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I. INTRODUCTION

Teleportation of a quantum state �1� means this unknown
state is being transferred from a local system to a remote
system without physically sending the particle. Thus, telepor-
tation of a quantum operation may be understood as this
unknown quantum operation being transferred from a local
system to a remote system without physically sending the
device. However, in the historical literature, it is more inter-
esting that an unknown quantum operation acting on the lo-
cal system �the sender’s� is teleported and acts on an un-
known state belonging to the remote system �the receiver’s�
�2�. Taking both teleportation and the action of a quantum
operation into account, one can denote it as “remote imple-
mentation of operation” �RIO�.

If not only a receiver’s quantum state �belonging to the
remote system� but also a sender’s quantum operation �per-
forming on the local system� are completely unknown �arbi-
trary� at the beginning, the required resource of RIO will be
maximum �2�. Moreover, if there is a protocol of RIO, then it
will be of significance only when the resource cost of RIO is
less than twice the required resource of teleportation, be-
cause that can always be completed via so-called bidirec-
tional quantum state teleportation �BQST�. Here, BQST con-
tains three steps, that is, the receiver first teleports an
unknown target state to the sender, then the sender performs
an unknown operation �to be remotely implemented� on the
received state to obtain an acted state, and finally the sender
teleports this acted state back to the receiver.

Usually, when a teleported state is partially unknown or
partially known �even completely known�, this state trans-
mission process from a local system to a remote system is
called “remote state preparation” �3,4�, while when a tele-
ported operation is partially unknown or partially known,
this operation transmission process from a local system to a
remote system is called “remote control of states” �5�. So-
called “partially unknown” or “partially known” quantum
operations refer to those belonging to some restricted sets
that satisfy some given restricted conditions. In Ref. �5�, the
authors presented two kinds of restricted sets of quantum
operations in the case of one qubit, that is, one set consists of
diagonal operations and the other set consists of antidiagonal
operations. It is clear that the restricted sets of quantum op-

erations still include a very large amount of unitary transfor-
mations �5�. Actually, the remote implementations of quan-
tum operations belonging to the restricted sets will consume
fewer overall resources than one of completely unknown
quantum operations, and they can satisfy the requirements of
some practical applications. Moreover, the remote imple-
mentations of quantum operations are closely related with
nonlocal quantum operations via local implementations.
They both play important roles in distributed quantum com-
putation �6,7�, quantum programs �8,9�, and other tasks of
remote quantum-information processing and communication.
Recently, a series of works on the remote implementations of
quantum operations appeared and made some interesting
progress both in theory �2,5,10� and in experiment �11–13�.
Therefore, from our point of view, it is very important and
useful to investigate the extension of remote implementa-
tions of quantum operations to the cases of multiqubits.

To this end, we have to solve some key problems in the
cases of multiqubits, such as how to determine and classify
the restricted sets of quantum operations, how to obtain and
express the explicit form of restricted sets, and finally to
present the protocol of remote implementation of partially
unknown quantum operations belonging to the restricted
sets. This paper will focus on these problems. It must be
emphasized that for the cases of N qubits, the protocol pro-
posed by us only uses N Bell pairs that is half of the overall
quantum resources of the BQST scheme. In addition, there
are universal recovery operations performed by the receiver
in this protocol. This implies that the quantum operations
that can be remotely implemented are extended from within
a given restricted set to all of the restricted sets. One of its
advantages is to enhance the power of remote implementa-
tions of quantum operations. This is useful because one can
design the universal recovery quantum circuits that can be
used to the remote implementations of quantum operations
belonging to our restricted sets in the near future. Because
the explicit forms of our restricted sets of multiqubit quan-
tum operations are not reducible to the direct products of two
restricted sets of one-qubit quantum operations, our protocol
can be thought of as a development of the scheme of Huelga,
Plenio, and Vaccaro’s �HPV� �5�.

This paper is organized as follows. In Sec. II, we first
recall HPV protocol and point out its simplification; in Sec.
III, we obtain the general and explicit form of restricted sets
of N qubit operations, and present evidence of their unique-
ness and optimization in our protocol; in Sec. IV, we propose
the protocol of remote implementations of two-qubit opera-*Email address: anmwang@ustc.edu.cn

PHYSICAL REVIEW A 74, 032317 �2006�

1050-2947/2006/74�3�/032317�11� ©2006 The American Physical Society032317-1

http://dx.doi.org/10.1103/PhysRevA.74.032317


tions belonging to our restricted sets; in Sec. V, we extend
our protocol to the cases of N qubits; in Sec. VI, we summa-
rize our conclusions and discuss some problems; in the Ap-
pendixes, we explain some notation in this paper, introduce
general swapping transformations, and prove our protocol of
remote implementations of N-qubit operations belonging to
our restricted sets.

II. SIMPLIFIED HPV PROTOCOL

The remote implementation of a quantum operation
within some given restricted set was proposed by Huelga,
Plenio, and Vaccaro �HPV� �5�. In HPV’s protocol, Alice is
set as a sender and Bob is set as a receiver. Thus, the initial
state in the joint system of Alice and Bob reads

��ABY
ini � = ��+�AB � ���Y , �1�

where

��+�AB =
1
�2

��00�AB + �11�AB� �2�

is one of four Bell states that are shared by Alice �the first
qubit� and Bob �the second qubit�, and the unknown state
�the third qubit�

���Y = y0�0�Y + y1�1�Y �3�

belongs to Bob. Note that Dirac’s vectors with the subscripts
A ,B ,Y indicate their bases, respectively, belonging to the
qubits A ,B ,Y.

The quantum operation to be remotely implemented be-
longs to one of two restricted sets defined by

U�0� = �u00 0

0 u11
	, U�1� = � 0 u01

u10 0
	 . �4�

We can say that they are partially unknown in the sense that
the values of their matrix elements are unknown, but their
structures, that is, the positions of their nonzero matrix ele-
ments, are known. Thus, HPV’s protocol and its simplifica-
tion can be expressed as the following steps.

Step one: Bob’s preparation. In the original HPV proto-
col, in order to receive the remote control, Bob first performs
a controlled-NOT using his shared part of the e-bit as a con-
trol, and then measures his second qubit �the third qubit in
the joint system of Alice and Bob� in the computational
bases �b�Y
b��b=0,1�. So, Bob’s preparation can be written
as

PB
original�b� = ��b

B
� �0

Y���0
B

� �b�Y
b����0�B
0� � �0
Y

+ �1�B
1� � �1
Y� , �5�

where �0 is a 2�2 identity matrix and �i �i=1,2 ,3� are the
Pauli matrices. Note that the matrices with the superscripts
A ,B ,Y denote their Hilbert spaces belonging, respectively, to
the spaces of qubits A ,B ,Y. Obviously, the reduced space of
Alice or Bob is easy to obtain by partial tracing.

In fact, the first step in the original HPV protocol can be
simplified by changing Bob’s preparation as �13�

PB�b� = ��b�B
b� � �0
Y���0

B
� �0�Y
0� + �1

B
� �1�Y
1�� , �6�

that is, Bob first performs a controlled-NOT using his second
qubit �the third qubit in the joint system of Alice and Bob� as
a control, and then measures his first qubit in the computa-
tional bases �b�B
b��b=0,1�. This change is very simple but
it is nontrivial because it saves a NOT gate performed by
Bob; moreover, an additional swapping gate at the end of the
original HPV protocol becomes redundant.

Step two: Classical communication from Bob to Alice.
After finishing his measurement on the computational basis
�b�
b��b=0,1�, Bob transfers a classical bit b to Alice. This
step is necessary so that Alice can determine her operation.

It must be emphasized that Bob’s preparation can be done
in two equivalent ways with respect to b=0 and 1, respec-
tively. Bob can fix his measurement as �0�
0� and tells Alice
before the beginning of the protocol, this communication
step can be saved, and then Alice’s next sending step will not
need a first �b �=�0� transformation. Similarly, if Bob takes
b=1 and tells Alice before the beginning of the protocol, this
step can be saved also, but Alice’s next sending step still
needs a prior transformation �1. In the above sense, the pro-
tocol may be able to save a classical bit, even a NOT gate.

Step three: Alice’s sending. After receiving Bob’s classical
bit b, Alice first performs a prior transformation �b depen-
dent on b, and then carries out the quantum operation U�d� to
be remotely implemented on her qubit �the first qubit�. Fi-
nally, Alice executes a Hadamard transformation and mea-
sures her qubit in the computational basis �a�A
a��a=0,1�.
All of Alice’s local operations and measurement are just

SA�a,b;d� = ��a�A
a���HAU�d��b
A� , �7�

where the Hadamard transformation H is defined by

H =
1
�2

�1 1

1 − 1
	 . �8�

U�d�, defined by Eq. �4�, belongs to diagonal or antidiagonal
restricted sets, respectively, when d=0 or 1, and �b is taken
as �0- or �1-dependent on the received classical information
b=0 or 1.

Step four: Classical communication from Alice to Bob.
After finishing her measurement on the computational basis
�a�A
a��a=0,1�, Alice transfers a classical bit a to Bob.
Moreover, Alice also needs to transfer an additional classical
information d=0 or 1 in order to tell Bob whether the trans-
ferred operation is diagonal or antidiagonal, unless they have
prescribed the transferred operation belonging to a given re-
stricted set before the beginning of the protocol.

Step five: Bob’s recovery. In order to obtain the remote
implementation of this quantum operation in a faithful and
determined way, Bob has to preform his recovery operation
in general. In the original HPV protocol, this operation is

RB
original�a;d� = ���1 − a��0

B + a�3
B��d

B� � �0
Y . �9�

In the simplified HPV protocol, Bob’s recovery operation
becomes

RB�a;d� = �0
B

� ���1 − a��0
Y + a�3

Y��d
Y� . �10�
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It is clear that the original HPV protocol will result in
U�d��y0�0�B+y1�1�B� in the second qubit of the joint system.
One cannot help to perform an additional swapping opera-
tion between the second qubit and the third qubit defined by

Bswap
original =

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1
� . �11�

However, in terms of the simplified HPV protocol, after
carrying out the above steps from one to five, we can directly
obtain U�d��y0�0�Y +y1�1�Y� in the third qubit of the joint sys-
tem. This means that an additional swapping step has been
saved.

All of the operations including measurements in the sim-
plified HPV protocol can be jointly written as

IR�a,b;d� = ��0
A

� RB�a;d���SA�a,b;d�

� �0
B

� �0
Y���0

A
� PB�b�� . �12�

Its action on the initial state �1� gives

��ABY
final�a,b;d�� = IR�a,b;d���ABY

ini � =
1

2
�ab�AB � U�d����Y ,

�13�

where a ,b=0 or 1 denotes the spin up or spin down, and d
=0 or 1 indicates the diagonal operation or antidiagonal op-
eration, respectively. Therefore, the remote implementations
of one-qubit quantum operations belonging to two restricted
sets are faithfully and determinedly completed.

It is easy to plot the quantum circuit of the simplified
HPV protocol; see Fig. 1.

III. RESTRICTED SETS OF QUANTUM OPERATIONS

We have described the simplified HPV protocol of remote
implementations of one-qubit quantum operations in detail.
For our purpose, to extend it to the cases of multiqubits, we
first seek the restricted sets of multiqubit quantum operations
that can be remotely implemented in a faithful and deter-

mined way. Here, through analyzing and discussing the cases
of one- and two-qubit operations, we can exhibit our method
to obtain the general and explicit forms of restricted sets of
multiqubit quantum operations.

Let us start with the analysis of HPV’s protocol for one
qubit. From our point of view, the purpose of Bob’s prepa-
ration is to lead to the first qubit �locally acted qubit in Al-
ice’s subsystem� being correlated with the third qubit �re-
motely operated or controlled qubit in Bob’s subsystem� in
such a superposition that for its every orthogonal component
state, the first qubit and the third qubit are always located at
the same computational bases. Bob arrives at this aim with
two possible ways via quantum entanglement resource be-
tween the first qubit and the second qubit �in Bob’s sub-
system�. When Bob uses b=0, then this aim has been
achieved, but if Bob takes b=1, Alice has to supplement a �1
transformation for this aim. It is clear that such a superposi-
tion state has at most two orthogonal component states that
are equal to the dimension of Hilbert’s space of an unknown
state. This implies that we can, at most, transfer two un-
known complex numbers from the first qubit to the third
qubit. We think that this is a really physical reason why we
can only remotely implement a quantum operation belonging
to the restricted sets. Without using additional correlation
�entanglement�, we cannot change this physical fact. How-
ever, using additional entanglement will destroy our attempt
to save quantum resources.

In the second step, the communication from Bob to Alice
is to tell Alice which preparing way Bob has used. In order to
include all contributions of operation on the first qubit and
transfer them to the third qubit, we need a Hadamard gate
acting on the transformed qubit so that Alice’s project mea-
surement on a given computational basis does not lead to
losing the actions on the other computational bases, because
the first qubit and the third qubit are correlated in the above
way. However, the action of the Hadamard gate will result in
an algebraic addition of all of matrix elements in some row
or column of this operation arising in front of some compu-
tation bases. Its advantage is that we are able to transfer the
whole effect of operation to the third qubit, but its disadvan-
tage is that we are not able to redivide the algebraic addition
of matrix elements in some row or column of this operation
because these elements are unknown. A uniquely choice way
is to set only one nonzero element in every row or every
column of this operation. In fact, this choice is also optimal
since it allows the maximal numbers that can be transferred
and also includes the unitary operations with such forms.
This requirement yields the limitations to the structures of
operations that can be remotely implemented, that is, so-
called restricted sets of quantum operations. In the case of
one qubit, it is easy to see that two restricted sets of quantum
operations are made from a kind of diagonal operation and a
kind of antidiagonal operation.

For the cases of two qubits, the above analyses are still
feasible and valid. Because the unique nonzero element in
the first row has four possible positions, the unique nonzero
element in the second row has three possible positions, the
unique nonzero element in the third row has two possible
positions, and the unique nonzero element in the fourth row
has one possible position, the restricted sets of operations are
made of 4!=24 kinds of operations.

A                                     a

AB
                 b            aa

B                       b

Y                 bb            d               a

Y YdU )(

b U )(d H

d )(ar

FIG. 1. Quantum circuit of the simplified HPV protocol, where
U�d� is a quantum operation to be remotely implemented and it is
diagonal or antidiagonal, H is a Hadamard gate, �b ,�d are identity
matrices or NOT gates ��1� with respect to b ,d=0 or b ,d=1, respec-
tively, and r�a�= �1−a��0+a�3 is an identity matrix when a=0 or a
phase gate ��3� when a=1. The measurements �a�
a� and �b�
b� are
carried out in the computational basis �a ,b=0,1�. Þ indicates the
transmission of classical communication to the location of the ar-
row direction.
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It is easy to write the set of all of permutations for the list �1,2,3,4�,

P4 = ��1,2,3,4�,�1,2,4,3�,�1,3,2,4�,�1,3,4,2�,�1,4,2,3�,�1,4,3,2�,

�2,1,3,4�,�2,1,4,3�,�2,3,1,4�,�2,3,4,1�,�2,4,1,3�,�2,4,3,1�,�3,1,2,4�,�3,1,4,2�,

�3,2,1,4�,�3,2,4,1�,�3,4,1,2�,�3,4,2,1�,�4,1,2,3�,�4,1,3,2�,�4,2,1,3�,�4,2,3,1�,�4,3,1,2�,�4,3,2,1�� . �14�

Denoting the xth element in this set by

p�x� = „p1�x�,p2�x�,p3�x�,p4�x�… , �15�

for example p�1�= �1,2 ,3 ,4�, p�2�= �1,2 ,4 ,3�, and so on,
we can obtain 24 restricted sets of two-qubit operations as
follows:

T2
r�x,t� = �

m=1

4

tm�m,D�
pm�x�,D� , �16�

where we have defined �1,D�= �00�, �2,D�= �01�, �3,D�
= �10�, �4,D�= �11�. Here, the label D indicates the decimal
system.

It is easy to verify that

T2
r�x,t��T2

r�x,t��† = �
m=1

4

tmtm
* �m,D�
m,D� , �17�

�T2
r�x��†T2

r�x� = �
m=1

4

titm
* �pm�x�,D�
pm�x�,D� . �18�

Therefore, in terms of the requirement of the unitary condi-
tion for quantum operations, the only nonzero element tm in
the mth row of quantum operations belonging to the re-
stricted sets should be taken as ei�m, and �m is real.

The above analyses and discussions have provided evi-
dence of unique forms of restricted sets of two-qubit opera-
tions in a kind of protocol of RIO such as ours. In fact, this
kind of protocol uses the Hadamard gates to transfer the
whole effect of operation to the different qubits, but does not
use the extra correlation doing it. Therefore, the forms of
restricted sets are uniquely determined. Otherwise, the opera-
tion cannot be remotely implemented by using such a kind of
protocol.

To remotely implement quantum operations belonging to
the above restricted sets, Bob needs a mapping table that
provides one-to-one mapping from a classical information x
�x=1,2 , . . . ,24� to a part of his recovery operation R2�x�
defined by

R2�x� = T2
r�x,0� = �

m=1

4

�m,D�
pm�z�,D� . �19�

Obviously, it has the same structure as T2
r�x , t� to be remotely

implemented.
It is easy to see that the controlled kinds of operations,

UC�1� = T2
r ��2,t��t1=t2=1

= �1 0

0 0
	 � �1 0

0 1
	 + �0 0

0 1
	 � �0 t3

t4 0
	 , �20�

UC�2� = T2
r ��6,t��t1=t3=1

= �1 0

0 1
	 � �1 0

0 0
	 + �0 t2

t4 0
	 � �0 0

0 1
	 , �21�

UC�3� = T2
r ��7,t��t1=t2=1

= �1 0

0 0
	 � �0 t3

t4 0
	 + �0 0

0 1
	 � �1 0

0 1
	 , �22�

UC�4� = T2
r ��15,t��t2=t4=1

= �0 t1

t3 0
	 � �1 0

0 0
	 + �1 0

0 1
	 � �0 0

0 1
	 �23�

belong to the restricted set. They are important operations in
quantum-information processing.

Based on the same reasons stated above, any restricted set
of N-qubit operations has such a structure that every row and
every column of its operations only has one nonzero ele-
ment, and we denote this nonzero element in the mth row by
tm, that is, the members of 2N! restricted sets of N-qubit
operations have the forms

TN
r �x,t� = �

m=1

2N

tm�m,D�
pm�x�,D� , �24�

where x=1,2 , . . . ,2N! and

p�x� = „p1�x�,p2�x�, . . . ,p2N�x�… �25�

is an element belonging to the set of all permutations for the
list �1,2 , . . . ,2N�. All of the restricted sets of N-qubit opera-
tions are denoted by TN

r .
For the cases of N-qubit operations, we can take all non-

zero elements of TN
r �x , t� as 1 and obtain its fixed form RN�x�,

that is,

RN�x� = TN
r �x,0� = �

m=1

2N

�m,D�
pm�x�,D� . �26�

It will be used in Bob’s recovery operation of our protocol.
It must be emphasized that we usually study the cases in

which TN
r �x , t� is unitary, although it does not affect our pro-

tocol. Before the beginning of the protocol, we need to build
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two mapping tables: one provides one-to-one mapping from
TN

r �x , t��TN
r to the classical information x, which is known

as Alice, and another provides one-to-one mapping from a
classical information x to RN�x�, which is known as Bob.

It is clear that our explicit restricted sets of multiqubit
operations are not reducible to the simple direct product of
two restricted sets of one-qubit operations. Thus, in this
sense, our protocol can be thought of as a development of
HPV’s protocol to the cases of multiqubits.

IV. PROTOCOL IN THE CASE OF TWO QUBITS

Now let us propose the protocol of remote implementa-
tions of two-qubit quantum operations belonging to 24 re-
stricted sets in detail.

Assume the initial state of the joint system to be

��A1B1A2B2Y1Y2

ini � = ��+�A1B1
� ��+�A2B2

���Y1Y2
, �27�

where the unknown state of two qubits is

���Y1Y2
= �

j1,j2=0

1

yj1j2
�j1j2�Y1Y2

, �28�

the qubits A1 ,A2 belong to Alice, the other four qubits
B1 ,B2 ,Y1 ,Y2 are owned by Bob. It is clear that Alice and
Bob share initially two Bell states.

Note that the Hilbert space of the joint system is initially
taken as a series of direct products of Hilbert spaces of all
qubits according to the following sequence:

H = HA1
� HB1

� HA2
� HB2

� HY1
� HY2

. �29�

We can simply call this sequence “space structure” and de-
note it by a bit-string; for example, the space structure of the
above Hilbert space is A1B1A2B2Y1Y2. Obviously, taking
such a space structure, the subspace belonging to Alice or
Bob is separated. It will lead to inconvenience in the expres-
sion of local operations acting on their full subspaces and in
the proof of the protocol of multiqubits. Therefore, there is a
need to change the space structure. This can be realized by a
series of swapping transformations, which are studied in Ap-
pendix A.

In terms of the general swapping transformations defined
in Appendix A, we can change the initial space structure, for
example,

�a1b1a2b2y1y2�A1B1A2B2Y1Y2
= �−1�3,2���a1b1y1�A1B1Y1

� �a2b2y2�A2B2Y2
� , �30�

�a1b1a2b2y1y2�A1B1A2B2Y1Y2
= �	−1�2,2� � I4���a1a2�A1A2

� �b1b2�B1B2
� �y1y2�Y1Y2

� ,

�31�

�a1b1a2b2y1y2�A1B1A2B2Y1Y2
= 
−1�3,2���a1a2�A1A2

� �y1y2�Y1Y2

� �b1b2�B1B2
� . �32�

Thus, we can express our formula compactly and clearly in
the whole space, and can finally prove our protocol conve-
niently and strictly. Our notations in the whole space will be
helpful for in understanding the problems even if a little
complication in expressions is induced. It will be seen that
such notations are more useful for the extension to the cases
of multiqubits. However, it must be emphasized that these
swapping transformations in the following formula do not
really exist in the practical process.

Step one: Bob’s preparation. Our protocol begins from
this step. Bob first performs two controlled-NOT using,
respectively, his qubits Y1 and Y2 as two control qubits,
B1 and B2 as two target qubits, and then measures his two
qubits B1 and B2 in the computational basis �b1�B1


b1�
� �b2�B2


b2��b1 ,b2=0 ,1�. Therefore, Bob’s preparation reads

PB�b1,b2� = �−1�3,2�� �
m=1

2

�0
Am � ���bm�Bm


bm�

� �0
Ym�Cnot�0,1�����3,2� , �33�

where ��3,N� is defined in Appendix A. Note that this ex-
pression is written in the whole joint system so that we can
prove our protocol more conveniently in Appendix B.

If we do not use the swapping transformations, the form
of Bob’s preparation becomes

PB�b1,b2� = ��0
A1 � �b1�B1


b1� � �0
A2 � �b2�B2


b2� � �0
Y1

� �0
Y2���0

A1sC2
not�0,1� � �0

Y2�

���0
A1 � �0

B1 � �0
A2 � C1

not�0,1�� �34�

Here, CM
not can be called the separated controlled-NOT since

its control and target are separated by M qubits, that is, its
definition is

CM
not�0,1� = �0 � � �

m=1

M

�0	 � ��0�
0��

+ �1 � � �
m=1

M

�0	 � ��1�
1�� , �35�

while �0,1� indicates that the last qubit is a control and the
first qubit is a target and is flipped when the control qubit is
�1�. If M =0, it comes back to the usual controlled-NOT. It is
clear that using the general swapping transformations can
simplify the expressions of formula in form.

Step two: Classical communication from Bob to Alice.
After finishing his measurement on the computational basis,
Bob transfers two classical bits b1 ,b2 to Alice. This step is
necessary so that Alice can determine her sending operations.

It must be emphasized that Bob’s preparation step has
four equivalent ways corresponding, respectively, to b1b2
taking 00, 01, 10, 11 in order to carry out the protocol. If Bob
first fixes the value of b1b2 and tells Alice before the begin-
ning of the protocol, this step can be saved. In particular,
when b1b2 is just taken as 00, Alice also does not need the
transformation �b1

� �b2
in the next step, since �0 � �0 is

trivial.
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Step three: Alice’s sending. After receiving Bob’s classical
bits b1b2, Alice, on her two qubits �the qubits A1A2�, first
performs �b1

A1 � �b2

A2, secondly acts T2
r�x , t� to be remotely

implemented, then carries out two Hadamard transforma-
tions, and finally measures her two qubits in the computa-
tional basis �a1�A1


a1� � �a2�A2

a2��a1 ,a2=0 ,1�. Since the ba-

sis vector of Alice’s space has the structure �a1a2�A1A2
, all of

Alice’s local operations and measurement are just

SA�a1,b1,a2,b2;x,t� = �	−1�2,2� � I4�����a1a2�A1A2

a1a2��

��HA1 � HA2�T2
r�x,t���b1

A1 � �b2

A2��

� I16��	�2,2� � I4� , �36�

where 	�2,2� is defined in Appendix A and Im is an
m-dimensional identity matrix.

Step four: Classical communication from Alice to Bob.
After finishing her measurement on the computational basis
�a1�A1


a1� � �a2�A2

a2��a1 ,a2=0 ,1�, Alice transfers two classi-

cal bits a1 ,a2 to Bob. Moreover, Alice also needs to transfer
x �which can be encoded by five classical bits� to Bob in
order to let him know the transferred operation T2

r�x , t� be-
longing to which restricted set, unless they prescribed the
transferred operation T2

r�x , t� belonging to a given restricted
set before the beginning of the protocol. All of the classical
information is necessary for Bob so that he can determine his
recovery operations.

Step five: Bob’s recovering. In order to obtain the remote
implementations of quantum operations in a faithful and de-
termined way, Bob performs his recovery operation,

RB�a1,a2;x� = I16 � ��rY1�a1� � rY2�a2��R2�x�� , �37�

where r�y� is defined by

r�y� = �1 − y��0 + y�3 �38�

while R2�x� is obtained by the mapping table from the clas-
sical information x to R2�x�. For example, Bob receives 1
�which can be encoded by 00000�, thus he knows R�1� is an
identity matrix; Bob receives 2 �which can be encoded by
00001�, thus he knows

R2�2� =
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0
� �39�

and so on. The mapping between x and R2�x� is given in
advance before the protocol beginning.

Finally, all of the operations including measurements in
the whole space for the remote implementations of quantum
operations of two qubit can be written jointly as

IR�a1,b1,a2,b2;x,t� = RB�a1,a2;x�SA�a1,b1,a2,b2;x,t�

�PB�b1,b2� . �40�

Its action on the initial state gives the remote implementa-
tions of two-qubit quantum operations belonging to the
above 24 restricted sets, that is, the final state becomes

��A1B1A2B2Y1Y2

final �a1,b1,a2,b2;x,t��

= IR�a1,b1,a2,b2;x���A1B1A2B2Y1Y2

ini � �41�

=
1

4
�a1b1a2b2�A1B1A2B2

� T2
r�x,t����Y1Y2

, �42�

where am ,bn=0,1; m ,n=1,2. Therefore, our protocol com-
pletes faithfully and determinedly the remote implementa-
tions of quantum operations T2

r�x , t� belonging to 24 re-
stricted sets. Its proof is found in Appendix B when N=2.

V. EXTENSION TO THE CASES OF N QUBITS

Based on our above protocol of remote implementations
of two-qubit operations belonging to our restricted sets, we
can extend it to the cases of more than two qubits without
obvious difficulty. Our protocol consists of five steps for the
remote implementations of N-qubit operations belonging to
our restricted sets. Set the initial state as

��N
ini� = � �

m=1

N

��+�AmBm
	 � ���Y1Y2¯YN

, �43�

where ���Y1Y2¯YN
is an arbitrary �unknown� pure state in an

N-qubit system, that is,

���Y1Y2¯YN
= �

k1,k2,. . .,kN=0

1

yk1k2¯kN
�k1k2 ¯ kN� . �44�

It is clear that the space structure is initially

�
m=1

N

�AmBm��
n=1

N

Yn. �45�

Usually, in order to avoid possible errors and provide con-
venience in the proof, we need to set the sequential structure
of direct product space of qubits, or a sequence of direct
products of qubit-space basis vectors in the multiqubit sys-
tems. For Alice’s space, we set its sequential structure as
A1A2¯AN, in other words, its basis vector has the form
�a1�A1

�a2�A2
¯ �aN�AN

�or �a1a2¯aN�A1A2¯AN
�. Similarly, we

set the sequential structure of Bob’s space as
B1B2¯BNY1Y2¯YN, in other words, its basis vector has the
form �b1�B1

�b2�B2
¯ �bN�BN

�y1�Y1
�y2�Y2

¯ �yN�YN
. It is clear that

for an N-qubit system, its space structure can be represented
by a bit-string with the length of N.

Now, let us describe our protocol in a concise way.
Step one: Bob’s preparation.

PB�b1,b2, . . . ,bN� = �−1�3,N�� �
m=1

N

�0
Am � ���bm�
bm�

� �0�Cnot�0,1����N�3,N� , �46�

where ��3,N� is defined in Appendix A. It must be empha-
sized that ��3,N� does not appear in the practical process, it
is only required to express our steps clearly and compactly.
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Step two: Classical communication from Bob to Alice.
Alice transfers a classical bit-string b1b2¯bN to Bob unless
Bob and Alice have an arrangement about Bob’s preparing
method �that is, b1b2¯bN to be determined by Bob and
known by Alice� before the beginning of the protocol.

Step three: Alice’s sending.

SA�a1,b1,a2,b2, . . . ,aN,bN;x,t� = �	−1�2,N�

� I2N��� �
m=1

N

�am�Am

am�	� �

m=1

N

HAm	
�TN

r �x,t�� �
m=1

N

�bm

Am	 � I4N��	�2,N� � I2N� , �47�

where 	N�2,N� is defined in Appendix A.
Step four: Classical communication from Alice to Bob.

Alice transfers a classical bit-string a1a2¯aN and a classical
information x �which can be encoded by �log2�2N!��+1 c-bit
string, where �¯� means taking the integer part� correspond-
ing to the quantum operation TN

r �x , t� to be remotely imple-
mented in her mapping table.

Step five: Bob’s recovering.

RB�a1,a2 ¯ aN;x� = I4N � �� �
m=1

N

r�am�	RN�x�� , �48�

where RN�x� is determined by Bob’s mapping table.
Thus, all of the operations including measurements in the

extension of remote implementations of quantum operations
to the case of N qubits can be written as

IR�a1,b1,a2,b2; . . . ,aN,bN;x,t�

= RB�a1,a2, . . . ,aN;x� � SA�a1,b1,a2,b2, . . . ,aN,bN;x,t�

� PB�b1,b2, . . . ,bN� . �49�

The final state becomes

��N
final�a1,b1,a2,b2, . . . ,aN,bN;x��

= IR�a1,b1,a2,b2; . . . ,aN,bN;x,t���N
ini� �50�

=
1

2N��
i=1

N

�aibi�AiBi
	 � TN

r �x,t����Y1Y2¯YN
, �51�

where am ,bn=0,1; m ,n=1,2 , . . . ,N.
It is easy to see that our restricted sets of three-qubit op-

erations include the interesting controlled-controlled-U�d�
gate with the form

Ucc�d� = ��00�
00� + �01�
01� + �10�
10��

� �0 + �11�
11� � U�d� , �52�

where U�d� is a diagonal or antidiagonal operation of one-
qubit systems. Just as well known, it, together with the op-
erations �20�–�23�, can be used to construct a universal gate.

The protocol proof of remote implementations of N-qubit
operations belonging to our restricted sets is given in Appen-
dix B.

VI. DISCUSSION AND CONCLUSION

In summary, we propose and prove the protocol of remote
implementations of partially unknown quantum operations of
multiqubits belonging to the restricted sets, and we obtain
the general and explicit forms of these restricted sets, that is,
every row and every column of an arbitrary member of op-
erations belonging to the restricted sets only has one nonzero
element. Our protocol is based on the simplified HPV
scheme, but it can be thought of as a development of HPV’s
scheme to the cases of multiqubit systems since our re-
stricted sets of multiqubit operations are not simply reducible
to the direct products of HPV’s restricted sets of one-qubit
operations. Moreover, we have given evidence of the unique-
ness and optimization of our restricted sets based on the pre-
condition that our protocol only uses N Bell’s pairs. In order
to show our protocol in the above several aspects, we inves-
tigate in detail the cases of two qubits. Note that those quan-
tum operations with the clearly physical significance and
practical applications are included in our restricted sets,
which can be implemented remotely. It should be pointed out
that the universal recovery operations found by us are useful
because they will be helpful for the design of universal re-
covery quantum circuits in the near future. This implies that
the quantum operations that can be remotely implemented
are extended from only belonging to a given restricted set to
belonging to all of the restricted sets in our protocol. Its
advantage is obviously that the power of remote implemen-
tations of quantum operations is enhanced. Of course, the
universal recovery operations need two mapping tables that
are known, respectively, as Alice and Bob before the begin-
ning of the protocol.

In the area of resource consumption, the remote imple-
mentations of quantum operations belonging to two re-
stricted sets of one-qubit operations need one e-bit which is
shared by the sender and receiver and three c-bits �or two
when Bob fixes his preparing way�, from which one c-bit is
transferred from the receiver to the sender and two c-bits are
transferred from the sender to the receiver. In our protocol,
we can see that the remote implementations of quantum op-
erations belonging to 24 restricted sets of two-qubit opera-
tions need two e-bits and nine c-bits �or seven c-bits when
Bob fixes his preparing way�, where two e-bits are shared by
the sender and the receiver, respectively, and two of nine
c-bits are transferred from the receiver to the sender while
the other seven c-bits are transferred from the sender to the
receiver. For the case of N qubit operations, since the number
of restricted sets that can be remotely implemented is 2N!,
their remote implementations need N e-bits and 2N
+ �ln2�2N!��+1 c-bits (or N+ �ln2�2N!��+1 c-bits when Bob
fixes his preparing way), where N e-bits are shared by the
sender and the receiver, and N c-bits are transferred from the
receiver to the sender while the other N+ �ln2�2N!��+1 c-bits
are transferred from the sender to the receiver. Here, “�x�”
means taking the integer part of x. In addition, the fixed local
operations RN�x� need to be used, and two mapping tables
from TN

r �x , t� to a classical information x and from a classical
information x to RN�x� need to be built before the beginning
of the protocol. Usually, the number of interesting restricted
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sets that can be remotely implemented is small, and the clas-
sical resource can be correspondingly decreased. However,
this will pay the price that the power of protocol of remote
implementations of quantum operations is reduced. It should
be pointed out that the implementations of nonlocal quantum
operations are different from the remote implementations of
the quantum operations. Therefore, the resource used by
them may be different in general.

Similar to the conclusion provided by Refs. �2,5�, we have
not found a faithful scheme without using maximum en-
tanglement �14�. Actually, this is partially because there is no
obvious physical significance when a unitary operation be-
longing to the restricted sets acts on a density matrix of a
diagonal state, and such an action is equivalent to the known
one that will be used in the recovery operation. For example,
a phase gate on one qubit acting on a density matrix of a
diagonal state gives nothing; an antidiagonal unitary trans-
formation on one qubit acting on a density matrix of a diag-
onal state is just a flip gate. Of course, the study of the
possible tradeoffs between the entanglement and classical
communication will still be important in the near future.

Furthermore, we can investigate the controlled remote
implementations of partially unknown quantum operations
belonging to the restricted sets of one and multiqubits. Simi-
lar to the controlled teleportation of a quantum state via the
GHZ states, the controlled remote implementations of par-
tially unknown quantum operations can use the GHZ states,
which are a very important quantum information resource
�15�. In our view, the controlled remote implementations of
quantum operations should have some remarkable applica-
tions in the remote quantum-information processing and
communication, including the future quantum internet. Here,
a quantum internet is a counterpart to the classical one, but it
connects some quantum computers that are located at differ-
ent places together and is used for the remote communication
of quantum information and remote implementations of
quantum operations. The relevant conclusions are studied in
�16�.
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APPENDIX A: SWAPPING TRANSFORMATION

Here, we study the general swapping transformations,
which are combinations of a series of usual swapping trans-
formations. They are used in our protocol in order to express
our formula clearly and compactly, and prove our protocol
easily and strictly.

Note that a swapping transformation of two neighbor qu-
bits �2�2 matrix� is defined by

SW =
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1
� . �A1�

Its action is

SW��X�Y� = ��Y�X�, SW�MX
� MY�SW = MY

� MX.

�A2�

This means that the swapping transformation changes the
space structure HX � HY into HY � HX.

For an N-qubit system, the swapping gate of the ith qubit
and the �i+1�th qubit reads

SN�i,i + 1� = �0
��i−1�

� SW � �0
��N−i−1�. �A3�

Two rearranged transformations are defined by

FN�i, j� = �
�=1←

j−i

SN�j − �, j + 1 − �� , �A4�

PN�j,k� = �
�=j←

k−1

SN��,� + 1� , �A5�

where FN�i , j� extracts out the spin-state of site j, and rear-
ranges it forward to the site i �i j� in the qubit string, where
PN�j ,k� extracts out the spin-state of site j, and backwards
rearranges it backwards to the site k �k� j� in the qubit
string. Note that “←” means that the factors are arranged
from right to left corresponding to �, � from small to large.
Now, in terms of P�j ,k�, we can introduce two general swap-
ping transformations with the forms

	�2,N� = �
i=1←

N−1

P2N„2�N − i�,2N − i… �N � 2� , �A6�

��2,N� = �
i=1←

N

P2N�1,2N� �N � 2� . �A7�

Thus,

	�2,N���
i=1

N

�aibi�	 = ��
i=1

N

�ai�	 � ��
j=1

N

�bj�	 , �A8�

	�2,N�� �
k=1

N

�M�i

Ai � M�i

Bi�		−1�2,N� = ��
i=1

N

M�i

Ai	 � ��
j=1

N

M�j

Bj	 ,

�A9�

��2,N����
i=1

N

�ai�	 � ��
j=1

N

�bj�	� = ��
i=1

N

�bi�	 � ��
j=1

N

�aj�	 ,

�A10�
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��2,N����
i=1

N

M�i

Ai	��
i=1

N

M�i

Bi	��−1�2,N�

= ��
i=1

N

M�i

Bi	 � ��
j=1

N

M�j

Aj	 . �A11�

Similarly, we can introduce

��3,N� = �
i=1←

N−1

F3N�3i,2N + i� �N � 2� . �A12�


�3,N� = �I2N � ��2,N���	�2,N� � I2N� . �A13�

Thus,

��3,N���
i=1

N

�aibi�	 � ��
j=1

N

�yj�	 = �
i=1

N

�aibiyi� , �A14�

��3,N�� �
k=1

N

�M�i

Ai � M�i

Bi����
j=1

N

M�j

Y j	�−1�3,N�

= �
i=1

N

M�i

Ai � M�i

Bi � M�i

Yi, �A15�


�3,N���
i=1

N

�aibi�	 � ��
j=1

N

�yj�	
= ��

i=1

N

�ai�	 � ��
j=1

N

�yj�	 � � �
k=1

N

�bk�	 , �A16�


�3,N�� �
k=1

N

�M�i

Ai � M�i

Bi����
j=1

N

M�j

Y j	�−1�3,N�

= ��
i=1

N

M�i

Ai	 � ��
j=1

N

� M�j

Y j	 � � �
k=1

N

M�k

Bk	 . �A17�

More generally, consider the set QN to be a whole permu-
tation of the bit-string a1a2¯aN, and denote the zth element
with a bit-string form Q�z�=q1�z�q2�z�¯qN�z�. We can al-
ways obtain such a general swapping transformation WN that
a computational basis �a1a2¯aN� of N-qubit systems can be
swapped as another basis �q1�z�q2�z�¯qN�z�� in which
q1�z�q2�z�¯qN�z� is an arbitrary element of QN. That is, we
can write a given general swapping transformation
WN�a1a2¯aN→q1�z�q2�z�¯qN�z��,

WN�a1a2 ¯ aN → q1�z�q2�z� ¯ qN�z���a1a2 ¯ aN�

= �q1�z�q2�z� ¯ qN�z�� . �A18�

Furthermore, if we denote two-dimensional space Ai spanned
by �ai� �ai=0,1 and i=1,2 , . . . ,N�, while MAi is a matrix
belonging to this space, we obviously have

WN
−1�a1a2 ¯ aN → q1�z�q2�z� ¯ qN�z����

i=1

N

MAi	
�WN�a1a2 ¯ aN → q1�z�q2�z� ¯ qN�z��

= ��
i=1

N

MAqi�z�	 . �A19�

Therefore, the general swapping transformation WN defined
above can be used to change the space structure of multiqu-
bits systems.

APPENDIX B: PROOF OF OUR PROTOCOL

Here, we would like to prove our protocol of remote
implementations of quantum operations belonging to our re-
stricted sets in the cases with more than one qubit.

By using the swapping transformation �, we can rewrite
the initial state

��N
ini� =

1
�2N

�−1�3,N� �
k1,. . .,kN=0

1

yk1¯kN
�

m=1

N

��00km� + �11km�� .

�B1�

From Bob’s preparation, it follows that

��P�b1, . . . ,bN�� = PB�b1,b2, . . . ,bN���N
ini�

=
1

�2N
�−1�3,N� �

k1,. . .,kN=0

1

yk1¯kN
�

m=1

N

��0

� ���bm�
bm��Cnot�0,1������00km�

+ �11km��� . �B2�

Note that

��0 � ���b�
b��Cnot�0,1������00k� + �11k���

= ��0 � ��b�
b�� � �0����000� + �110���k0 + ��011�

+ �101���k1�

= ��0b0��b0 + �1b0��b1��k0 + ��0b1��b1 + �1b1��b0��k1

= ��bb0���b0 + �b1��k0 + ��1 − b�b1���b1 + �b0��k1�

= ��b � I4���k0�0b0� + �k1�1b1��

= ��b � I4���k0 + �k1��kbk� = ��b � I4��kbk� , �B3�

where we have used the facts that �b�b�= �0� and �b�1−b�
= �1� for b=0,1. This results in
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��P�b1, . . . ,bN�� =
1

�2N
�−1�3,N� �

k1,. . .,kN=0

1

yk1¯kN
�

m=1

N

��bm

� �0 � �0��kmbmkm�

=
1

�2N� �
m=1

N

��bm
� �0� � I2N�

� �
k1,. . .,kN=0

1

yk1¯kN
�

m=1

N

�kmbmkm� � �
m=1

N

�km�

=
1

�2N� �
m=1

N

��bm
� �0� � I2N�
N

−1

� �
k1,. . .,kN=0

1

yk1¯kN
�

m=1

N

�km� � �
m=1

N

�km� �

�
m=1

N

�bm� , �B4�

where 
N is defined by


N = �I2N � ��2,N���	�2,N� � I2N� �B5�

while 	�2,N� and ��2,N� are defined in Appendix A.
After Alice’s sending and Bob’s recovery operation, we

have

��N
final�x�� =

1
�2N


N
−1 �

k1,. . .,kN=0

1

yk1¯kN
� �

m=1

N

�am�Am
	

��� �
m=1

N


am�	� �
m=1

N

HAm	TN
r �x�� �

m=1

N

�km�	�
� �� �

m=1

N

r�am�	RN�x�� �
m=1

N

�km�Ym
	�

� � �
m=1

N

�bm�Bm
	 . �B6�

Thus, Alice’s sending step and Bob’s recovery operations
yield the final state in our interesting subsystem as

��N
final�x�� =

1
�2N


N
−1

�
m=1

N

�am�Am
� � �

k1,. . .,kN=0

1

yk1¯kN

��� �
m=1

N


am�	� �
m=1

N

H	TN
r �x,t�� �

n=1

N

�kn�	�
�� �

m=1

N

rYm�am�	RN�x�� �
m=1

N

�km�Ym
	�

� � �
m=1

N

�bm�Ym
	 . �B7�

It is a key matter that we can prove the relation

TN
r �1,t�RN�x� = �

m=1

2N

tm�m,D�
m,D��
n=1

2N

�n,D�
pn�x�,D�

= �
m=1

2N

tm�m,D�
pm�x�,D� = TN
r �x,t� . �B8�

According to the translation from the binary system to the
decimal system, we can rewrite tm as tj1¯jN

. So, the diagonal
TN

r �1, t� becomes

TN
r �1� = �

j1,. . .,jN=0

1

tj1j2¯jN
�j1j2 ¯ jN�
j1j2 ¯ jN� . �B9�

In addition, we know

r�am� = �
lm=0

1

�− 1�amlm�lm�
lm� . �B10�

Substituting them into Eq. �B7�, we have

��N
final�x�� =

1
�2N


N
−1

�
m=1

N

�am�Am

� � �
j1,. . .,jN=0

1

�
k1,. . .,kN=0

1

�
l1,. . .,lN

tj1¯jN
yk1¯kN

� ��
m=1

N


am�H�jm�	���
i=1

N


jm�	RN�x�� �
n=1

N

�kn�	�
� �� �

m=1

N


lm�	RN�x�� �
n=1

N

�kn�	���
m=1

N

�− 1�amlm	
� � �

m=1

N

�lm�Ym
	 � � �

m=1

N

�bm�Bm
	� . �B11�

Because that RN�x� is such a matrix that its every row and
every column only has one nonzero element and its value is
1, we can obtain

�� �
m=1

N


jm�	RN�x�� �
m=1

N

�km�	��� �
m=1

N


lm�	RN�x�� �
m=1

N

�km�	�
= ��

m=1

N

� jmlm	�� �
m=1

N


jm�	RN�x�� �
m=1

N

�km�	� . �B12�
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Again from


am�H�jm��− 1�amjm =
1
�2

�B13�

we can derive

��N
final�x�� =

1
�2N


N
−1

�
m=1

N

�am�Am

� � �
j1,. . .,jN

�
k1,. . .,kN=0

1

�
l1,. . .,lN

tj1¯jN
yk1¯kN

��� �
m=1

N


jm�	RN�x�� �
m=1

N

�km�Ym
	�� �

m=1

N

�jm�Ym
	

� � �
m=1

N

�bm�Bm
	� . �B14�

If we directly apply TN
r �x , t� to the unknown state, we

have

TN
r �x,t����k1¯kN

= �
k1,. . .,kN=0

1

yk1¯kN
TN

r �1,t�R�x��k1k2 ¯ kn�

= �
j1,. . .,jN=0

1

�
k1,. . .,kN=0

1

tj1¯jN
yk1¯kN

�
j1j2 ¯ jN�R�x��k1k2 ¯ kn�

��j1j2 ¯ jN� . �B15�

This means that

��N
final�x�� =

1
�2N

�
m=1

N

�ambm�AmBm
� �TN

r �x,t����Y1¯YN
� .

�B16�

Here, we have restored the structure of Hilbert’s space by
dropping the swapping transformations. Therefore, we finish
the proof of our protocol of remote implementations of N
qubit operations belonging to our restricted sets.
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