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Trellises play an important theoretical and practical role for classical codes. Their main utility is to devise
complexity-efficient error estimation algorithms. Here, we describe trellis representations for quantum stabi-
lizer codes. We show that they share the same properties as their classical analogs. In particular, for any
stabilizer code it is possible to find a minimal trellis representation. Our construction is illustrated by two
fundamental error estimation algorithms.
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I. INTRODUCTION

Since the discovery of efficient quantum algorithms for
solving hard classical problems, many efforts have been de-
voted to building quantum processing devices. While small-
scale prototypes are readily available, scalability remains a
practical issue because of the extreme sensibility of quantum
devices to external noise. Fortunately, theoretical advances,
such as the discovery of error-correction schemes and fault-
tolerant implementations, have paved the way for quantum
computing. One way of building quantum codes is through
the stabilizer formalism �1,2�. An �n ,k� stabilizer code pro-
tects k qubits by encoding them into an n-qubit register. The
error recovery procedure involves the measurement of a syn-
drome �i.e., a vector in F2

n−k�, which is used to partially dis-
criminate the actual error E from all possible ones. The role
of the error model, and in general of any a priori information
about E, is to allow further discrimination in order to find the

most likely guess Ê. While one can imagine computing the
likelihood of all possible errors compatible with the mea-
sured syndrome, such a method is impractical when codes
are large. This is because there are 2n+k such elements. This
problem is well known in classical coding theory, but was
rightfully ignored in the quantum case as block codes that
can be physically implemented have extremely small length.
However, with the development of quantum communication
and the advent of other coding strategies, this shall no longer
be the case.

In classical coding theory, one often relies on a graphical
representation of the code, called a trellis, to perform error
estimation. For instance, trellises yield many complexity-
efficient error estimation schemes for memoryless channels
as well as the means to estimate the noise parameters. In
particular, it can be used to calculate with linear complexity
the most likely error for a convolutional code of bounded
memory over any memoryless channel. In this paper, we
apply general results concerning group codes for classical
communication �3� to show that a similar representation is
available for quantum stabilizer codes. Two error estimation
schemes that exploit trellises are introduced for memoryless
channels. We show that the complexity of these algorithms is
related to the number of trellis vertices, and provide a con-
struction of a trellis that minimizes this quantity. One of
these algorithms achieves the performance of an algorithm

for convolutional codes that was proposed in �4�, but with a
significantly lower complexity.

II. STABILIZER CODES: ELEMENTARY FACTS

In the rest of this paper, some familiarity with quantum
computation is assumed. This section provides a brief intro-
duction to stabilizer codes; for a more detailed introduction,
the reader is redirected to �1,2,5� and references therein.

In what follows, without loss of generality, the quantum
register of interest has n physical qubits.

Preliminaries. Stabilizer codes rely heavily on properties
of Gn, the n-qubit Pauli group. This group is defined in terms
of the Pauli matrices for a single qubit: I= � 1 0

0 1
� ,X= � 0 1

1 0
� ,Y

= � 0 −i
i 0

� ,Z= � 1 0
0 −1

�. The group Gn is the multiplicative group
generated by the n-fold tensor products of single-qubit Pauli
matrices.

For our purpose here, phases are irrelevant and it will be
more convenient to work with the effective Pauli group
Gn�Gn / �±I�n ; ± iI�n� �see �2��. The elements of G1 will be
denoted by I��I�, X��X�, Y � �Y�, and Z� �Z�. Here, �P�
denotes the equivalence class of P�Gn, that is, �±P , ± iP�.
Note that Gn is Abelian, so that we will use the additive
notation for its group operation. Since Gn�G1

n, we often
view P�Gn as an n-tuple �Pi�i=1

n with entries in G1.
The crucial fact about Gn is that any pair of elements P ,Q

either commutes or anticommutes. This leads to the defini-
tion of an inner product “�” for elements of Gn such that
�Pi�i� �Qi�i=�iP

i�Qi mod 2. Here, Pi�Qi=1 if Pi�Qi, Pi

� I, and Qi� I; and Pi�Qi=0 otherwise. One can then check
easily that P ,Q�Gn commute if and only if �P�� �Q�=0.

Error model. Stabilizer codes can accommodate for a
broad class of channels. For simplicity, only memoryless
Pauli channels will be considered, although the tools pre-
sented in this paper extend to other memoryless channels.
Memoryless Pauli channels act on the whole n-qubit register
as �→����= ��1 � �2 � ¯ � �n����. Above �i is a one-
qubit channel whose action on �, a single-qubit density op-
erator, is given by �i���=�E��I,X,Y,Z�Pri��E��E�E, with Pri�·�
a probability distribution over G1.

Definition of the code subspace. The code subspace C of
an �n ,k� stabilizer code is the largest subspace stabilized by
the action of S, an Abelian subgroup of Gn. For the code to
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protect k qubits using n, i.e., to be of rate k /n, S must be
generated by n−k independent operators S j, and be such that
−I�n�S. The code subspace is equivalently defined by n
−k eigenvalue equations: 	�
�C if and only if " j
� �1, . . . ,n−k� ,S j	�
= 	�
.

To study the main properties of these codes, phases are
again irrelevant. More precisely, it is sufficient to represent
the set of generators of the stabilizer group �S j� j by the set of
equivalence classes �Sj� j where Sj = �S j�, which generate a
subgroup S of Gn. Using a slight abuse in terminology, we
also call S the stabilizer group of the code and �Sj� j the
stabilizer set of the code.

Error estimation. The goal of error estimation is to infer
channel errors from their action on the state of the quantum
register. In the context of stabilizer codes, the necessary in-
formation is provided by the measurement of the Hermitian
operators S j.

Let E�Gn be the actual, yet unknown, quantum error
that affected the state 	�
�C. The measurement of the op-
erators S j on 	��
�E 	�
 defines a binary vector of length
n−k called the syndrome of E: s�E�� (sj�E�) j=1

n−k� 1
2 �1

− ���	S j	��
�= �Sj� �E�� j=1
n−k. Among all possible error opera-

tors F�Gn, only some of them are compatible with s�E�; i.e.,
they satisfy s�F�=s�E�. It is readily checked that they belong
to a coset of N�S�, the normalizer of S in Gn. Equivalently,
these compatible errors F are such that �F� belongs to a
coset of S�� �P�Gn : P�Q=0, "Q�S�. While the knowl-
edge of the syndrome restricts the class of errors that could
have happened during the transmission, the error model fur-
ther discriminates between these elements by assigning them
probabilities. Error recovery then uses these probabilities to

find a best guess Ê for the actual error E. For instance, maxi-
mum likelihood error estimation consists in finding a most

likely Ê compatible with the measured syndrome s�E�. Trel-
lises are both aimed at computing these probabilities and at
choosing a best guess efficiently.

III. TRELLISES FOR STABILIZER CODES

Considering the previous remarks about error estimation,
it is natural to seek a representation of cosets of S� in which
it is easy to search for their most likely element. This is the
main motivation for the definition of trellises for quantum as
well as for classical codes. In a broader context, this motiva-
tion extends to the calculation of quantities on which error
estimation is based, e.g., the likelihood function, the a pos-
teriori qubit error probability, etc.

Definition. In the rest of this section, S denotes the stabi-
lizer group of a quantum code with parameters �n ,k�, and
�Sj� j is its stabilizer set.

An n-section trellis relative to the stabilizer set �Sj� j and
syndrome s�F2

n−k is a directed multigraph with the follow-
ing properties:

�1� Its vertices can be grouped into n+1 sets Vi, with
	V0 	 = 	Vn 	 =1. The set Vi is called the ith state space of the
trellis.

�2� Its edges are directed and can be grouped into n sets
Ei. An edge e� �vw� is said to be issued at vertex v and

ending at vertex w. Edges in Ei are issued from a vertex of
Vi−1 and end at a vertex of Vi. The set Ei is called the ith
section of the trellis.

�3� An edge e�Ei bears a label l�e� such that l�e��G1.
We say that l�e� is the Pauli label of e.

�4� Each element P�Gn with syndrome s is associated to
a unique directed path �e1 , . . . ,en� such that l�ei�= Pi.

An example of a trellis is considered in Fig. 1 for the
four-qubit code with stabilizer group generated by
�XXXX ,ZZZZ� and relative to syndrome s��0, 0�.

Construction. Given a code stabilized by S, there are
many possible trellises representing the coset of S� of syn-
drome s. We provide here a simple construction for which
the number of vertices in each Vi is bounded by 2n−k. In
analogy with classical codes, this trellis will be called the
Wolff trellis of the code relative to the stabilizer set �Sj� j and
to the syndrome s.

For every i� �0, . . . ,n�, let �i be a mapping from Gn to
itself defined by �i�P1 , P2 , . . . , Pn�= �P1 , . . . , Pi , I , . . . , I�
�with the convention that �0�P1 , P2 , . . . , Pn�= �I , . . . , I��. Let
Ps be an arbitrary, but fixed, element of Gn with syndrome s.
For every i� �0, . . . ,n�, Vi is a subset of F2

n−k defined by
�(Sj ��i�P�) j=1

n−k : P� Ps+S��. A vertex v�Vi is connected to
vertex w�Vi+1 with an edge labeled by E if there exists P
� Ps+S� such that v= (Sj ��i�P�) j=1

n−k, w= (Sj ��i+1�P�) j=1
n−k,

and Pi+1=E.
An example of a trellis obtained in this way is given in

Fig. 2 for the five-qubit code relative to the stabilizer set
�ZXIII ,XZXII , IXZXI , IIXZX� and to syndrome s��0, 0, 1,
1�.

Since the Vi’s are obviously binary affine subspaces, it
follows that their cardinality is a power of 2. Let �i� log2	Vi	.
The �i’s are easily upper-bounded by bringing in the follow-
ing quantities. Let Sstart�i be the subset of operators of �S j� j

that have at least one of their i-first components different
from I. Let Send�i be the subset of operators of �S j� j that have
all their last n− i components equal to I. Observe that
Sj ��i�P�, the jth coordinate of the elements of Vi satisfies
the following properties: �i� equal to zero when S j does not
belong to Sstart�i, and �ii� equal to the jth coordinate sj of the
syndrome for S j �Send�i. This implies that the dimension of
the affine subspace Vi is at most 	Sstart�i	− 	Send�i	. In other
words, we have the following.

Lemma 1. �i� 	Sstart�i	− 	Send�i	.

FIG. 1. �Color online� Trellis representation for the four-qubit
code and syndrome �0,0�. Here, 	V0 	 = 	V4 	 =1 and 	V1 	 = 	V2 	
= 	V3 	 =4.
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In particular, this lemma can be applied to quantum con-
volutional codes to show that they have trellises with
bounded state-space size. Following the definition of �4,6�,
an �n ,k� stabilizer code is convolutional with parameters
�	 ,
� if there exists a set of generators �Sj� j of its stabilizer
group S with an 	-qubit shift invariance property. More pre-
cisely, the values Sj

i must be equal to the entries Hj
i �G1 of

an infinite matrix H that satisfies Hj+	−

i+	 =Hj

i for every i , j. In
such a case, all 	Sstart�i	− 	Send�i	’s are obviously upper
bounded by a common constant.

Minimality. As will be seen below, the complexity of
many useful algorithms using trellises is linear in their num-
ber of vertices. This raises the issue of finding a trellis that
minimizes this quantity. If one is willing to change the sta-
bilizer set for the code in order to put it in a trellis-oriented
form, then the Wolff trellis is minimal. Indeed, the trellis
obtained in this way does not only minimize the number of
vertices but also the state-space profile. As for classical trel-
lises, we define the state-space profile of the trellis of an
�n ,k� code by the �n+1�-tuple ��0 ,�1 , . . . ,�n�. In other
words, we are going to prove that the Wolff trellis applied to
a stabilizer set in trellis-oriented form minimizes each �i in-
dividually. Without loss of generality, we now assume that
the trellis is associated with the syndrome s= �0, . . . ,0�.

First, we define the trellis-oriented form of a stabilizer set.
For 1� j�n−k, let c�j� and d�j� be, respectively, the posi-
tion of the first �last� component of Sj, which is different
from I. We say that the stabilizer set �Sj� j is in trellis-oriented
form if and only if for all j, �i� c�j� is a nondecreasing func-
tion, �ii� S

j�
c�j�= I for j�� j+1 and Sj+1

c�j��Sj
c�j�, and �iii� there is

at most one j�� j such that d�j�=d�j�� and in such case

Sj
d�j��S

j�
d�j��. Note that any stabilizer set �Sj� j can be put in

trellis-oriented form by permuting and adding the generators.
Second, we show a lower bound on �i. For an �n ,k� sta-

bilizer code given by the stabilizer set �Sj� j, and for i
� �0, . . . ,n�, let Ci

f �the future subgroup� be the subgroup of
S� whose elements have their first i components equal to I,
and let Ci

p �the past subgroup� be the subgroup of S� whose
elements have their last n− i components equal to I. We then
have the following lemma.

Lemma 2. �i�n+k−log2	Ci
p	−log2	Ci

f	.
Proof. Let v�Vi, and Cv be the set of elements of S� that

correspond to a path in the trellis associated with the all-zero
syndrome and passing through v. Let P and F be the set of
all paths that go from v0 to v �and from v to vn, respectively�.
Let Q be a fixed element of Cv and qPqF its corresponding

path in the trellis, where qP�P and qF�F. By construction
of the trellis, we have 	Cv	= 	P 	 	F	. Note that any path p
�P can be extended into a path pqF from v0 to vn. Finally,
observe that such a path pqF is associated with an element of
S� that belongs to the coset Q+Ci

p and therefore 	P	� 	Q
+Ci

p	= 	Ci
p	. Similarly 	F	� 	Ci

f	, which yields 2n+k= 	S�	
=�v�Vi

	Cv	� 	Vi		Ci
p		Ci

f	. This gives the desired bound on �i

by taking the logarithm. �

Finally we conclude with the following theorem.
Theorem 1. The Wolff trellis achieves the previous bound

on �i for each i when the stabilizer set is in trellis-oriented
form.

Proof. From Lemma 1 we know that �i� 	Sstart�i	
− 	Send�i	. Note that Ci

p is the subgroup of Gn with I on their
n− i last components and orthogonal to all elements of
Sstart�i. This implies log2	Ci

p	=2i− 	Sstart�i	. Using a similar
argument, we get that log2	Ci

f	=2�n− i�− �n−k− 	Send�i	�.
Adding these �in�equalities, we conclude that �i+log2	Ci

p	
+log2	Ci

f	�n+k. Since Lemma 2 gives the reverse inequal-
ity, we actually have �i+log2	Ci

p	+log2	Ci
f	=n+k. �

IV. USING TRELLISES OF STABILIZER CODES

Min-Sum (Viterbi) algorithm. The Min-Sum algorithm is
certainly one of the most widely employed algorithms that
benefits from the trellis representation of classical codes.
Here, we present a Min-Sum algorithm for stabilizer codes
that computes the most likely error for memoryless Pauli
channels given a measured syndrome s by using a trellis
associated with the code.

Consider an �n ,k� stabilizer code with stabilizer set �Sj� j.
Define the likelihood of P�Gn as �i=1

n log Pri�Pi�. Consider
the n-section trellis for this quantum code associated with the
syndrome s. The naming conventions for the vertices and
edges are set as in previous sections. For each edge ei of Ei,
define its weight wt�ei�=−log Pri(l�ei�). By construction, the
sum of weights along the path in the trellis that represents P
is equal to the opposite of the likelihood. The task that con-

sists in finding a most likely error Ê�Gn with syndrome s is
thus equivalent to finding a lowest weight path �e1 , . . . ,en�
in the trellis associated with s.

This can be done by constructing recursively some sets Ci
of lowest weight error candidates. More precisely, Ci con-
tains couples �c ,w� where c is a path issued from v0 that
ends on a vertex of Vi and where w=wt�c�.

FIG. 2. �Color online� Trellis for the five-qubit code defined by the stabilizer set �ZXIII ,XZXII , IXZXI , IIXZX� and for the syndrome
s= �0011� obtained through the second construction. Here 	V0	= 	V5	=1, 	V1	= 	V2	= 	V3	=4, and 	V4	=2.
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Min-Sum algorithm

Initialization: C0ª ��v0 ,0�� and Ciª� for i�1

Main step:

for i from 1 to n do

for all v�Vi do
Put in Ci the pair (c� ,wt�c��), where c� is a path of minimum
weight �ties are broken at random� among all paths that �1�
end in v; �2� have their i−1 first vertices given by a path c of
Ci−1.

Note that the time complexity of this algorithm is linear in the
number of vertices in the trellis.

Sum-Product algorithm. While the Min-Sum finds a most
likely error compatible with the observed syndrome s, the
Sum-Product aims at calculating marginal error probabilities
for physical qubits. That is, pi�P��Pr �error at qubit i= P 	s�,
where P�G1. By definition of the trellis, this probability is
equal to the probability that a path �ei�i=1

n from v0 to vn is
such that l�ei�= P.

The Sum-Product algorithm computes for each vertex v
of the trellis associated with s a “forward” probability f�v�
and a “backward” probability b�v�. Both are then used to
calculate the marginal probabilities pi�P�.

Sum-Product algorithm

Initialization: f�v0�ª1 and b�vn�ª1; and f�v�ª0 and b�v�ª0
for all other vertices.

Forward pass:

for i=1 to n do

for all v�Vi do f�v�ª�w�Vi
−�v�f�w�Pri(l�wv�)

Fiª�v�Vi
f�v�

for all v�Vi do f�v�ª f�v� /Fi

Backward pass:

for i=n−1 down to 0 do

for all v�Vi do b�v�=�w�Vi
+�v�b�w�Pri+1(l�vw�)

Biª�v�Vi
b�v�

for all v�Vi do b�v�ªb�v� /Bi

Final pass:

for i=1 to n do

for all P�G1 do

pi�P�ª�vw�Ei�P�f�v�b�w�Pri�P�

Above, �1� Vi
−�v� is the set of vertices w in Vi−1 that are adjacent to

v; �2� Vi
+�v� is the set of vertices w in Vi+1 which are adjacent to v;

and �3� Ei�P� is the set of edges between Vi−1 and Vi that bear the
Pauli-label P.

Once again, the practical relevance of this algorithm is
due to the fact that its complexity is linear in the number of
vertices in the trellis.

Computing the weight enumerator polynomial. The
weight enumerator polynomial is a trivariate polynomial
given by A�x ,y ,z���0�u,v,w�nau,v,wxuyvzw, where
au,v,w� 	�P�N�S� : 	P	X=u , 	P	Y =v , 	P	Z=w�	 and where 	P	E
denotes the number of coordinates of P that are equal to E. It
is possible to extract from A�x ,y ,z� a lot of useful informa-
tion, e.g., bounds on the fidelity of the recovered state after
decoding �7�. As for classical codes, the weight enumerator
can be computed with linear complexity in the number of
vertices of the trellis. For this purpose, intermediate polyno-
mials Av�x ,y ,z� are calculated for each vertex of the trellis
associated with s= �0, . . . ,0�. Also, define the polynomials
QI�x ,y ,z��1, QX�x ,y ,z��x, QY�x ,y ,z��y, and
QZ�x ,y ,z��z.

Computation of A�x ,y ,z�

Initialization: Av0
�x ,y ,z�=1

Main step:

for i from 1 to n do

for all v�Vi do

Av�x ,y ,z�ª�w�Vi
+�v�Aw�x ,y ,z�Ql�wv��x ,y ,z�

A�x ,y ,z�ªAvn
�x ,y ,z�

Above, Vi
−�v� is the set of vertices w in Vi−1 that are adjacent to v.

The proof of correctness for these three algorithms fol-
lows from the correctness of the more general Min-Sum and
Sum-Product algorithms presented in �8�.

V. CONCLUSION
From a practical point of view, we have proposed a defi-

nition for the trellis of a stabilizer code together with two
constructions and three algorithms that take advantage of this
representation. Following the same path, several algorithms
for classical codes running on trellises can be generalized to
the quantum case. Among them, estimation of noise param-
eters �or equalization� seems a promising avenue for enhanc-
ing the performance of quantum optics fiber communications
using near-future quantum technology.
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