PHYSICAL REVIEW A 74, 032301 (2006)

Assessment of a quantum phase-gate operation based on nonlinear optics
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We analyze in detail the proposal for a two-qubit gate for travelling single-photon qubits recently presented
by Ottaviani et al. [Phys. Rev. A 73, 010301(R) (2006)]. The scheme is based on an ensemble of five-level
atoms coupled to two quantum and two classical light fields. The two quantum fields undergo cross-phase
modulation induced by electromagnetically induced transparency. The performance of this two-qubit quantum
phase gate for travelling single-photon qubits is thoroughly examined in the steady-state and transient regimes,
by means of a full quantum treatment of the system dynamics. In the steady-state regime, we find a general
trade-off between the size of the conditional phase shift and the fidelity of the gate operation. However, this
trade-off can be bypassed in the transient regime, where a satisfactory gate operation is found to be possible,

significantly reducing the gate operation time.
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I. INTRODUCTION

A promising system for quantum computation is to use
single photons to encode quantum information [1]. This is
due to the photon’s robustness against decoherence and the
availability of single-qubit operations. However, it is difficult
to realize the necessary two-qubit operations since the physi-
cal interaction between photons is very small. Linear optics
quantum computation [2] and nonlinear optical processes in-
volving few photons have been proposed to circumvent this
problem. The first is a probabilistic scheme implicitly based
on the nonlinearity hidden in single-photon detectors, while
the second is based on the enhancement of photon-photon
interaction either in cavity QED configurations [3] or in
dense atomic media exhibiting electromagnetically induced
transparency (EIT) [4]. In this latter case, optical nonlineari-
ties can be produced when EIT is disturbed, either by intro-
ducing additional energy level(s) [6,7], or by mismatching
the probe and control field frequencies [8,9].

The scope of this paper is to assess the performance
of a two-qubit quantum phase gate (QPG) for travelling
single photon qubits [10-14], based on the cross-Kerr
nonlinearity which is generated in a five-level atomic me-
dium. In a QPG, one qubit gets a phase conditional to the
other qubit state according to the transformation [15,16]
|i)1]/)2—exp(igh) |i)1] /), where {i,j}=0,1 denote the logi-
cal qubit bases. This gate is universal when the conditional
phase shift (CPS)

b= b1+ doo— dro— Do (1)

is nonzero, and it is equivalent to a controlled-NOT (CNOT)
gate up to local unitary transformations when ¢=1 [15,16].
Most of the literature focused only on the evaluation of the
CPS and on the best conditions for achieving ¢= [10-14],
while the gate fidelity, which is the main quantity for esti-
mating the efficiency of a gate, has been evaluated in the full
quantum limit in Ref. [17]. Here we provide the details of the
calculation of the fidelity and the CPS of Ref. [17], which
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showed the presence of a general trade-off between a large
CPS and a gate fidelity close to one, hindering the QPG
operation, in the stationary state. However, we shall see that
this trade-off can be partially bypassed in the transient re-
gime, which has never been considered before in EIT situa-
tions, still allowing a satisfactory gate performance.

The qubits are given by polarized single-photon wave
packets with different frequencies, and the phase shifts ¢;;
are generated when these two pulses cross an atomic en-
semble in a five-level M configuration (see Fig. 1). The
population is assumed to be initially in the ground state |3).
From this ground state, it could be excited by either the
single-photon probe field, with central frequency w, and
coupling to transition |3)«[2), or by the single-photon trig-
ger field, with central frequency w, and coupling to transition
|3) <= |4). We assume that the five levels are Zeeman sublev-
els of an alkali atom, and that both pulses have a sufficiently
narrow bandwidth. In this way, the Zeeman splittings can be
chosen so that the atomic medium is coupled only to a given
circular polarization of either the probe or trigger field, while
it is transparent for the orthogonally polarized mode, which
crosses the gas undisturbed [11]. As a consequence, the logi-
cal basis for each qubit practically coincides with the two
lowest Fock states of the mode with the “right” polarization,
|0,y and [1;) (j=p.,r), while the “wrong” polarization modes
will be neglected from now on.

A classical pump field, with frequency w; and Rabi fre-
quency €, couples to the transition | 1)+« |2), while a second
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FIG. 1. Energy levels of the M scheme. (); are the Rabi frequen-
cies of classical fields, while g, , denote couplings of the quantized
probe and trigger fields to their respective transitions. J; are the
detuning of the fields from resonance.
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classical pump field, with frequency w, and Rabi frequency
Q,, couples to the transition [4)«|5) (see Fig. 1). We con-
sider a cylindrical, quasi-1D, atomic medium with the two
classical pump beams propagating along its axis, collinear
with the two quantum fields in order to avoid Doppler broad-
ening. When the probe field is on two-photon resonance with
the pump field with Rabi frequency (), and the trigger field
is on two-photon resonance with the pump field with Rabi
frequency (), the system exhibits EIT for probe and trigger
simultaneously. This simultaneous EIT condition is achieved
when

51 = 62, 53 = 64, (2)
where the detunings 6; are defined by
EZ_E1= ﬁ(!)l+ ﬁél, (33.)
E2—E3: ﬁwp'f' h 52, (3b)
E4—E3= h(x)t'i' h53, (3C)
E4—E5= ﬁ (.U4+ fL 54. (3d)

A nonzero CPS occurs whenever a nonlinear cross-phase
modulation (XPM) between probe and trigger is present.
This cross-Kerr interaction takes place if the two-photon
resonance condition is violated. For small frequency mis-
match €,=38,— 3, and e€3,=35;— &, (both chosen to be within
the EIT window), absorption remains negligible and the
cross-Kerr interaction between probe and trigger photons
may be strong. The consequent CPS may become large, of
the order of a7, if the probe and trigger pulse interact for a
sufficiently long time. If the two single photon pulses enter
simultaneously the atomic medium, their interaction time #;,
is optimized when the group velocities of the two pulses are
equal, so that £, =L/v,, where v, is the common group ve-
locity of the pulses and L is the length of the gas cell. The
inherent symmetry of the scheme guarantees perfect group
velocity matching for probe and trigger whenever o,=0J,,
52: 63 and gp/Ql :gZ/Q4’ where gj:,u,j\"wj/Zﬁ EOVj (]:p,t)
is the coupling constant between the quantum mode with
frequency w; and mode volume V), and the corresponding
transition with electric dipole moment ;.

The importance of group velocity matching for achieving
a significant nonlinear phase shift was first pointed out in
Ref. [10], which suggested to use a mixture of two different
atomic species to achieve this goal. The first kind of atoms
generates XPM by means of a four-level N scheme [6], in
which however only the probe field undergoes EIT and it is
slowed down, while the second kind of atoms realizes a
three-level A scheme able to slow down the trigger pulse.
Group velocity matching is achieved by means of an accu-
rate but difficult control of the atomic densities. A different
way of achieving group velocity matching, but which is still
asymmetric for probe and trigger has been proposed in Ref.
[11], which employs a five-level M scheme similar to the one
discussed here, but with a different atomic population distri-
bution. In that case, the two group velocities can be tuned
and made equal simply by tuning the frequencies and inten-
sities of the two classical pump fields. Instead, Ref. [12]
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FIG. 2. (Color online) A schematic plot of the assumed single-
photon pulse propagation through the gas cell of length L and di-
ameter d. The pulse length is assumed to coincide with the cell
length L, and the pulse waist w is assumed to be of order of cell
diameter d.

considered a six-level scheme in which probe and trigger are
affected by EIT and XPM in a symmetric fashion, so that the
corresponding group velocities are equal by construction.
The present proposal achieves group velocity matching just
in the same way (see also Ref. [13], where a four-level tripod
system, symmetric between probe and trigger, has been
proposed for XPM).

The paper is organized as follows. In Sec. II we describe
the model used in the remainder of the paper. Section III
shows the results of a perturbative calculation for the CPS.
These are used as a motivation to pass to a density matrix
based calculation in Sec. IV, describing a QPG operation in a
steady state. Then, the transient regime is explored in Sec. V,
while in Sec. VI a scheme for the experimental verification
of the QPG operation is discussed in detail. Conclusions are
given in Sec. VIL

II. MODEL

In this section, we present the model we have adopted for
a full quantum description of the interaction of the two
single-photon wave packets with the atomic medium pos-
sessing the level structure outlined in Fig. 1. To this end, we
make the following two assumptions which, even though not
simple to realize experimentally, are more technical than
physical in nature:

(1) We assume perfect spatial mode matching between
the input single-photon pulses entering the gas cell and the
optical modes naturally excited by the driven atomic me-
dium, and which are determined by the geometrical configu-
ration of the gas cell and of the pump beams [18]. This
allows us to describe the probe and trigger fields with the
right polarization in terms of single travelling optical modes,
with annihilation operators a, .

(2) We assume that the pulses are tailored in such a
way that they simultaneously enter gas cell and completely
overlap with it during the interaction (see Fig. 2). This means
that their length (compressed inside a medium due to group
velocity reduction) is of the order of the cell length L and
their beam waist is of the order of the cell radius. In this way,
the two pulses interact with all N, atoms in the cell at once,
and moreover, one can ignore spatial aspects of pulse
propagation.

With these assumptions, and neglecting dipole-dipole inter-
actions, the interaction picture Hamiltonian may be written
as
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H= h 6123‘11 + ﬁ 623‘224" h 535444‘ h 634555 + ﬁ Q]\/]Va(gzl
A T rad A ., .nA
+815) + f g, VN,(G,S2; + Ssza;) + f g NN, (G,S43
A ’/— a ~
+ 5346111) + T QN (Ss5+ Ss4), (4)

where we have defined the collective atomic operators

. 1 &
5k1=?2(fk1, k#1=1,....,5, (52)
VN i=1

Ng

S;kk= E U;;k’ (Sb)

with oJ,;IE |k)(I| being the operator switching between states
k and [ of the ith atom. The initial state of the system corre-
sponds to a probe and a trigger single-photon pulse with
generic polarization, simultaneously entering the medium in
which all the atoms are initially in state |3). Since we con-
sider only the polarization mode interacting with the me-
dium, both for the probe and the trigger, the initial state can
be written as

Na
|¢in> = ?1|3>l ® (C00|0p> ® |Ot> + COI|Op> ® |1t> + CIO|]p> ® |0t>
+ep|l,) @ 1)), (6)

Due to the above assumptions, the passage of the two pulses
through the atomic medium of length L corresponds to the
time evolution of this state, for a time #;,,=L/v,, according to
the master equation [5]

N
=__[HP] % 221(20'kkpo'kk Thap =PI},
J=
+3 ”‘Zzlcofdpo@ olialp-palial), ()
J=

including not only the coherent interaction described by the
Hamiltonian of Eq. (4), but also the spontaneous emission
from the excited states /=2,4 to the ground states k=1,3,5
(4 denotes the corresponding decay rate) and the dephasing
of levels |k), k=1,2,4,5, with dephasing rate 7. Typically
the dephasing rates are much smaller than the decay rates,
Y>> Vi VKL

Since the initial state of Eq. (6) contains at most two
excitations, the coherent time evolution driven by Eq. (4) is
simple and restricted to a finite-dimensional Hilbert space
involving few symmetric collective atomic states. In fact,
each component of the initial state of Eq. (6) evolves inde-
pendently in a different subspace. The component with no
photon is an eigenstate of H and does not evolve. The
®%413);/0,)®|1,) component evolves in a three-dimensional
Hilbert space which it spans together with the two states
|eio’0)) and |e§0’0)). Here, we have defined the symmetric
collective states

PHYSICAL REVIEW A 74, 032301 (2006)

Nq

n,.n l
R

’3Nu> ® |np> ® |nl>,
NIV i=1

(8)

where r=1,2,4,5. In a similar fashion, the component with
only one probe photon evolves in a three-dimensional Hil-
bert space spanned by the three states ®74[3);|1,)®]0,),
e 9 and e 9. The component with one probe and one
trigger photon evolves in the five-dimensional subspace
spanned by the four collective states |e(O D
and |€51 0y and the state @ [3),]1,)®]1,).

Decoherence effects, and more spe01ﬁcally spontaneous
emission from each atom complicates this dynamics. How-
ever, we are in the weak excitation limit where, for [# 3,
(0)y=N.'<1, as shown by the fact that the Hamiltonian
dynamics involve only the symmetric atomic states of the
form of Eq. (8). This limit allows a drastic simplification of
the effective time evolution. Following Duan et al. [19], we
can introduce Fourier transforms of the individual atomic

operators skl—E “ 10" e’“‘/Na/\Na, where Skz—Skz are the col-
lective operators deﬁned in Eq. (5a). The sum over the atoms
in Eq. (7) then transforms to the sum over the collective
atomic modes with index w. In the weak excitation limit, the
operators s; approximately commute with each other. This
means that they represent independent collective atomic
modes, and one can trace over the u# 0 modes, so that the
spontaneous emission term in the master equation becomes

%‘4 %(251(11)521 = S1Sup = PSiSk). )
where the sum is now over the six “collective” spontaneous
decay channels only, each characterized by the single-atom
decay rate 7yy,. A similar argument applies to the dephasing
term in the master equation (7). In fact, if we restrict to the
subspace of the symmetric collective states of Eq. (8) involv-
ing only single atomic excitations, we can approximate in the
dephasing terms of the master equation,

> YkkE TPl = 2 YieeS kP Sk (10)

k j=1

where S, is given by Eq. (5b). Using Eqgs. (9) and (10),
the master equation of Eq. (7) in the weak excitation limit
becomes

Sikp = PSix)

. i Yik no &
p=- %[H,P] + %(Zskkpskk -
p

Vil no & &1 at &
+ 2 20 28upSy = SiSup = pSiiSu), (11)
kl

that is, it involves only the operators of the collective atomic
mode with index w=0. This actually means that the single
photon probe and trigger pulses excite only a restricted num-
ber of collective atomic states, so that the atomic medium
behaves as an effective single five-level atom, with a collec-
tively enhanced coupling with the optical modes g J\Nw but
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with single-atom decay rates 7,,;, dephasing rates v,;, Rabi
frequencies ();, and detunings ;.

Spontaneous emission causes the four independent Hilbert
subspaces corresponding to the four initial state components
to become coupled. Moreover, the “cross” decay channels
|4)—|1) and |2) —|5) couple the above-mentioned collective
' )> (populated if
¥41#0), and |eg ) (populated if ,5#0).
Therefore Eq. (ll) actually descnbes dynamics in a Hilbert
space of dimension 18, which we have numerically solved in
order to establish the performance of the QPG. Notice that,
due to the combined action of the cross—decay channels and
of the Hamiltonian (4), the states |e1 )> and
|e(01 ) are coupled also to doubly exated atonnc collectlve
states without photons which are neglected by our treatment.
However, as we shall see below in the paper, a good QPG
performance is possible only when spontaneous emission
events are rare. Under this condition, the probability to popu-
late these doubly excited atomic collective states during the
atom-field interaction is completely negligible, and therefore
our model based on the effective single five-level atom de-
scription provided by Eq. (11) is essentially correct.

In summary, the model outlined above relies on the
single-photon nature of the excitations. In this case, the col-
lective operators (5) effectively switch between the states
making the superposition |;,) (6), and the symmetric collec-
tive states |e£"”’”')> (8). This is central to the reasoning leading
to the effective master equation (11).

To characterize the QPG operation, we calculate the CPS
¢ of Eq. (1) and the fidelity of the gate. The accumulated
CPS ¢ as a function of the interaction time #;,, is obtained by
using the fact that the phase shifts ¢;; of Eq. (1) are given by
combinations of the phases of the off-diagonal matrix ele-
ments (in the Fock basis) of the reduced density matrix of the
probe and trigger modes, py(t)=Tryoms[p(1)].

The gate fidelity is given by [16]

(0, 1)

F (1) = ha(0)] p 0| 1a(0)), (12)

where

|4a(1)) = coo explioo(7in) 110,,0,) + co1 explihy; (1]]0,, 1
+cygexplicyo(n)][1,,0.) + ¢y explip (D][1,,1,)
(13)

is the ideally evolved state from the initial condition (6), with
phases ¢;,(t) evaluated from p(t) as discussed above. The
overbar denotes the average over all initial states (i.e., over
the c;;, see Poyatos et al. [20]). The above fidelity character-
izes the performance of the QPG as a deterministic gate.
However, one could also consider the QPG as a probabilistic
gate, whose operation is considered only when the number of
output photons is equal to the number of input photons. The
performance of this probabilistic QPG could be experimen-
tally studied by performing a conditional detection of the
phase shifts, and it is characterized by the conditional fidelity
F*(t), which will be discussed in Sec. IV.
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III. PERTURBATIVE REGIME

The conditional fidelity is always larger than the uncon-
ditional one, but they become equal (and both approach 1)
for an ideal QPG in which the number of photons is con-
served and all the atoms remain in state |3). This ideal
condition is verified in the limit of large detunings 8;>> v,
so that spontaneous emission is significantly suppressed
and can be neglected, and very small couplings g;VN,<(};.
In this limit, each component of the initial state of Eq. (6)
practically coincides with the dark state of the four indepen-
dent Hamiltonian dynamics discussed in Sec. II. The system
with the initial state containing zero probe and trigger pho-
tons does not evolve, i.e., stays in the initial state
®%4(3);,10,)®10,) all the time.

The subsystem containing one probe and zero trigger pho-
tons as the initial state evolves according to a reduced three-
dimensional Hamiltonian, which in the basis formed by the
states @74 [3),[1,)®0,), e 0)) and |e(0 9 is given by

0 gp\Wa 0
H,=|g N, & Q (14a)
0 Q, €12

Similarly, the subsystem containing one trigger and zero
probe photons as the initial state evolves according to a re-
duced three-dimensional Hamiltonian, which in the basis

formed by the states ®74[3),(0,)®|1,), el (50’0)), is
given by
0 gN, 0
H=|g\N, & Q, (14b)
0 QO ey

Finally, the subsystem containing initially one photon each in
probe and trigger modes evolves according to a reduced five-
dimensional Hamiltonian, which in the basis formed by the
states |e(0 1 2 @[, egl’o)), and |egl’0)), is
given by

& 0 gN, 0 0

QO e, O 0 0

Hy=| g¥N, 0 0 gi\N, 0
0 0 0 s
0 0 gt\lﬁa Q4 €34

(14¢)

The phase accumulation experienced by the various compo-
nents of the quantum state of the fields will be proportional
to the eigenvalues of these matrices. The four phase shifts ¢;;
can be evaluated as a fourth-order perturbation expansion of
the eigenvalue corresponding to the dark state in each sub-
space, multiplied by the interaction time #;,.. The CPS is then
calculated as

b= ()\Hpt - )\Hp - )\H,)fim» (15)

where the N\’s denote the eigenvalues of the corresponding
reduced Hamiltonian, with )‘Hn(_’ b115 Ny — bio, }‘Hf_) bo1s
and ¢q,=0, in agreement with the generaﬁ definition of Eq.
(1). Following this procedure results in the following CPS:
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b= 8,2,83N5f1m ( 634(6%2 + Q%)
(63453—9421)(51252—9%) (61252—9%)
€€ + Qi))
T lend- ) ) 1o

This prediction is verified by the numerical solution of Eq.
(11) in the limit of large detunings and small couplings.
However the resulting CPS is too small, even for very long
intera_ction times (i.e., long gas cells), for example, for
8,\N,=0.5 MHz, €53,=1.9 MHz, ;,=65 MHz, and
6,3=1.9 GHz, we obtain a tiny CPS of only 3 X 107* radians
when 1,,=10"* s, which corresponds to L==30 km. This is
not surprising because this limit corresponds to a dispersive
regime far from EIT. In this regime, transparency is achieved
by means of a strong coupling field, producing a well-
separated Autler-Townes doublet [5]. At the same time, the
size of nonlinearity is small due to the extremely weak cou-
pling of the quantized fields to their respective transitions.
The results are, therefore, not different from those expected
from XPM in a standard optical fiber [21]. Therefore, one
must to explore the nonperturbative regime of larger cou-
plings in order to exploit the low-noise, large-nonlinearity
properties of EIT and achieve a satisfactory QPG operation.

IV. STEADY-STATE QPG OPERATION

A large amount of work exploring EIT-based nonlinear
optical phenomena considers the steady state of a generic
ElIT-based system as being the natural state in which to pre-
dict and test different phenomena [6,7,9,11]. We shall see in
this section that it is not possible to achieve a satisfactory
QPG performance in such a steady-state regime.

In this section, we analyze the performance of the QPG at
the steady state. To this end, we consider two different pa-
rameter regimes: (i) the regime of long interaction times, a
natural extension of the perturbation analysis of Sec. III, and
(ii) the regime of short interaction times, corresponding to a
nonperturbative regime with strong atom-field coupling.

A. Long interaction time

Naturally extending the perturbative analysis, we solve
the master equation (11), and show the results in Fig. 3.
Figure 3 (left) shows the result for the conditional phase
shift. Solid line has been calculated from the solution of Eq.
(11), as explained in Sec. II. The dashed line is the bench-
mark solution, obtained from the eigenvalues of the associ-
ated Hamiltonian, by using Eq. (15). The eigenvalues of the
Hamiltonians of Egs. (14) have been calculated numerically
for the set of parameters of Fig. 3.

It is evident that the benchmark solutions offers a reason-
ably good estimate for the size of the CPS. The exact dynam-
ics driven by the master equation (11) presents an additional
oscillatory behavior both on a short-time scale (transient pro-
cesses), and on a long-time scale. The longer time scale
comes from the fact that to induce the cross-Kerr nonlinear-
ity, one must detune the fields away from the dark resonance.
This detuning is very small and is seen in the oscillations on
a long time scale. As both probe and trigger fields are de-
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FIG. 3. Conditional phase shift (left) and the fidelity of Eq. (12)
(right) as a function of the interaction time for N,=10°, &,=6;
=75y, €,=€4=0.05y, g,=g=0.0011y, Q,;=0,=1.875y, and
YVik= yph=10_3y, Vk. We have taken equal decay rates, y, =7y
=Y25=V41=Y43=Y45= ’)//3, with ’}/:27T>< 6 MHz. Left-hand side,
solid line represents the phase shift, as calculated from the full
master equation, while the dashed line gives the perturbative pre-
diction of Eq. (16). Right-hand side, solid line is the unconditional
gate fidelity F(r), while the dotted-dashed line is the conditional
one, F°(1).

tuned by the same amount, only one frequency of long-time
oscillations is observed.

In Fig. 3 (right), fidelities (averaged over all possible two-
qubit initial states) are shown in two cases. Both are calcu-
lated by using Eq. (12), but they differ in the way p/() is
defined. The solid line in Fig. 3 (right) refers to the uncon-
ditional fidelity F(z), which is calculated from Eq. (12) by
taking pA(t)=Tr,[p(¢)], where p(t) is the solution of the mas-
ter equation (11). The unconditional fidelity quantifies the
performance of the QPG as a deterministic gate for single-
photon qubits.

The dotted-dashed line in Fig. 3 (right) refers to the con-
ditional fidelity F*(r), which is evaluated according to Eq.
(12), but with pAr) replaced by pi(t)=Try[|1,, (1)
X (O 1) |4, (1)), where  [4,(1)) is the (non-
normalized) evolved atom-field state conditioned to the de-
tection of no quantum jumps [22], i.e., of no photon loss by
spontaneous emission. This fidelity can be measured by post-
selecting those measurement results that conserve photon
number, i.e., discarding those data sets where at least a pho-
ton from the initial two-qubit state has been lost to the envi-
ronment. The conditional fidelity quantifies the performance
of the QPG as a probabilistic two-qubit gate.

In Fig. 3, we have found at best a CPS of ~r in corre-
spondence with fidelities F(r;,) and F*(;,) equal to 60%
and 80%, respectively. This is due to the general presence of
a trade-off between the size of the CPS and of the gate fidel-
ity, as well as to the atomic dephasing [23]. This is an im-
portant result of our paper, which actually holds true in any
EIT-based nonlinear optics systems. In fact, both the condi-
tional and the unconditional gate fidelity approach 1 in the
limit of very small g;, but this limit yields a CPS which
becomes appreciable only for unrealistically long gas cells.
For the parameters of Fig. 3, v g=5.8 X 10°, which requires a
cell of length v, X1, =5.8X10°m/sx (SOOQ) =81 m.
Therefore a larger CPS requires a larger ratio g;VN,/€};. This
condition however increases the population of the collective
atomic states |e(1"1”"’))and |e(5"1”"’)> at the expense of the initial
atomic state |3), thus unavoidably decreasing the gate fidel-
ity. Similar conclusions hold for other options, such as in-
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Time [y ]

Time [y ']

FIG. 4. Conditional phase shift (left) and the fidelity (right) as a
function of the interaction time for N,=10%, 8,=8;=9.5v, €,
=€33=027, g,=¢,=0.018y, Q;=0,=19y, and yu=7,,=10"y,
Vk. We have taken equal decay rates, Y,;=7v23=Y25= Va1= VY43
=1vy,5=17/3, with y=27X 6 MHz. Left-handed side, solid line rep-
resents the phase shift, as calculated from a density matrix, while
the dashed line gives the eigenvalue solution. Right-hand side, solid
line is the unconditional gate fidelity F(z), while the dotted-dashed
line is the conditional one, F*(z).

creased detunings &;, or adjusting two-photon detunings €;;.
Therefore, just the pure coherent unitary evolution of the
system, governed by the Hamiltonian of Eq. (4) causes this
inherent trade-off.

B. Short interaction time

To further illustrate our findings, we calculate the CPS
and the gate fidelities in the range of parameters where the
total interaction time is an order of magnitude smaller than in
Sec. IV A. The CPS and the gate fidelities are calculated as
described in Sec. IV A, and the results are shown in Fig. 4.
To obtain a CPS of the order of 7 in a shorter interaction
time (#;,,~ 50/ ), we have assumed a larger ratio gj\s“'Na/ Q.
The trade-off between the amount of accumulated nonlinear
phase shift and the gate fidelity is now even more pro-
nounced: we find at best a CPS of ~ in correspondence
with fidelities F(z;,) and F*(f;,) equal to 65% and 73%,
respectively. As expected, having a stronger atom-field cou-
pling enhances the processes lowering the fidelity. The sys-
tem ends up with a large CPS faster, but this is achieved with
a final state in which the probability of losing the probe and
trigger photons by spontaneous emission or within the
atomic medium is no more negligible. We notice that in this
short interaction time case dephasing does not have an ap-
preciable effect, that is, the results without dephasing are
indistinguishable from those with dephasing shown in Fig. 4,
due to fact that dephasing rates in a dilute gas are typically
much smaller than decay rates. The only possible way to
circumvent this trade-off is to explore the transient regime,
which will be discussed in the following section.

V. QPG OPERATION IN TRANSIENT REGIME

In Sec. IV, we have found that the QPG operation of
EIT-based nonlinear system in a steady state is plagued by
the trade-off between the phase shift size and the gate fidel-
ity. In an attempt to find favorable conditions for the QPG
operation, we consider the transient regime, when vz, <1.
As discussed above, in order to accumulate a significant CPS
in such a short time one must consider the strong coupling
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FIG. 5. Conditional phase shift (left) and the fidelity (right) of
the QPG operation for N,=10%, 8;=8;=15y, €,=€3,4=0.01v, g,
=g,=0.0022y, Q;=0Q4=4y, and yu=7,=10"y, Vk. We have
taken equal decay rates, ¥,1=v23="Y25=Va1="VYa43=Ya5="7Y/3, with
y=2mX 6 MHz. Right-hand side, the unconditional fidelity (solid)
and conditional fidelity (dashed) are shown. See text for details.

regime with a large ratio gj\«"ﬁa/ ();. Therefore, the trade-off
between fidelity and a large nonlinear interaction is present
also in the transient regime. However, when gj\e"Na/Qj is
large, the transient dynamics is characterized by Rabi-type
oscillations of the atomic populations and of the photon
number, determining, as a consequence, coherent oscillations
of the gate fidelity. In such a case one cannot exclude the
existence of special values of the interaction time t;, corre-
sponding to a maximum of the gate fidelity close to one, and
at the same time, to a value of the CPS close to .

We show that this fact is actually possible in Fig. 5, where
we see that a CPS of ~ 7 radians is obtained in the transient
regime for #;,,=~0.4/y~10 ns. At the same interaction time,
the unconditional gate fidelity (Fig. 5, right, full line) is
about 94%, while the conditional gate fidelity reaches the
value of 99% (Fig. 5, right, dashed line). The conditional
gate fidelity is obtained in correspondence with a success
probability of the gate equal to 0.94, calculated from the
norm of the Monte Carlo wave function [22]. The probe and
trigger group velocities are calculated to be v,=3
X 10% ms™, yielding a gas cell length L=v,4t;,=3.1 cm. The
value of g; yields an interaction volume V=2X10"% cm’,
corresponding to a gas cell diameter of about 330 wm and to
an atomic density N,/V=5x10'" cm™3.

To give a further example and to deepen our discussion of
QPG performance and the CPS-fidelity trade-off, we now
show the optimal results for the experimentally available
pulses produced in the experiment of Darquié e al. [24] (see
Fig. 6). The length of a pulse produced in Ref. [24] is 26 ns
(=v"). The optimal parameters of Fig. 6 give the uncondi-
tional gate fidelity (Fig. 6, right, solid line) of 85%, while the
conditional fidelity reaches 89% (Fig. 6, right, dotted-dashed
line). The probe and trigger group velocities are calculated to
be v,=1.51X 10° ms™!, yielding a gas cell length L=v 4ty
=3.82 cm. The value of g; yields an interaction volume V
=10"" cm?, corresponding to a gas cell diameter of about
910 um and to an atomic density N,/V=10 cm™. So, tak-
ing the longer wave packets (i.e., longer interaction times)
means that the CPS-fidelity trade-off becomes increasingly
important, and the top value of fidelity decreases slightly
with respect to its optimal value.

Note how in both cases (Figs. 5 and 6) high values of
fidelity could be obtained for values of CPS lower than
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FIG. 6. (Color online) Conditional phase shift (left) and the
fidelity (right) of a QPG operation for N,=108, 8,=8;=67, €,
=€34=0.05y, g,=g,=0.0009y, and Q;=4=7y. We have taken
equal decay rates, ¥, =¥23=Ya5= Y41= Y43=Y45= /3. For */Rb, Y
=2m7X 6 MHz, giving the interaction time (i.e., pulse length) of
=25 ns for |¢| = . Right-hand side, solid line denotes the deter-
ministic fidelity, while dotted-dashed line denotes the conditional
fidelity.

radians. This implies the possibility of the implementation of
a universal quantum gate [15], which requires only ¢ # 0.

A comment about this calculation of the common group
velocity of the two wave packets, Vg, is in order. As men-
tioned earlier, EIT is stationary phenomenon, and in fact, the
conventional v, is a steady-state quantity which it is obtained
from the susceptibility y according to

-1
vg:c{1+%Re(X)+%<%iEX)) ] (17)

(wy is the central frequency of wave packet), where the sus-
ceptibility of the jth field, x; (j=p,?), is evaluated from the
associated steady-state atomic coherence pjfs as

Nl
= 18
Xj Vﬁ SOQ]' J ( )

Instead, the above results are obtained in the transient regime
where yf,,,<1, and for this reason we have estimated the
group velocity in a different way. We have evaluated the
relevant time-dependent atomic coherence p;(¢) and the cor-
responding “instantaneous susceptibility” y;(¢) from the re-
duced atomic density matrix p,eq(#)=Trggas p(?)], with p(z)
being the solution of Eq. (11). The corresponding “instanta-
neous”group velocity v,(7) has been then averaged over the
time interval between 0 and t;,, providing in this way our
estimate of the “transient” nonstationary group velocity of
the single-photon wave packets. For the parameters of Fig. 6,
this nonstationary v, is approximately equal to ¢/100 and it
is about one order of magnitude smaller than the conven-
tional v, obtained from the steady-state susceptibility. This
appreciable slowing down of the group velocity is a signa-
ture of a sort of “nonstationary” EIT process.

In order to verify that the nonstationary dynamics is really
reminiscent of EIT, in the next section we compare these
results with a numerical study of the three-level ladder
atomic scheme (see Fig. 7), yielding XPM without EIT. Here
we anticipate that we have found a smaller gate fidelity
(~78%) for a corresponding set of parameters, providing
therefore further support to the presence of a moderate, non-
stationary EIT process in the transient dynamics of our five-
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=

FIG. 7. Energy levels of the ladder scheme. g,, denote cou-
plings of the quantized probe and trigger fields to their respective
transitions. &, , are detunings of the probe and trigger fields from
resonance.

level M scheme. This is because in the ladder scheme, the
increase in the size of the nonlinearity (and thus the CPS) is
accompanied by an increase of losses, unlike the case of any
EIT-based scheme [6]. For this reason we also expect that
our M scheme outperforms ladder scheme in the case of fully
optimized fidelity for the 7 phase shift.

A. The conventional three-level scheme

The atomic ladder scheme (see Fig. 7) is well known to
exhibit XPM of the two fields involved [6]. In order to
achieve a reasonable size of cross-phase shift, the detuning
of the intermediate state &, needs to be large. This minimizes
spontaneous emission (~y,/ 5[2,), but also the size of
XPM ~1/6.

In order to evaluate the XPM in a manner comparable to
what we have done for the M scheme, we make similar as-
sumptions and arrive at a description analogous to the one
described in Sec. II. The Hamiltonian is now given by

A A — . - A
H3 = ﬁ 617522 + ﬁ (517 - 5t)S33 + ﬁ gp\"Na(ap521 + S12a;)
+ 1 g \No(d S5 + Sod)- (19)

Following the same reasoning as in Sec. II, we arrive at the
effective master equation (we neglect here atomic dephasing)

. i Vo na6 & a4 P
p=Lyp=~- %[Hyp] + 7(25120521 = 8518120 = pS21512)

V2,00 & & & a4
+ 7(25231)532 — 523830 = pS3532), (20)

where ), and 7,3 denote the spontaneous emission rates
from levels |2) and |3) to levels |1) and |2), respectively, and

the operators ‘SA’U- denote collective atomic operators, in the
spirit of Eq. (5a).

The results of the calculation of unconditional quantities
are shown in Fig. 8, for a parameter regime comparable to
that discussed in relation to Fig. 5 (see also Ref. [17]) for the
five-level M scheme. The atoms are assumed to be in the
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FIG. 8. Average fidelity (top figure) and conditional phase shift
(bottom figure) as a function of time for the three-level ladder
scheme of Fig. 7 and for N,=108, 6,=10y, 6=0, and g,=g,
=0.00227y. The spontaneous emission rate is 7y,1="Yy3=y=2T
X 6 MHz.

collective state ®Zﬂl|2)i initially, as this is found to give
better results. The reason is a more efficient photon-photon
interaction since the initial state is symmetric with respect
to probe and trigger photons. At the interaction time
tine=0.12/ 7y, the CPS reaches the value ~ and at the same
time the unconditional fidelity is found to be ~78%. It is
possible to see that the conditional fidelity, even though
higher, always remains significantly lower than that obtained
in the M scheme.

Therefore, we conclude that the optimal results for the
QPG operation can be found in the “transient EIT regime.”
The general trade-off between the nonlinear phase shift and
the fidelity is still present, but it is compensated by the tran-
sient oscillations in the populations of atomic levels. In fact,
the numerical results show that, in the parameter regime un-
der consideration, the population of the excited states |e(2"”’"’)>
and |e£1”1”"’)) is always negligible, and one has coherent oscil-
lations of the population between the states |e(1"1”"’)>, ®,]3);
®|n,,.n,) and |e§”’”"’)>. At the interaction time #,,, correspond-
ing to the maxima of the gate fidelity in Fig. 6, atoms are
largely found in state ®;|3);®|n,,,n,), and the relative popu-
lations and phase relations between the states of the two
photonic qubits are consistent with the “ideal” state of Eq.

(13).

VI. EXPERIMENTAL VERIFICATION OF THE QPG
OPERATION

In this section, two possible schemes for experimental
implementation are discussed. First is the detection in the
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FIG. 9. (Color online) Scheme of the proposed experiment for a
measurement of the nonlinear phase shift in a QPG. A Michelson-
type interferometer with a two-photons input state |1z)| 1), probe
and trigger, respectively, allows to measure the nonlinear phase
induced by the XPM on the logical basis of the qubits, which co-
incide with the two lowest Fock states. Two intense classical fields
«a, (tuner with Rabi frequency ;) and a, (coupler, with Rabi fre-
quency ),), are necessary to the five-level XPM process. L is a lens
for the mode matching in the EIT medium. BS a 50/50 beam split-
ter. DL a delay line. FP;, Fabry-Perot cavities. Dgp; p, are
avalanche-photodiodes APDs. Left-hand inset: Scheme using a Sa-
gnac interferometer for avoiding the optical path difference. M is a
mirror. Right-hand inset: Frequency spectrum (arb. units) for a
2 mm FP cavity length and finesse equal to 10°. The spectra of the
probe and trigger photon are also shown in the plots as lines.

occupation number logical basis, and the second is the de-
tection in the polarization logical basis. The two bases are
identical from the point of view of theoretical treatment,
however, their implementation is different in practice.

Occupation number logical basis—In this section we de-
scribe a Michelson-type interferometer (see Fig. 9) for two-
photons product state |1gx)|15) with the “right” ¢~ circular
polarization, where R (red) refers to the probe field and B
(blue) to the trigger. We show that the interferometer is able
to reveal and measure the QPG phase shift. The probe and
trigger fields with a bandwidth of 40—100 MHz (correspond-
ing to 25-10 ns 1/e half-width pulse duration [24]) are
separated in frequency by ~7 THz and are resonant with the
%Rb hyperfine transitions D{F=2—F'=1 at 794.7 nm
(377.228 THz), and D,F=2—F'=1 at 780.2 nm
(384.225 THz), respectively.

The interferometer is realized with the help of a 50/50
beam splitter (BS), using a Fabry-Perot cavities (FP, ,) in-
stead of mirrors. The FPs reflect back the probe field, which
is then superimposed on the BS and detected by an APD
(Dg), and transmit the trigger field detected by an APD in
each arm (Dg, and Dy,). This implies that only the trigger
frequency is resonant with the FPs’ cavity, which has a cav-
ity length of 2 mm corresponding to a FSR of 74.85 GHz,
while the probe frequency falls in the middle of the previous
93rd and 94th FSRs. According to the photon bandwidth, a
finesse of 10° determines a reflectivity for the probe field of
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FIG. 10. (Color online) Truth table of the QPG for a logical
basis of the qubits determined by the two lowest Fock states. On the
right-hand side, diagrams corresponding to the probability ampli-
tudes after the action of the BS and the FPs on the two-photons
input state are shown.

99.9% (see the spectra in the right-hand inset of Fig. 9).

Since the frequency bandwidths of the two photons are
well distinguished and the FPs filter out the trigger field, this
apparatus determines an interferometer for the probe field
only. The coincidence probabilities P(R,B1), between Dy
and Dy, and P(R,B2), between Dy and Dy,, post-select the
events in which the trigger photon is. In this case the coin-
cidence probabilities are equal and given by

P(R,B1)=P(R,B2)=[1+ cos ®]/8, (21)

where ® represents the phase difference due to the different
optical paths of the two arms experienced by the probe. In
arm 2 a delay line (DL) is added to compensate the differ-
ence in the optical path and to scan for the interference pat-
tern. In the left-hand inset of Fig. 9 Sagnac-type version of
the interferometer is shown, which allows for an autocom-
pensation of the optical path delay as the two arms coincide.

When an EIT-based XPM system is considered in one
arm, say arm 1, a nonlinear contribution to the phase is
added by the QPG, whether the trigger photon is present in
the arm 1 or not. The XPM requires two intense classical
fields resonant to the D,F=1—F'=1 (384.232 THz) and
D, F=1—F'=1 (377.235 THz), o circularly polarized
tuner field (a,,€),), and o* circularly polarized coupling field
(a,,Qy), respectively. The coincidence probabilities
P(R,B1), between Dy and Dy, and P(R,B2), between Dy
and Dpg,, enable post-selection of the events in which the
trigger photon is in the arm 2 and hence the interference
pattern is given by Eq. (21). Instead a nonlinear contribution
to the phase is expected when detections on Dy are post
selected by the detection on Dpg,. Figure 10 represents the
diagram of the four amplitude probabilities after the action of
the BS and the FPs on the two-photons state. The nonlinear
phase ¢,; is added only to the first diagram.

According to the truth-table and the amplitudes of Fig. 10,
the coincidence probabilities can be evaluated to be

P(R,B1)=[1+cos(® + ¢) )18, (22)
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FIG. 11. (Color online) Truth table of the QPG for a logical
basis of the qubits determined by orthogonal circular polarization
basis. On the right-hand side the diagrams corresponding to the
probability amplitudes after the action of the BS and the FPs on the
two-photons input state.

P(R,B2) =[1 + cos D/8. (23)

with ®=D+(p;o—2go+ Psg). ¢so is the phase due
to the probe photon reflected in arm 1 with “wrong” o*
circular polarization. The phases ¢, and ¢, have been in-
troduced in Eq. (1) as well as the conditional phase shift
b= — do1— D10+ Do of the QPG. The phase difference be-
tween the two interference patterns determined by the two
coincidence probabilities determines univocally the value of
@. In the case of an ideal QPG for which ¢= the two
coincidence probabilities have opposite phases.

Polarization logical basis: The previous proposal indi-
rectly tests the QPG based on the XPM detecting the nonlin-
ear phase shift by a Michelson interferometer and coinci-
dence measurements. A direct measurement of the truth table
or a test on a general qubit state requires a control and mea-
surement of a superposition of vacuum and one photon state.
While the generation of a superposition of vacuum and
single photon state has been already achieved [24], the mea-
surement of such a superposition requires also a homodyne
measurement [25,26]. However a logical basis for the qubits
can be chosen as the circular polarization basis of the probe
and trigger photons. A test of the QPG will then require the
detection of both photons thus avoiding a problematic pro-
duction and detection of Fock state superpositions.

The experimental setup is the same as in Fig. 9, but the
qubits are now encoded in the polarization of the input two-
photon state.

According to the truth-table and the amplitudes in Fig. 11
it is possible to derive the coincidence probabilities
P(R;,B1)) and P(R;,B2;), with i,j={+,-}, as

P(R;B1))=[1+cos(D + ¢,)]8, (24)

P(R;,B2)) =[1+cos /8. (25)

with (I_)=(I)+(¢[O—2¢00+¢(,-®1)0), where i®1 is the sum

mod 2. The phase ¢ is now given as ¢;=d;— di—dy,
+ oo, Where ¢y is the phase due to the EIT for the
probe photon with polarization i and no trigger photon
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present, and the same meaning for the other phases. Note
that for i=j=-'=1' one obtains the previous expression for
the QPG phase in the logical Fock-state basis. Four possible
choices of the probe and trigger polarizations determine the
phases

b__=b__— d_y— do_ + Do

b= by — Dy~ dos + dpos

br= by — o~ do_ + Do,

¢++ = ¢++ - ¢+0 - ¢0+ + ¢00, (26)

which satisfies the relation ¢__—¢, —d_,+d,,=Pp__—b,_
—¢_.+¢,.=¢. In the case of an ideal EIT for which ¢,
=hor=Ps=Poos P =P o=, and ¢, =po_=¢p, where
¢4 p are the phases acquired by the single photons, we have
¢__=¢,and ¢_,=h,_=¢,,=0. In a way the phases between
the two coincidence interference patterns allow a measure-
ment of the QPG phases in the diagonal basis, i.e., in the
single qubit states for which the only nonzero phase shift is
the conditional phase shift ¢ of the QPG.

General polarization qubit input states: The polarization
logical basis allows for a direct observation of coherence and
production of entanglement as necessary conditions for a
QPG. Assume that the information is encoded in the polar-
ization state of two photons, and then sent into the EIT-based
XPM system for QPG, as shown in Fig. 12. The output pho-
tons, as shown in Fig. 12, are split by a dichroic mirror (a
tilted FP cavity with the same parameters as before) and then
collected in two APDs (D and Djp) for coincidence count-
ing. In front of each detector a tomographic system [27]
constituted by a QWP, HWP and a PBS, is placed for the
complete reconstruction of the polarization state of the
output, thus providing the information on coherence proper-
ties of the gate. It has also been shown [3] that an input
state for the QPG given by {[(|o})+|0R) @ (o) +|op) 1}/ 2
can quantify the entanglement of the output state, for which
the CHSH inequality is 2v1+sin’> ¢ where 2 is the upper
classical limit.

VII. CONCLUSION

In conclusion, our study shows that the implementation of
efficient EIT-based nonlinear two-qubit gates for travelling
single photons is possible, even though experimentally chal-
lenging. The main limitation is due to the existence of a
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FIG. 12. (Color online) Scheme of the proposed experiment for
a complete characterization of the QPG. Two photons in the o
polarization state (logical state |0z)®|0z)) are transformed by a
QWP, corresponding to two Hadamard single-qubit gates, and then
to the XPM medium (QPG). A Fabry-Perot cavity with the same
parameter as before transmits the trigger photon and reflect the
probe to two tomographic measurement systems (T 3) and detected
by APDs.

trade-off between the size of the CPS and the fidelity of the
gate, limiting the achievable gate fidelity in the stationary
regime, but which can be partially bypassed in the transient
regime. Since this trade-off is a general consequence of the
coherent interaction between the atomic medium and the
single-photon wave packets, we expect that these consider-
ations apply to all EIT-based crossed-Kerr schemes [10,11],
regardless the specific level scheme considered. Instead, this
consideration does not apply to situations where the nonlin-
earity comes from independent processes (e.g., collisions or
dipole-dipole interactions) [14], nor the similar solid-state
based processes [28].
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