine, both Alice and Bob are able to approximately clone
the state of the particle and consequently the combined sys-
tem of four qubits is given by

���1234 = 	
2�

3
�0000� +

�

3
��+���+���Q0�B + 
�2�

3
�00���+�

+
�2�

3
��+��11�����Q1�B��Q0�A

+ 	
�2�

3
��+��00� +

�2�

3
�11���+���Q0�B�	

+ 
�

3
��+���+� +

2�

3
�1111���Q1�B��Q1�A. �6�

The subscripts 1, 2, and 3, 4 refer to two approximate copy
qubits in the Alice’s and Bob’s side, respectively. Also ��A

and ��B denotes quantum cloning machine state vectors in
Alice’s and Bob’s side, respectively.

Alice then performs measurements on the quantum clon-
ing machine state vectors in the basis �Q0�A , �Q1�A�. There-
after, Alice informs Bob about her measurement results using
Goldenberg and Vaidman’s quantum cryptographic scheme
based on orthogonal states which is discussed in the previous
section. After getting measurement results from Alice, Bob
also performs measurements on the quantum cloning ma-
chine state vectors in the basis �Q0�B, �Q1�B� and then using
the same cryptographic scheme, he sends his measurement
outcome to Alice. In this way Alice and Bob interchange
their measurement results secretly.

Step 3. After measurements, let the state shared by Alice
and Bob be given by

��a�1234 =
1

�N
	2�

3
�0000� +

�

3
��+���+�� , �7�

where N=
�3�2+1�

9
represents the normalization factor.

Afterward, Alice and Bob again operate their respective
cloners on the qubits 2 and 4, respectively, and therefore, the
total state of six qubits is given by

���125346 =
1

�N
	2�

3
	�0�1 � 
�2

3
�00��Q0� +

1
�3

��+��Q1��
25

� �0�3 � 
�2

3
�00��Q0�+

1
�3

��+��Q1��
46

+
�

6
	�0�1 � 
�2

3
�11��Q1� +

1
�3

��+��Q0��
25

� �0�3 � 
�2

3
�11��Q1� +

1
�3

��+��Q0��
46

+ �0�1

� 
�2

3
�11��Q1� +

1
�3

��+��Q0��
25

� �1�3

� 
�2

3
�00��Q0� +

1
�3

��+��Q1��
46

+ �1�1

� 
�2

3
�00��Q0� +

1
�3

��+��Q1��
25

� �0�3

� 
�2

3
�11��Q1� +

1
�3

��+��Q0��
46

+ �1�1

� 
�2

3
�00��Q0� +

1
�3

��+��Q1��
25

� �1�3

� 	
�2

3
�00��Q0� +

1
�3

��+��Q1��
46
� . �8�

Now our task is to see whether we can generate two three-
qubit entangled states from the above six-qubit state or not.
To examine the above fact, we have to consider two three-
qubit states described by the density operators �146 and �325.

The density operator �146 is given by

�146 =
1

N
	4�2

9

2

3
�000��000� +

1

3
�0�+��0�+��

+
��*

9

�2

3
�000��1�+�+

�2

3
�0�+��111��

+
��

9

�2

3
�111��0�+� +

�2

3
�1�+��000��

+
���2

36

2

3
�011��011� +

2

3
�0�+��0�+� +

2

3
�000��000�

+
2

3
�111��111� +

2

3
�1�+��1�+� +

2

3
�100��100��� . �9�

FIG. 4. Alice and Bob operate their local cloning machine on
their respective qubits 1 and 3 to produce the copy qubits 2 and 4.
Alice and Bob then perform measurements on the cloning machine
state vectors and send their measurement results by using the cryp-
tographic scheme shown in Fig. 1.
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The density operator �325 describes the other three-qubit state
that looks exactly the same as �146.

Now to show that the state described by the density op-
erator �146 is entangled, we have to show that the two-qubit
state described by the density operators �11, �16, and �46 is

entangled, i.e., we have to show that there exist some values
of the input state parameter �2 for which the three-qubit state
is a closed entangled state �see Fig. 5�.

The reduced density operators �14, �16, and �46 are given
by

�16 = �14 =
1

N
	4�2

9
� 5

6 �00��00� + 1
6 �01��01�� +

2��*

27
�00��11� +

2��

27
�11��00� +

���2

36
��00��00� + �01��01� + �10��10� + �11��11��� ,

�10�

�46 =
1

N
	4�2

9
� 2

3 �00��00� + 1
6 ��01��01� + �01��10� + �10��01� + �10��10��� +

���2

36
� 4

3 �00��00� + 4
3 �11��11� + 2

3 ��01��01� + �01��10�

+ �10��01� + �10��10���� . �11�

Now using the Peres-Horodecki theorem, we find that the
state described by the density operators �16 and �14 are en-
tangled if 0.18��2�1 and the state described by the density
operator �46 is entangled if 0.61��2�1. Therefore, we can
say that the state described by the density operator �146 is a
closed three-qubit entangled state if 0.61��2�1. Similarly,
the other reduced density operator �325 describes a closed
entangled state if 0.61��2�1.

Also the other two-qubit state described by the density
operators �12, �15, �34, and �36 is given by

�12 = �15 = �34 = �36 =
1

N
	4�2

9
� 5

6 �00��00� + 1
6 �01��01��

+
���2

36
� 1

3 �00��00� + 5
3 �01��01� + 4

3 �01��10� + 4
3 �10��01�

+ 5
3 �10��10� + 1

3 �11��11��� . �12�

These density operators are separable only when 0.27��2

�1. Hence, broadcasting of a three-qubit entangled state is
possible when 0.61��2�1.

Now, our task is to find out how is the entanglement dis-
tributed over the state, i.e., how much are the two-qubit den-
sity operators �16, �14, and �46 are entangled. To evaluate the
amount of entanglement, we have to calculate the concur-
rence defined by Wootters �23� and hence entanglement of
formation.

Wootters gave out, for the mixed state �̂ of two qubits, the
concurrence

C = max�1 − 2 − 3 − 4,0� , �13�

where the i, in decreasing order, are the square roots of the

eigenvalues of the matrix �
1
2 ��y � �y��*��y � �y��

1
2 and �*

denotes the complex conjugation of � in the computational
basis �00� , �01� , �10� , �11�� and �y is the Pauli operator.

The entanglement of formation EF can then be expressed
as a function of C, namely

EF = −
1 + �1 − C2

2
log2

1 + �1 − C2

2

−
1 − �1 − C2

2
log2

1 − �1 − C2

2
. �14�

After a little bit of calculation; we find that the concurrence
and hence the entanglement of formation depends on the
probability �2. Therefore, we have to calculate the amount of
entanglement in the two-qubit states described by the re-
duced density operators �16, �14, and �46 in the range 0.61
��2�1 because the two-qubit reduced density operators are
entangled in this range of the input state parameter �2. Since
concurrence depends on �2 so it varies as �2 varies. There-
fore, when 0.61��2�1, the concurrences for the mixed
states described by density operators �16, �14 varies from
0.17 to 0.29 while the concurrence for the mixed states de-
scribed by density operators �46 varies from 0.08 to 0.15,
respectively. Using the relation �16� and the values of con-
currence, we find that the entanglement of formation for the
density operators �16, �14varies from 0.06 to 0.15 while the
entanglement of formation for the density operator �46 varies
from 0.01 to 0.03, respectively. Therefore, the generated
three-qubit entangled state is a weak closed entangled state
in the sense that the amount of entanglement in the two-qubit
density operators are very low. Further, the above results
show that the entanglement between qubits 1 and 6 �1 and 4�
is higher than between the qubits 4 and 6.

Furthermore, if the measurement results are either
�2� /3 �00� ��+�+�2� /3 ��+� �11� or �2� /3 ��+� �00�
+�2� /3 �11� ��+�, then the two three-qubit states described
by the density operators �146 and �325 are different and the
broadcasting is possible for 0.6��2�1 or 0.14��2�0.4
according to the outcomes. Also if the outcome of the mea-
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surement is � /3 ��+� ��+�+2� /3 �1111�, then the state de-
scribed by the density operators �146 and �325 are identical
and the broadcasting is possible for 0.38��2�0.73.

III. SECRETLY GENERATION OF TWO THREE-QUBIT
ENTANGLED STATES BETWEEN THREE

DISTANT PARTNERS

In this section, we attempt to answer a question: can we
secretly generate two three-qubit entangled states shared be-
tween three distant partners using LOCC? The answer is an
affirmative. Now we show below that the three-qubit en-
tangled state shared between three distant partners can be
generated by a different process. To generate a three-qubit
entangled state between three distant partners, we require
only two well-known concepts: �i� quantum cloning and �ii�
entanglement swapping.

Entanglement swapping �24,25� is a method that enables
one to entangle two quantum systems that do not have direct
interaction with one another. Bose et al. �24� generalized the
procedure of entanglement swapping and obtained a scheme
for manipulating entanglement in multiparticle systems.
They showed that this scheme can be regarded as a method
of generating entangled states of many particles. An explicit
scheme that generalizes entanglement swapping to the case
of generating a three-particle GHz state from three Bell pairs
has been presented by Zukowski et al. �25�. The standard
entanglement swapping helps to save a significant amount of
time when one wants to supply two distant users with a pair
of atoms or electrons �or any particle possessing mass� in a
Bell state from some central source. The entanglement swap-
ping can be used, with some probability which we quantify,
to correct amplitude errors that might develop in maximally
entangled states during propagation. In this work, we use the
concept of entanglement swapping in the generation of a
three-qubit entanglement between three distant partners.
Now we are in a position to discuss the protocol for a secret
generation of two three-qubit entangled states between three
distant partners via quantum cloning and entanglement
swapping.

Let us suppose for the implementation of any particular
cryptographic scheme, three distant partners Alice, Bob, and
Carol want to generate two three-qubit entangled states be-
tween them. To do the same task, let us assume that initially

Alice-Bob and Carol-Alice share two-qubit entangled states
described by the density operators �13, �78, where Alice has
qubits 1 and 8, Bob and Carol possess qubits 3 and 7, re-
spectively. Then Alice and Bob are adopting the broadcasting
process described in the previous section to generate two
three-qubit entangled states in between them. Therefore, Al-
ice and Bob now have two three-qubit entangled states de-
scribed by the density operators �146 and �325 where Alice
has qubits 1, 2, and 5 and Bob possesses 3, 4, and 6. Now we
are in a position for the illustration of the generation of a
three-qubit entangled between three parties at distant places
by using the concept of entanglement swapping.

Without any loss of generality, we take a three-qubit en-
tangled state between two distant parties described by the
density operator �325. The density operator �325 can be re-
written as

�325 =
1

N
	4�2

9
� 2

3 �000��001� + 1
3 �0�+��0�+�� +

��*

9

�2

3
�000�

��1�+� +
�2

3
�0�+��111��� +

��

9

�2

3
�111��0�+�

+
�2

3
�1�+��000�� +

���2

36
� 2

3 �011��011� + 2
3 �0�+��0�+�

+ � 2
3 �000��000� + 2

3 �111��111� + 2
3 �1�+��1�+� + 2

3 �100�

��100��� , �15�

where qubits 2 and 5 are possessed by Alice and qubit 3 is
possessed by Bob, respectively. To achieve the goal of the
generation of a three-qubit entangled state between three dis-
tant partners, we proceed in the following way.

Let Alice and Carol share a singlet state

��−�87 = 
 1
�2

���01� − �10�� , �16�

where particles 8 and 7 are possessed by Alice and Carol,
respectively.

The combined state between Alice, Bob, and Carol is
given by the

�32587 = �325 � ��−�78��−� . �17�

Alice then performs Bell state measurements on the particles
2 and 8 in the basis �B1

±� , �B2
±��, where �B1

±�= �1/�2�
���00�± �11��, �B2

±�= �1/�2���01�± �10��. If the measurement
result is �B1

+�, then the three-qubit density operator is given
by

�357 =
1

N
	4�2

9
� 2

3 �001��001� + 1
6 ��011��011� − �011��000�

− �000��011� + �000��000���

+ ���*

27
��001��111� − �001��100� + �000��110� − �011�

��110�� +
��

27
�− �110��011� + �110��000� + �111��001�

FIG. 5. Alice and Bob then again apply their cloning machine
on one of their qubits to produce copy qubits 5 and 6, respectively.
Finally we are able to broadcast two three-qubit entanglement be-
tween two distant partners Alice and Bob for some values of the
parameter �2.
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− �100��001�� +
���2

36
� 2

3 ��010��010� + �001��001� + �110�

����110� + �101��101�� + 1
3 ��011��011� − �011��000�

− �000��011� + �000��000� + �111��111� − �111��100�

− �100��111� + �100��100��� . �18�

After the Bell-state measurement, Alice announces publicly
the measurement result. Thereafter, Alice, Bob, and Carol
operate a unitary operator U1= I3 � ��z�5��x�7 on their re-
spective particles to retrieve the state described by the den-
sity operator �325.

If the measurement result is �B1
−� or �B2

+� or �B2
−� then ac-

cordingly they operate an unitary operator U2= I3 � �I5�
� ��x�7 or U3= I3 � �I5� � ��z�7 or U4= I3 � �I3� � �I7� on their
respective particles to retrieve the state described by the den-
sity operator �325. Hence, we find that after getting the mea-
surement results, each party �Alice, Bob, and Carol� applies
the suitable unitary operator on their respective particles to
share the three-qubit entangled state in between them, which
is previously shared between only two distant partners Alice
and Bob.

Also we note an important fact that the generated three-
qubit entangled state is totally secret between three distant
partners because the outcome of the measurement on the
machine state vector is totally unknown to the eavesdropper.
Furthermore, the reduced density operator describing a three-

qubit state between two distant partners and the reduced den-
sity operator describing a three-qubit state between three dis-
tant partners are entangled for the same range of �2. The
above protocol is described pictorially in Figs. 6 and 7.

Therefore, in this section we describe the secretly genera-
tion of a three-qubit entangled state between three distant
partners starting from a three-qubit entangled state shared
between two distant partners using quantum cloning and en-
tanglement swapping. This quantum channel generated by
the above procedures can be regarded as a secret quantum
channel because the result of the measurement on the ma-
chine state vectors transmitted secretly by the quantum cryp-
tographic scheme.

IV. CONCLUSION

In this work, we present a protocol for the secret broad-
casting of a three-qubit entangled state between two distant
partners. Here we should note an important fact that the two
copies of a three-qubit entangled state is not generated from
a previously shared three-qubit entangled state but from a
previously shared two-qubit entangled state using the quan-
tum cloning machine. They send their measurement results
secretly using the cryptographic scheme so that the produced
copies of the three-qubit entangled state shared between two
distant parties can serve as a secret quantum channel. We
also extend this idea to create the three-particle entangled
state secretly between three distant partners using quantum
cloning and the entanglement swapping procedure.
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