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Quantum teleportation of composite systems via mixed entangled states
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We analyze quantum teleportation for composite systems, specifically for concatenated teleporation (decom-
posing a large composite state into smaller states of dimension commensurate with the channel) and partial
teleportation (teleporting one component of a larger quantum state). We obtain an exact expression for tele-
portation fidelity that depends solely on the dimension and singlet fraction for the entanglement channel and
entanglement (measures by / concurrence) for the state; in fact quantum teleportation for composite systems
provides an operational interpretation for / concurrence. In addition we obtain tight bounds on teleportation
fidelity and prove that the average fidelity approaches the lower bound of teleportation fidelity in the high-

dimension limit.
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I. INTRODUCTION

Quantum teleportation is a method of indirectly transmit-
ting quantum information via dual resources of classical
communication and previously shared entanglement [1]. In
the ideal and the simplest case, quantum teleportation con-
sumes one ebit and two classical bits to transmit one qubit,
and this can be generalized to qudit [1] and continuous-
variable quantum teleportation [2]. Quantum teleportation
has been tested experimentally for polarization qubits in light
[3], continuous-variable encoding in light [4], and qubits in
ions [5], but not without controversy: debates have raged
over whether postselection legitimately establishes that tele-
portation has occurred [6], what level of fidelity must be
achieved [7,8], and whether teleportation must hold for all
decompositions of the density matrix of the state to be tele-
ported [9].

In this paper we study quantum teleportation for compos-
ite systems via mixed entangled states whereby just one
component of the state is teleported (called partial quantum
teleportation) and where the entire state is teleported by
sending down parallel quantum teleportation channels or, se-
quentially, down the same quantum teleportation channel
(called concatenated quantum teleportation). This description
complies with any quantum information protocol that re-
quires teleportation of the state of a composite quantum sys-
tem via teleportation of the subsystems. We point out that, by
concatenated teleportation, one can transmit “large” quantum
states of dimension D through “small” teleportation channels
designed to transmit low-dimensional quantum states of di-
mension d where d<<D. Previously, only very special cases
of noisy partial and concatenated teleportation have been
studied restricted to two-qubit composite input states [10].

The faithfulness of quantum teleportation is characterized
by its fidelity. The fidelity for a given state is the overlap of
the initial state with its teleported counterpart. Fidelity may
vary for each input state, and an average fidelity can be used
to characterize teleportation performance overall: the fidelity
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is averaged over all input states, for example, over the Haar
measure. In some cases, for maximally entangled states, or
for mixed entangled states like Werner states [11] as the
shared entangled state, fidelity is independent of the input
state. Fortunately any shared mixed entangled state can be
converted to a Werner state without changing its average
teleportation fidelity [12], so the case of fidelity being inde-
pendent of the input state is quite general. This independence
of fidelity does not apply, however, for input states that are
correlated or entangled with degrees of freedom that are not
entangled, namely for partial quantum teleportation. Even if
the entire state is ultimately teleported by concatenated tele-
portation, the principle that the fidelity is independent of the
input state does not hold, in general. Thus previous notions
of fidelity are challenged by generalizing quantum teleporta-
tion to the cases of partial quantum teleportation and concat-
enated quantum teleportation.

We introduce the “global” teleportation fidelity, which ac-
counts for the overall performance of a finite set of telepor-
tation channels used independently to teleport general com-
posite input pure quantum states regardless of whether a part
or the whole system is being teleported. The fidelity also
indicates how well entanglement is transferred or preserved
when teleported across noisy channels.

Furthermore we obtain quite general fidelity results for
partial and concatenated quantum teleportation via noisy en-
tangled states (Werner states), where each subsystem is tele-
ported independently. For teleportation of a given input state,
we show that (a) when the composite input state is a product,
the global teleportation fidelity simply reduces to the product
of teleportation fidelities of the individual teleportation chan-
nels and input states independent, (b) the fidelity is decreas-
ing with increasing entanglement of the input state, (c) the
upper bound is a product of the teleportation fidelities of the
individual Werner states for concatenated telportation (for
partial teleportation it is simply the teleportation fidelity of
the only Werner state), and corresponds to a completely
product input state, and (d) the lower bound corresponds to
the case when the input state is maximally entangled for
partial teleportation and maximally entangled across all bi-
partitions for concatenated teleportation. Whether this lower
bound for concatenated teleportation can always be achieved
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remains an open problem. For partial teleportation this lower
bound is just the fully entangled fraction [13] of the Werner
state.

We also compute the average global teleportation fidelity
where the average has been obtained for a uniform distribu-
tion of pure input states. We show that the average fidelity
for partial teleportation approaches the lower bound as the
dimension of the nonteleported component increases. This
behavior is also noted in concatenated teleportation. We also
obtain the bound on the initial entanglement of the input pure
state such that the final state is also entangled for a given set
of channel parameters.

The plan of the paper is as follows. In Sec. II we discuss
teleportation fidelity and how the existing definition needs to
be modified for teleportation of composite systems. Sections
IIT and IV deal with partial and concatenated quantum tele-
portation. In Sec. V we discuss the problem of sending large
quantum states through small quantum channels and we con-
clude this paper in Sec. VI with a summary of the main
results and discussion of open problems.

II. TELEPORTATION FIDELITY
A. Teleportation fidelity for d ®d mixed states

For a mixed entangled state described by density operator
p over the d ® d Hilbert space, one may characterize the de-
gree of entanglement by the fully entangled fraction, or sin-
glet fraction F=maxy(¥|p|¥), where the maximum is taken
over all maximally entangled states |W) [13]. For teleporting
unknown d-dimensional pure states with a mixed entangled
state p, Alice and Bob may achieve teleportation fidelity [12]

Fd+1
T od+1

(1)

with trace-preserving local operations. For a perfect en-
tangled channel, F=1 so f=1, indicating perfect teleporta-
tion capability, as expected.

Although the shared state p can be of a general form,
every two-qudit state can be transformed to an isotropic
mixed state (Werner state) [11]

1
00) =B NP+ (1-9)— @
with | the identity operator over d ® d, and
Ea
@)= =2 [bk) (3)
Vd k=0

a two-qudit maximally entangled state by local operations
and classical communication (LOCC) with F remaining in-
variant [12]. We use the notation @ to designate the shared
noisy entangled state and p for other density operators. The
teleportation fidelity f,, and singlet fraction F, for the state

p(x) are given by
1 d-1
fo=—+x 7 )

(4)
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Fo= %[1 +x(d*-1)], (5)
respectively. This fidelity is independent of the input state if
and only if the input state is pure which does not hold, in
general. If the input state is mixed, then fidelity does not
remain independent of the input state. This leads us to define
global teleportation fidelity.

B. Global teleportation fidelity

As we are concerned with teleportation of composite
quantum systems (subsystems are correlated, in general) by
teleporting the individual subsystems, we measure the faith-
fulness of quantum teleportation in the following way: for a
pure composite input state |¥), suppose the output state de-
scribed by a density matrix is (), irrespective of whether a
part or the complete state is teleported; then the global tele-
portation fidelity is defined as

F=(V[Q|W). (6)

The fidelity function defined here is a special case of
Uhlmann’s fidelity function for two mixed states [14]. From
the definition, fidelity is a function of the input state and the
channel parameters. Average fidelity is defined as

= [ aweriap) )
with the integral carried out over a uniform distribution d¥
of all pure input states obeying the Haar measure.

If the state |¥) is a composite system of two or more
subsystems and we are teleporting only one subsystem (par-
tial teleportation), then the global teleportation fidelity is
identical to Schumacher’s entanglement fidelity [18]. In this
paper we will continue to refer to global teleportation fidelity
(for concatenated teleportation) or entanglement fidelity (par-
tial teleportation) as simply the fidelity of teleportation.

III. PARTIAL QUANTUM TELEPORTATION

We now analyze quantum teleportation where a compo-
nent of a state is teleported via a Werner state and the re-
maining part of the state is retained, perhaps for later verifi-
cation of teleportation fidelity. As far as Alice and Bob are
concerned they have been supplied with a mixed input state.

A. Fidelity

We begin with Alice and Bob (henceforth AB) sharing a
Werner state in d®d as shown in Fig. 1. Victor supplies
Alice with a qudit, which can be in a mixed state or en-
tangled with a larger state held by Victor. In fact these two
cases are equivalent: every mixed qudit state can be realized
from a larger entangled pure state by performing some mea-
surement on the larger space [20]. Hence we assume, without
loss of generality, that Victor supplies part of a pure en-
tangled qudit state |@)y, in d' ®d to Alice and retains the
d'-dimensional component. Alice and Bob are also denied
any knowledge of Victor’s state. The teleportation protocol
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FIG. 1. Partial quantum teleportation. Alice (A) and Bob (B)
share a Werner state O in d ®d space, and Victor (V) possesses a
state in d’ ® d. The d-dimensional subset of Victor’s state is sent to
Alice, who performs a Bell measurement (depicted by the ellipse).
The resultant state is shown below. Specifically, Victor and Bob
share a state in d’ ®d, and Alice holds a two-qudit Bell state in d
®d.

follows the standard one introduced in Ref. [1]. The canoni-
cal generalized Bell basis states corresponding to the gener-
alized Bell measurement are given by

d—-
1 .
m=72 2™ j)j & m), (8)

where, n,m=0,...,d—1 and @ defines addition modulo d.
After Alice informs Bob of her measurement outcome nm,

Bob performs a unitary operation on his qudit to recover the

original state. The corresponding unitary operator is

Uy = —E 2Tk o\ (e @ m] . (9)
\rd k

Subsequent to teleportation, which includes generalized Bell
basis measurements [1] and transmitting classical informa-
tion to Bob about the measurement outcomes, Victor and
Bob share

1—
Qyp = x| P)vp(d| + TX(COV ® lp). (10)

The faithfulness of this partial teleportation is quantified
by the fidelity

F= VA<¢|QVB|¢>VA (11)

1-x
=x+ TVA<¢|(¢0V ® 1p)|P)va. (12)

We note that the above fidelity is identical to entanglement
fidelity introduced by Schumacher [18]. Observe that the
second term on the right-hand side of Eq. (12) does not de-
pend on representations of the states involved. Therefore, to
evaluate it we employ the Schmidt decomposition for the

state |B)ya,
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r—1

|Phva = E Nalmdya (13)
n=0
with r<min(d,d’) being the Schmidt rank.
The Schmidt coefficients {\,} are real and non-negative,
and normalization requires 3’_{\>=1. Thus, the reduced
density matrix is given by

r—1

w= 2 \|n)n| (14)
n=0
and, using 1B=Ed;1 , we have,
w® lB = (15)
which leads to
r—1
valdl(@ ® 1p)|dhya = 2\, (16)
n=0
Hence,
] -1
F=x+ —2 A (17)
d >

As 3\ is simply the purity P=Tr(w?) for o the reduced
density matrix and the I concurrence [17], C,=2(1-P), we
have,

F=x+ %P (18)
_ _ l_fw 2
_fw 2(d_1)c¢ (19)

Consequences of this result include the following key points:
(a) if | )y 4 is a product state, then C(¢)=0, and teleportation
fidelity reduces to f,,, and (b) whenever the input state is
entangled, i.e., C(¢) >0, the fidelity seen by Victor is strictly
less than f,. Note that the fidelity decreases with increasing
entanglement of the input state.

As we have considered the most general input state |@)y
(any mixed state can necessarily be prepared from a pure
state by measurement) part of which being teleported, we
have the following proposition: F=Ff,, if and only if |¢)y, is
a product state of the form |, )y|d2)4.

We have thus far calculated the fidelity for partial telepor-
tation for a particular input state. Given the functional depen-
dence of the fidelity on the entanglement of the input state it
is natural to ask for the bounds on fidelity. In the next sub-
section we obtain these bounds.

B. Bounds on fidelity

The upper bound is obviously f,, as the right-hand term in
Eq. (19) vanishes when C,=0 corresponding to a product
input state of the form |¢)—|¢1>V|¢2> . The lower bound can
be obtained when, for a given input state |¢), C, is a maxi-
mum. This corresponds to |¢)y, being a maximally
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entangled state of Schmidt rank d where d=min{d,d'} and
subsequently C,=+2(d-1/d). Thus the lower bound is

1-x

d2

F=x+ =F,, (20)
which is the fully entangled fraction of the Werner state. The
bounds on F can now be completed:

Fy<F<f,. (21)

The lower bound is saturated if and only if the state is maxi-
mally entangled of Schmidt rank d. Next we answer the
question of what fidelity is expected on an average for ran-
domly picked input states.

C. Average fidelity

Equation (19) shows that the deviation of F from f,, is
only a function of “entanglement” of the input state |¢)y,
and it is quite possible that the entanglement of the input
state may not be known beforehand. Thus the average fidel-
ity will provide a good indication of what is expected for
randomly picked input states. From Eq. (18), it follows that
the average fidelity is

(Pr=x+ —X(P) (22)

taken over the Haar measure. Thus we only need to evaluate
the average purity of the input state. From [19],

; (23)

where the average is over all pure states in d’ ® d distributed
according to the unitarily invariant or uniform distribution.
Substituting, we obtain

l-x( d+d d -1
(F=x+— <dd,+1)—fw o =h). 4
The average fidelity is not only a function of channel param-
eter f,, and the dimension d of the state teleported (also the
channel is a d ® d Werner state), it is also a function of the
dimension of the subsystem not teleported. In fact, this
shows that for partial teleportation the average fidelity can be
affected by changing the dimension of the idle subsystem.

To understand how changing d’ (the dimension of the idle
subsystem), affects the average fidelity while keeping d a
constant, we note that (d’—1)/(dd’'+1) is a monotonically
increasing function of d’. Thus (F) decreases monotonically
with increasing d'. In the limit of large d’'>d, and in par-
ticular when d’ — o,

I-x
<f>—>x+7=FW. (25)
Thus the average fidelity approaches the lower bound
when the dimension of the idle subsystem is very large com-
pared to that of the particle teleported (d’ > d). Physically it
means, as we increase the dimension of Victor’s subsystem,
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and randomly pick entangled states from the composite
Hilbert space, we will find states that are highly entangled
(close to being maximally entangled) with a high probability.
Let us note that the phenomenon of the purity of an average
bipartite state tending towards maximally mixed is also a
consequence of Levy’s lemma [15] (for an application see
[16]). Next we discuss how fidelity can be connected to en-
tanglement of the teleported state and how well entangle-
ment is conserved in the process of partial teleportation.

D. Entanglement of the output state

A strong indication of entanglement preservation may be
obtained by evaluating the fully entangled fraction of the
output state () (denoted by Fg). To make matters simple, we
assume that the dimension of Victor’s system is also d.

Suppose |¢) is the composite pure input state in d®d
whose one share is teleported. Let |®) be the maximally
entangled state in the Schmidt basis of |¢). Therefore, F,,
=|(®| #)|>. One can easily show that (Plo®]1|®)=1/d,
where o is the reduced density matrix of the subsystems
corresponding to the state | ). Let () be the output state after
teleportation as given by Eq. (10). Then the fully entangled
fraction is

1-x

Fo = (®|QI0) = xF, + (d—z) (26)
It immediately follows that F < F,=x+ (1 —x)/d* where the
equality holds if |¢) is a maximally entangled state. Let us
note that this is consistent with the fundamental notion that
entanglement across a bipartition can never increase on an
average by LOCC. To find out if ) is entangled or not, we
use a sufficient criterion of entanglement [12] namely: if the
fully entangled fraction of a mixed is state in d®d is greater
than 1/d then it is entangled. Therefore, if the condition

1
Fo> F (27)

is satisfied, then () is certainly entangled. It is important to
note that, if the above condition is violated, it does not imply
that () is separable. Rewriting Eq. (27),

2_
g(FW_l), (28)

Fy>1-
¢ Fod*-1 d

puts a lower bound on the entanglement of all input states,
which are guaranteed to remain entangled after partial tele-
portation, for a given Werner state. Note that if the Werner
state is poorly entangled, i.e., F\,=1/d, then the above in-
equality shows that, to remain entangled after teleportation,
the input state must be highly entangled.

IV. CONCATENATED QUANTUM TELEPORTATION

Partial quantum teleportation is the simplest nontrivial
case of teleportation of composite quantum systems where
only one component of a composite system is teleported.
More generally, for a composite system of a finite number of
subsystems, there is the case for which every component or a
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subset are teleported. This is concatenated quantum telepor-
tation. We first discuss representation and entanglement of
multipartite pure states and how the structure of an input
state plays a role in determining the final fidelity.

A. Representation of multipartite quantum states

Quantum information encoded in a d-dimensional pure
quantum state |W)e H,, where H, is a d-dimensional
Hilbert space, may be represented by

d-1

[Py = X alli), (29)
i=0

where the set of states {|i},i=0,...,d—1} is an orthonormal
basis in H, The expansion coefficients a;’s are, in general,
complex and satisfy the normalization condition Eflz_ol|ai|2
=1. Any N-qudit pure state |[¥) e H:®ZIH,~ can be repre-
sented by

d-1

W= >

Kk, . ky=
where (a) the set of states {|kk,,...,ky).k;=0,...,d—1}
form the standard basis in the Hilbert space H of N qudits
and (b) the coefficients Ap k,...ky Ar€, in general, complex
and satisfy the normalization condition Ek1k2~~kN|ak1k2~-kN|2
=1. A convenient way to express a general state of N qudits
that takes into account all possible configurations including
entanglement between only a subset of qudits, may be rep-
resented by a tensor product of say, M(M <N) pure states

|©))

ey K1k - Ky (30)

M
(V)= @), |®) e H,", (31)

which is a composite nonseparable state of «; qudits. In par-
ticular, the Hilbert space is decomposed as Hj;"= &)1 H ™
and we also have =), a;=N. Each state |®,) is defined such
that no further product decomposition is possible. In other
words, the state |®,) is entangled if and only if |a;| > 1. Thus
a completely entangled state corresponds to the case when
the decomposition has only one term. On the other hand, if
the state is completely a product, the decomposition consists
of N terms.

B. Entanglement of multipartite pure states

Entanglement of a bipartite pure quantum state can be
represented by I concurrence defined by C=/1(1-"P), where
P=Tr(w?) is the purity of the associated reduced density
matrix [17]. For a pure state of more than two subsystems
one can accordingly define I concurrence across every bipar-
tition. For example, for a system of three qudits, one can
have a set of three / concurrences, C;,C,, Cs, where C is the
entanglement across the bipartition 1:23 and so on. In the
same way P;=Tr(w}) is the purity of the ith reduced density
matrix.

Generalizing this concept, entanglement of an N-qudit
pure state may be characterized by a set / concurrences,
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FIG. 2. Venn diagram representing two distinct bipartitions of a
ten-qudit state such that three qudits are in one partition and seven
in the other, i.e., the 3:7 bipartition. Two configurations m are
shown, one three qudits on the left in one partition (depicted by a
circle) and the remaining seven in the other partition, and the other
configuration corresponds to the three qudits in the partition on the
right (depicted by a square) vs the other seven qudits.

where each I concurrence quantifies entanglement across a
bipartition. As |W) is an N-qudit pure state, it is also a pure
state across every bipartition and therefore admits a Schmidt
decomposition. Consider a bipartition with k qudits on one
side and N—k on the other, where 1<k<|N/2|. Associated

with each k there can be distinct configurations. Let

Cm(¥) be the I concurrence of the state across the biparti-
tion k: N—k in configuration m. The subscript m is a string
denoting k qudits that are on one side of the partition.

For example, consider a pure state of ten qudits and the
bipartition 3:7 (i.e., three qudits on one side and seven on the
other side), which is depicted in Fig. 2: H5'O=HS @ H5".
Then C3), 56 represents the / concurrence of the state in the
partition 3:7 and in a configuration 1,5,6:2,3,4,7,8,9,10 (i.e.,
the qudits 1Ist, 5th, and 6th are on one side). Furthermore in
a given configuration m which a string of length k:i,j,...,m
(where each index refers to a qudit, and is assigned a value
between 1 and N) we have the oredering i <j<<---<m.

The last constraint is necessary because, for a chosen set
of k parties on one side of the bipartition, permutation among
the same set of parties will be a different string but identical
configuration as far as entanglement is concerned. In the
above example, the last constraint implies the strings 1,5,6
and 5,6,1 although different but entanglement-wise corre-
spond to identical configuration. Similarly the density matrix
‘Uf,kj),,,,,m represents the reduced density matrix of the pure
state in the bipartite partition k:N—-k and configuration
i,j,...,m. Thus for any N-qudit pure state we can associate
a set of functions {C,(¥)} that can characterize entangle-
ment of the state.

C. Representation of N-qudit input states and fidelity

The expansion in Eq. (31) is completely general. The key
idea is teleportation fidelity of every term in the decomposi-
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tion is independent of the other terms. Consider any one term
in the separable expansion, say the state |<IJJ»> of a; qudits.
Clearly «a; entangled states are required to teleport the entire
state. Let us denote the final density matrix after teleporta-
tion by (};. Once every state in the decomposition is tele-
ported, the resulting density matrix can be represented by

M
j=1
The concatenated teleportation fidelity is
M M
F= <‘P|Q|\I’> = H <q)j|9_,‘|q)j> = H f_,s (33)
j=1 j=1

where F; is the concatenated teleportation fidelity for the
state | ). From the above expression it is clear that what we
need to evaluate is the teleportation fidelity of an indecom-
posable pure state of j qudits for j=2. We now consider the
simplest case where a pure two-qudit state is teleported via

two noisy Werner states.

D. Concatenated teleportation of a pure two-qudit state

1. Teleported density matrix

Any two-qudit pure input state in d ® d can be written in
the form

d-1

|\I’> = E aij|i./.>‘

i,j=0

(34)

Let o=|¥)X¥| and C=2(1-Tr(w?) be the I concurrence
[17] with @ the reduced density matrix for each qudit. We
represent each teleportation channel by a Werner state in d
®d. Let us denote them by 4,8, and 04,8, and the corre-
sponding teleportation fidelities by f;(x;),f>(x,) with x;,x,
the mixing parameters of the respective Werner states. Figure
3 depicts two-qudit concatenated teleportation, which is
readily generalized to N-qudit concatenated teleportation.

The concatenated teleportation protocol is performed in
sequence where each qudit is independently teleported ac-
cording to the standard teleportation of a qudit [1] (also see
the section of partial quantum teleportation for details). The
final density matrix can be computed in a straightforward
manner. Explicitly

(1=x))x, (1=2xy)x
QBIBZ =)C1.X20'BIBZ + dl ]BZ ® wBl + d leZ
(1 =x)(1 =xy)
® JlBl + %J{Bl &® Jle. (35)
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d®d

d®d

d®d
®

A B

d®d
o O

d®d
® O

FIG. 3. Two-qudit concatenated quantum teleportation. Initially
(seen in the upper part of the figure), Alice (A) and Bob (B) share
two Werner states across two d ® d channels, and Alice combines
each of her qudits in the Werner states with the two qudits supplied
by Victor to perform Bell measurements (depicted by the ellipses).
Subsequent to this (shown in the lower part of the figure), Alice
possesses two two-qudit Bell states, and Bob holds a two-qudit state
that could be pure or mixed.

d®d

As it is understood that the above two-qudit density matrix
belongs to Bob, we will not be using the subscript.

2. Fidelity
The teleportation fidelity is given by

] —_
F=(W|Q|W) = x,x, + %wm ® o|¥)

I —x,)x
+ %(‘Iﬂw ® 1|¥) +
To evaluate the terms (V|1 ® w|¥) and (¥]|w®1|¥) on the
right-hand side of the above equation, we proceed as shown
in the previous section, to obtain

(V[1 ® w|P)=(V]|o ® 1|¥) =Tr(w?) = P;

a —xl)(21 —0) (36)

(37

and noting that f;=x;+(1-x;)/d, i=1,2, the fidelity can be
rewritten as
F=fif—-(1=P)G=ff,-3GC*, (38)
where
ool
S (d-1)?

and C=2(1-P). We also note that F reduces to a product
of the individual fidelities of the Werner states if and only if

(1= fdlfod =11+ [1 = fo]lfid= 1] (39)
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C=0, i.e., if the input state is a product state. On the other
hand, F=1 if and only if both f;=f,=1. The expression for
fidelity reduces to that of partial quantum teleportation when
one of the two fidelities becomes equal to unity as one would
expect. Perhaps the most compelling resemblance with par-
tial teleportation is that the fidelity is again a decreasing
function of the entanglement of the input state. The more
entangled the input state is, the lower the fidelity and vice
versa.

The upper bound on the fidelity is f,f, for a product input
state (C=0) and the lower bound is obtained when, for a
given |¥), C is maximum. This occurs when |¥) is a maxi-
mally entangled state of Schmidt rank d for which C
=42(d-1)/d. Therefore,

fifa— _G<7:<f1f2 (40)

From Eq. (38) the average fidelity is computed,

2
1= PG=fif- Vg,

(Fy=fifa- 2l

where we have used (P)=2d/(d*+1) [19]. When d is large,
i.e., d>1, neglecting terms of the order of 1/d” and higher
yields (F)=f,f>—((d-1)/d)G which is the lower bound on
F. Once again we see that, for large quantum states, the
average fidelity is approximately close to the lower bound.

So far, we have studied teleportation of two body com-
posite systems, be it partial where one subsystem is tele-
ported or concatenated, where both subsystems are tele-
ported. Not surprisingly essentially the same features in both
the cases have been observed. In the next section we discuss
the simplest case of few body system teleportation: concat-
enated teleportation of three qudits.

E. Concatenated teleportation of three-qudit pure states

This involves teleportation of a three-qudit pure state via
three Werner states, each capable of teleporting one qudit.
The fidelity of the ith, i=1,2,3, Werner state is f;, and the
mixing parameter is x;. Let w; be the reduced density matrix
for the ith qudit. Proceeding along the lines of the previous
sections, the teleportation fidelity is

3 3
1
]::Hxi"';l_[ (I-x)
i=1 i=1

3 3
+ 3 Tr(wd) "H X+ I (-2 | @)
= zl#:lk i;k

Denoting

3
""H st I (-x) (42)

t#k i#*k

and using the relations f;=x;+1-x;/d and Pk:Tr(wi), the
fidelity
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3 3 3 3

=[ls-2G6a-P)=11r- E GCi  (43)

i=1 k=1 i=1 k 1

is a function of the channel parameters f; and dimension d
and also depends on the complete set of / concurrences
{C;},i=1,2,3. If the input state is completely entangled, i.e.,
C;#0 for all i, or partially entangled, i.e., C;# 0 for some
i, then F< H?zl fi- The equality F =Hf’=1 f; is achieved if and
only if the state is a product state of the form
|$), ®|d), ®|p)s. This means that the presence of entangle-
ment between any two subsystems will necessarily reduce
the fidelity.

We now obtain the bounds on F. The upper bound is
given by Hl 1 f, The lower bound corresponds to the case
when 37_,G,C} takes a maximum value. As G, for all k is
only a function of dimension and channel parameters and
does not depend on the state teleported, the maximum value
corresponds to a three-qudit pure state for which the set of /
concurrences, {C;} will maximize 3;_,G,Ci. Now every C,
is associated with a bipartition in d ® d> Hilbert space where,
for a maximally entangled state, the maximum Schmidt rank
is d and therefore corresponds to the maximum / concur-
rence for all pure states in the Hilbert space d® d?. In prin-
ciple, the lower bound, therefore, corresponds to a given in-
put state, such that C;=+2(d—1)/d for all i. The primary
concern is whether such a state actually exists. In a system of
three qudits, it turns out that such states do exist, and below
is an example Greenberger-Horne—Zeilinger (GHZ) state:

d-1
1

|W) 103 = rz liii) 123 (44)
\d

i=0

Thus the bounds on F are given by

Hf, y EGksf<Hf, (45)
i=1 k=1

The average fidelity is given by

3 3

F=11f- EGk(1—<Pk>) (46)

i=1

To evaluate (P;) we need to compute the average over all
pure states in d®d”. From [19] we obtain (P,)=d+d*/(d’
+1). Substituting

2d+ 1«
————2> Gy 47
_d+1§ ‘ “7)

(F)= Hf,
For large d>1, neglecting terms of the order 1/d” and
higher, one can show that

3
d-1
—2> Gy (48)
d k=1

3
A ~I11r-
i=1
which is the lower bound on F. This again shows that for
large dimensional quantum states, the average teleportation
fidelity can be well approximated by the lower bound.
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F. Concatenated teleportation of an entangled state
of N qudits

In this section we study the most general case where a
pure state of N qudits are being teleported via N noisy
Werner states. The teleportation fidelity derived in the Ap-
pendix is given by (¥|Q|¥)

N 1 N 1 N
F=1lf-32 66" - 2 GGy

i=1 2k:l k=1
k<l
1 N
-7 2 GG (49)
k,lm=1
k<Il<m

Interestingly the fidelity shows that entanglement across ev-
ery bipartition matters in determining the total fidelity. De-
pending on the structure of the state, some of the concur-
rence functions may be zero. The upper bound is Hfil f; and
that corresponds to the case of a pure product input state. If
there is entanglement between any subset of qudits, which
means there must be at least one concurrence function not
equal to zero, then the fidelity is always strictly less than the
upper bound. The lower bound, in principle, can be attained
by a state that is maximally entangled across all bipartitions.
We do not know if such a state actually exists, in general.
It is also possible to compute the average fidelity, which is

N 1 N 1 N
P =11fi- 2 214eDG" - 5 3 (6

i=1 2 k,I=1

k<l
1 N
-5 2 (GG (50)
2 k,l,m=1
k<I<m

Across any bipartition, C>=2(1-7P). Thus (C*)=2(1-(P)).
Using the result in [19] we get

@ '-1)@d-1)

CH=2
() av+1

= Zhl(d) Vk,

(@"2 = 1)~ 1)

2 .
(Ciy=2 o =2hy(d) Y k1;k<l,
A3 - 1) (-1
(CL) = 2% =2h3(d) Y kImk<I<m.
d'+1
(51)
Substituting, we obtain
N N N N
A=1f-n26 -2 67 -hn 2 6o -
=1 k=1 k=1 k,,m=1
k<l k<Il<m
(52)

We can further compress the above expression by noting that
all Gs are just functions of the channel parameters and di-
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N

mension. Thus, denoting E’k\'zng) =G, ,Ek,HGEj):Gz and so
k<l

on, we can rewrite the average fidelity as

N M

A=111-2 na, (53)
i=I i=1

where M =|N/2]. Note that the i term pertains to the bipar-

tition i: N—i.

V. APPLICATION: TELEPORTATION OF LARGE
QUANTUM STATES VIA SMALL QUANTUM CHANNELS

As an application of our results of concatenated telepor-
tation we consider the problem of sending large quantum
states (say of dimension D) using small quantum channels
designed to teleport states of lower dimensions (say d<D).
A simple instance of the problem applies for the case that
Charlie wants to teleport a three-dimensional pure state

|¥) = ap|0) + a|1) + ay|2) (54)

with fidelity, say, f;,. However, Alice and Bob can only tele-
port qubits, i.e., they have only qubit-teleportation channels;
entangled states that are in 2®2. Surely Alice and Bob can-
not directly teleport the state of Charlie. A solution, however,
lies in Charlie being able to map, in principle, his qutrit onto
a state of two qubits. For example,

|\P]>=a0|00>+a1|01>+a2|10>, (55)

following which Alice and Bob can teleport each qubit via
their qubit-teleportation channels. It is clear that in this case
two-qubit-teleportation channels suffice to teleport the com-
plete quantum state. If we assign fidelities f;,f, for the re-
spective qubit-teleportation channels, then certain conditions
must be satisfied by the channel fidelities to attain an overall
teleportation fidelity f.

Our results show that if Charlie wants to maximize the
fidelity the optimal mapping is the one with the least en-
tanglement. Clearly in this case one cannot have a two-qubit
product state representing the three-qubit state of Charlie.
Thus the two-qubit state must be entangled but minimally so.
It is evident that there are many possible mappings of the
state (54) onto a pure entangled state of two qubits [one of
the mappings is (55)]. An example of an alternative mapping
is the state

|\P2>=a0|01>+a1|10>+a2|11>. (56)

With respect to quantum information, the states (55) and (56)
carry the same amount of information. However, one can
easily check that the entanglement of the two mappings is
different which implies E(V,) # E(¥,), where £ is an en-
tanglement measure. Therefore, one has to choose the one
mapping which provides the least entanglement, i.e.,
min{E(¥,),E(WV,)}. Of course, these two mappings are not
the only possibilities.

In a general instance of the problem, the input state to be
teleported is a D-dimensonal quantum state and the telepor-
tation channels can teleport quantum states of dimension d
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(qudit), d<D. The first step is to map the D-dimensional

state onto a state of N qudits where N= [loi'o ~|. Note that

after such a mapping the N-qudit state may be entangled. The
teleportation of this N-qudit state requires N teleportation
channels. This is essentially an optimizing problem where
fidelity must be optimized over all possible mappings. This is
because different mappings will lead to different entangle-
ment in the mapped states without changing the information
content. However, one should choose a mapping that mini-
mizes the entanglement of the mapped state.

VI. CONCLUSION

We have presented an in-depth analysis of quantum tele-
portation of composite systems via mixed entangled states.
In the case of partial teleportation, a subset of the state is
teleported, and fidelity is identified with how well the entire
state (the teleported component and the unteleported com-
ment) is preserved by teleportation. In the case of concat-
enated teleportation, the entire state is teleported albeit after
segmenting it in states in smaller Hilbert spaces and tele-
ported “piece by piece.”

Our analysis produces exact expressions for the fidelity of
teleportation in both cases. Furthermore we obtain strict up-
per and lower bounds on exact fidelity and prove that, for a
large-dimensional system, (F)— Flower bound- AN intuitive
picture of the expression of the multichannel fidelity can be
given by expanding the initial set of Werner states, thus fi-
delity is simply a convex sum of the fidelities given by vari-
ous possibilities.

The fidelity is a function of the concurrences for all bi-
partitions of the state; thus concatenated teleportation, pro-
vides an operational context for employing / concurrence.
Our analysis presents a couple of interesting challenges that
will be considered in a future work. One issue concerns hy-
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bridization of qudits so that a multiqudit state, with each
qudit of d dimensions, can be converted to a multiqudit state,
with each qudit of d’ <d qudits. Although quantum gates on
hybrid qudits have been studied [21], actual conversion be-
tween qudits of different dimensions, which would be
needed for concatenated quantum teleportation, has not yet
been studied.

Another issue concerns optimal performance of concat-
enated teleportation. In concatenated teleportation, Alice and
Bob employ parallel channels for teleporting a large state
through small channels. We assumed that states in each of
the channels are uncorrelated and unentangled with each
other, and the generalized Bell state measurements on each
channel are assumed to be independent of each other. At the
other extreme, the entanglement resoures for all channels
could be entangled and collective Bell measurements are
made over all channels; this approach could take us back to
the case of full teleportation of the state with unit fidelity. It
would be interesting to explore the relaxation of our assump-
tions of independent channels and distinct Bell state mea-
surements and observe the improvement of fidelity, as well
as ascertain the separate powers of collective measurements
vs entangled channels.

In summary we have significantly extended studies of
quantum teleportation to partial teleportation and concat-
enated teleportation with exact results and bounds for fidel-
ity. Moreover this analysis opens up promising new areas of
investigation and may ultimately lead to improved teleporta-
tion for ‘large’ states through ‘small’ channels.
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APPENDIX

In this Appendix we explicitly derive the expression of fidelity for the general case of concatenated teleportation where a
N-qudit pure state is teleported via N teleportation channels. The fidelity of the ith Werner state is f;, and the mixing parameter
is x;. Let the density matrix corresponding to the N-qudit input state be |W){W|=0. Let the teleported density matrix be €. It

can be expressed as

N N N
1 N _ _
Q:l}xia+ d—]vg(l—xi)i(ii)l]li+§ 1, @ o 1>) al H. X; +(w,9>®1ﬁg{} dN‘ H (1-x,)
. . - i#k ot
= (l X, )(1 )C) _he XX
+ E (1, w%z))# H +(wk1)®ﬂf®¢1\lld}2 dﬁlz H (1-x)
k=1
k<1 l#:k[ H&kl
N ! N
XXXy
+ k12—1 E(lklm(g w#kzi))(l x) (1 =2x) X (1-x,) H X; +(wklm {@ggzi}) le3 X H (I=x) |+
k<l<m i # klm .
H (1 _xj) N H X N
_o) J=1e8) _oy k=lg}
+% (155, ® 0 ;N{g?)— X H. X+ (%)) @ 1708) e X Hl (1-x) (A1)
8 i # {g} i # {g}
where (a) {g} stands for a set of k qudits i,j,...,p with i<j<,...,<p where k=N/2 (N even), N-1/2 (N odd) (b) for
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example, w 1 is the reduced density operator of N—2 qudits

excludlng qudlts k and [. Note that w #)d—wg) and (j,)dm

—w,(j and so on due to Schmidt decomposition across every
bipartite partition.

The fidelity is computed using the formula

F=(¥|Q|¥) (A2)
and is given by
N Ly N
F=llx+=lT0-x)+ X Tr(w{")>G{"
i=1 dicy k=1
N N
2 Te)’GE+ X Tr(wf) Gt e
kl=13k<l kdm=1
k<Il<m
(A3)

where
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N
1-x
G'=—= 1l x+ NlH(l X, (Ad)
d i=1,i#k d
t#k
N
(l_xk)(l_xl)
Gil=—— 5 ST«
i=1 i=1
i # k1 i # k1l
(A5)
(1-x)(-x)(1-x,) 13
Gih= S L
liklm
XXX N
+ﬁ Hl (1-x,), (A6)
i#;c,l,m

etc. The total number of indices is constrained by the pos-
sible bipartitions.
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