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We focus on the nonlocality concerning local copying and local discrimination, especially for a set of
orthogonal maximally entangled states in any prime dimensional system, as a study of nonlocality of a set of
states. As a result, for such a set, we completely characterize deterministic local copiability and show that local
copying is more difficult than local discrimination.
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I. INTRODUCTION

Nonlocality is one of the oldest topics in quantum phys-
ics, and also is one of the most important topics in one of the
new fields of “quantum information.” The history of nonlo-
cality started with EPR’s discussion of local realism in the
1930s �1�, and then, it was followed by Bell’s formulation of
local hidden variable theory and Bell inequality in the 1960s
�2�. In the early 1990s, the development of quantum infor-
mation shed new light on this topic. The theory of nonlocal-
ity was reformulated as entanglement theory, which is a use-
ful formulation to treat entangled states as resources of
quantum communication, like teleportation, dense-coding,
key distribution, etc. �3,4�. Mathematically speaking, the
study of conventional entanglement theory is the study of
convertibility between entangled states under locality restric-
tions for operations, �e.g., LOCC �local operation and clas-
sical communication�, separable operations, and PPT
�positive partial transpose� operations �5–11��.

On the other hand, there are problems of nonlocality
which cannot be explained by one to one convertibility of
states. One of such problems is “local discrimination” �a
problem to discriminate an unknown states by only LOCC�
�12–18�. The starting point was the discovery of a product
basis which cannot be perfectly discriminated by LOCC by
Bennett et al. �19�, “Non-locality without entanglement.” In
Ref. �19�, they proposed a locally indistinguishable product
basis and regarded its impossibility for perfect discrimination
under LOCC as nonlocality of it.

The study of Bennett et al. suggests the new kind of non-
locality, Nonlocality of a set of states. At first, in analogy to
the nonlocality discussion in their paper, we can expand the
concept of nonlocality as follows. If the local �LOCC� re-
striction causes difficulty for a task concerning a set of states,
e.g., discrimination, copying, etc., then, we consider that this
set has nonlocality, and regard the degree of this difficulty as
nonlocality of the set. This concept of nonlocality is not un-
natural, since it is consistent with the conventional entangle-
ment theory because of the following reasons. In entangle-
ment theory, entanglement cost �6� is one of the most
established measures of entanglement, and can be regarded
as a kind of difficulty of a task, i.e., the difficulty of en-
tanglement dilution �6�. Moreover, if we consider the task to

approximate a given state by separable states, we derive the
relative entropy of entanglement �10� by measuring this dif-
ficulty in terms of accuracy of the approximation, using rela-
tive entropy. These can be regarded as the degrees of
difficulty of tasks with the local restrictions.

Indeed, local discrimination can be regarded as tasks for a
set of states with the local restriction, because these problems
are usually treated based on a set of candidates of unknown
states. Hence, we can measure nonlocality of a set of states
by the degree of difficulty of local discrimination. We should
note that this kind of difficulty cannot be often characterized
only by entanglement of states of the given set. A typical
example is the impossibility of local discrimination of the
product basis of Bennett et al. mentioned before. In addition
to local discrimination, similar nonlocality also appears com-
monly in various different fields of quantum information,
e.g., quantum capacity, quantum estimation, etc. �20,21�.

Recently, a similar problem to local discrimination,“local
copying,” was also raised �22,23�, as a problem to study a
cloning of unknown entangled states under the LOCC re-
striction with only minimum entanglement resource. Local
copying is also defined for a set of states with the local
restriction, therefore we can consider nonlocality of a set of
states concerning local copying. Moreover, this nonlocality
cannot be also characterized only by entanglement of states
of the given set �22�.

In this paper, as a study of nonlocality of a set of states,
we focus on local copying and local discrimination. Specifi-
cally, we concentrate on a set of orthogonal maximally en-
tangled states, and investigate the relationship between their
local copiability and local distiniguishability. As a result, we
give a local copying protocol �Fig. 2�, and then, we com-
pletely characterize the local copiability of this kind of set in
a prime dimensional system �24� by showing that such a
protocol is the only possible local copying protocol. This
protocol requires the following two properties. One is “ ca-
nonical Bell form;” we say that a set of states ���i��i=0

N−1 has
canonical Bell form, if it can be generated from ��0� by
action of Weyl-Heisenberg group �17,25�. The other is “si-
multaneously Schmidt decomposability;” we say that a set of
states ���i��i=0

N−1 is simultaneously Schmidt decomposable, if
there exists a pair of orthonormal basis ��ek��k=0

D−1 and ��fk��k=0
D−1

such that all ��i� can be written down as ��i�=	k�k
�i� �ek�
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� �fk�with complex coefficients �k
�i� �13,26�. Our main result

is that this kind of set is locally copiable, if and only if it has
a canonical Bell form and is simultaneously Schmidt decom-
posable �Theorem 7�. Using this result, we prove the follow-
ing two facts. First, the maximal size of locally copiable sets
is equal to the dimension of the local space which is equal to
the maximal size of local distinguishable sets. Second, we
also show that if such a set is locally copiable, then it is
locally distinguishable by one-way communication. In this
case, local copying is strictly more difficult than one-way
local discrimination, because we can find examples of a set
of states which is one-way distinguishable, but not locally
copiable. The relationship of local copiability and distin-
guishability is summarized in Fig. 1.

From this relationship, we derive the conclusion related to
the nonlocality of a set concerning local copying and local
discrimination: A simultaneously Schmidt decomposable set
does not have nonlocality of a set of states beyond individual
entanglement concerning local discrimination, since it is lo-
cally distinguishable. However, even if a set is simultaneous
Schmidt decomposable, if such a set does not have a canoni-
cal Bell form, such a set still has nonlocality concerning
local copying.

Although we mainly concentrate on the aspect of local
copying and local discrimination as the study of nonlocality
in this paper, local copying and local discrimination them-
selves are worth to investigate as basic protocols of quantum
information processing with two parties. In the last part of
this paper, we show that there are many important relation-
ships between our local copying protocol and the other quan-
tum information protocols. These results give many other
interpretations for local copying.

This paper is organized as follows. In Sec. II, in prepara-
tion of our analysis, we review a necessary and sufficient
condition for a locally copiable set, which is the main result

of the paper �22�. In Sec. III, we give an example of a locally
copiable set of D maximally entangled states, and then,
prove that, in a prime-dimensional local system, the above
example is the only case where local copying is possible for
maximally entangled states. In Sec. IV, we discuss the rela-
tionship between local copying and LOCC discrimination by
means of simultaneous Schmidt decomposition. In Sec. V,
we present other protocols which are strongly related to our
theory of local copying, i.e., channel copying, entanglement
distillation protocol, error correction, and quantum key dis-
tribution. And then, we extend our results of local copying to
these protocols. Finally, we summarize and discuss our
results in Sec. VI.

II. THE LOCAL COPYING PROBLEM

In this section, in preparation of our analysis, we intro-
duce formulation and known results of local copying from
Ref. �22�.

Many researchers treated approximated cloning, for ex-
ample, universal cloning �27�, asymmetric cloning �28�, tele-
cloning �29�. This is because the perfect cloning, i.e., copy-
ing, is impossible without prior knowledge �no-cloning
theorem� �30�. That is, the possibility of copying depends on
prior knowledge about the state to be copied, or, in other
words, a set of candidates for the unknown target state,
where we call the state to be copied the target state. If we
know that the unknown state to be copied is contained by a
set of orthogonal states, which is called the copied set, we
can copy the given state. However, if our operation is re-
stricted to local operations and classical communication
�LOCC� �5�, we cannot necessarily copy the given quantum
state even with the above orthogonal assumption, perfectly.
Thus, it is interesting from both viewpoints of entanglement
theory and cloning theory to extend the cloning problem to
the bipartite entangled setting. This is the original motivation
of cloning problems with LOCC restriction �22,23�.

Recently, Anselmi et al. �22� focused on the perfect
cloning of bipartite systems under the following
assumptions:

�1� Our operation is restricted to LOCC.
�2� It is known that the unknown state to be copied is

contained in a set of known orthogonal entangled states �the
copied set�.

�3� A known entangled state of the same size is
shared.

They called this problem local copying, and they have
characterized copied sets which we can locally copy for spe-
cial cases. In the following, for simplicity, we say the set is
locally copiable if and only if local copying is possible with
the prior knowledge to which the given state belongs.

The problem of local copying can be phrased as follows.
We assume two players at a long distance, e.g., Alice and
Bob in this protocol. They have two quantum systems HA
and HB each of which is also composed by the same two
D-dimensional systems, i.e., the systems HA and HB are de-
scribed by HA=H1 � H3, HB=H2 � H4. In our problem,
they try to copy an unknown state ��� on the initial system
H1 � H2 to the target system H3 � H4 with the prior knowl-

FIG. 1. �Color online� The hierarchy of nonlocality of sets of
maximally entangled states. In this figure, LD, SSD, and c.c. mean
locally distinguishable, simultaneously Schmidt decomposable, and
classical communication, respectively.

MASAKI OWARI AND MASAHITO HAYASHI PHYSICAL REVIEW A 74, 032108 �2006�

032108-2



edge that ��� belongs to the copy set ��� j�� j=0
N−1. Moreover,

we assume that they implement copying only by LOCC be-
tween them. Since LOCC operations do not increase the en-
tanglement of whole states, they can copy no entangled state
by LOCC without any entanglement resource. Thus, we also
assume that they share a blank entangled state �b� in the
target system H3 � H4. Therefore, a set of states ��� j�� j=0

N−1 is
called locally copiable with a blank state �b3,4��H3 � H4, if
there exists a LOCC operation � on HA � HB which satisfies
the following condition for all j=0, . . . ,N−1:

���� j
12� � �b34�
� j

12� � 
b34�� = �� j
12� � �� j

34�
� j
12� � 
� j

34� ,
�1�

where we treat HA=H1 � H3 and HB=H2 � H4 as local
spaces with respect to a LOCC operation �.

Even if the most simple case N=1, it is very hard to
completely characterize which state �b� can be used as a
blank state for a given state ��1� in Eq. �1�. This is because
the transformation in Eq. �1� is the entanglement transforma-
tion from �b� to ��1� using ��1� as entanglement catalysis
�7�, that is, even if �b� cannot be transformed to ��1�, it may
be possible for �b� to be transformed to ��1� with help of
catalysis ��1�. And it is very hard to characterize this cata-
lytic transformation �for detail see Sec. II B of Ref. �22��.
Thus, it is very hard to derive a necessary and sufficient
condition for general settings of local copying. On the other
hand, it is well known that no maximally entangled state
works as entanglement catalysis �7�. In this paper, to avoid
the difficulty of entanglement catalysis, we restrict our analy-
sis to the case where all of �� j� are maximally entangled
states, which are defined as states whose Schmidt coeffi-
cients �eigenvalues of the reduced density matrix� are all 1

D
�31�.

If we restrict a copy set ��� j�� j=0
N−1 to a set of maximally

entangled states, we can simplify the problem setting as fol-
lows. First, because of monotonicity of entanglement under
LOCC, a blank state �b� needs to be also maximally en-
tangled, and we can always choose this blank state �b�
= ��0�. This is because, before we implement a operation �
in Eq. �1�, we can always operate a local unitary operation
for �b� to change �b� to an arbitrary maximally entangled
state. Therefore, by the assumption �b�= ��0� the problem
does not lose generality. Second, if a set of states ��� j�� j=0

N−1 is
locally copiable, we can easily see that a set of states �U
� V �� j�� j=0

N−1 is also locally copiable for any local unitary
operation U � V. In other words, local copiability is invariant
under an action of local unitary operation for a set of states.
Thus, by means of this freedom of action of local unitary, we
can fix one state in ��� j�� j=0

N−1. Here, we choose the standard
maximally entangled state as ��0�, that is, ��0�= 1

�D
	i=0

D−1 � i�
� �i�, where ��i��i=0

D−1 is a computational basis in each local
space. Finally, all we need to consider is the following
condition:

���� j
12� � ��0

34�
� j
12� � 
�0

34��

= �� j
12� � �� j

34�
� j
12� � 
� j

34� , �2�

where ��0� is the standard maximally entangled state. In the
following discussion, we always assume the above
conditions.

Anselmi et al. �22� derived a necessary and sufficient con-
dition for a specific locally copiable set �Lemma 1�. Also,
they completely characterize local copiability of maximally
entangled states in the case of N=2. In following, in prepa-
ration for our analysis, we shortly summarize the Anselmi
et al. results for local copying of maximally entangled states.

First, Anselmi et al. showed the following theorem.
Theorem 1 (Anselmi et al.). If a set of maximally

entangled states ��� j�� j=0
N−1 is locally copiable, then, it is

copiable by only local unitary transformation.
That is, when all �� j� are maximally entangled states, we

always choose a local unitary operation as the copying op-
eration � in Eq. �1�. In Ref. �22�, by means of the above
result, Anselmi et al. derived a necessary and sufficient con-
dition of copiability for maximally entangled states. Here,
we do not mention this necessary and sufficient condition in
their original formula, but we present the modified version of
their statement for benefit of later detail analysis in Sec. III.

Lemma 1 (Anselmi et al.). A set of maximally entangled
states ��� j�� j=0

N−1 is locally copiable, if and only if there exists
a unitary operator A on H1 � H2 and unitary operations
�Uj� j=0

N−1 on H1 such that

A�Uj � I�A† = Uj � Uj , �3�

and

�� j�
� j� = Uj � I��0�
�0�Uj
†

� I . �4�

Proof. �We look at the necessary condition.�
Suppose ��� j�� j=0

N−1 is locally copiable. Then, by Lemma 1,
there exist a local unitary operation A � B and real numbers
0�� j �2� such that, for all j,

A12
� B34�� j

13� � ��0
24� = ei�j�� j

13
� �� j

24� , �5�

where ei�j are phase factors. Then, we define A� and � j� as

A� =
def

e−i�0A and � j� =
def

� j −�0, respectively. From Eq. �5�, we
derive

A�12
� B34�� j

13� � ��0
24� = ei�j��� j

13
� �� j

24� , �6�

where �0�=0. Since all �� j� are maximally entangled states,
there exists a set of unitary operations �Uj� j=0

N−1 such that

�� j� = e−i�j�Uj � I��0, �7�

where we can choose U0= I. Then, we can easily see
�� j�
� j � =Uj � I ��0�
�0 �Uj

†
� I and

�A�12
� B34��Uj

1
� I234���0

13���0
24�

= Uj
1

� Uj
2

� I34��0
13� � ��0

24� . �8�
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By using the symmetry of the standard maximally entangled
state, we derive

�A�12�Uj
1

� I2�BT12� � I34��0
13���0

24�

= Uj
1

� Uj
2

� I34��0
13� � ��0

24� , �9�

where BT is transpose of B in the computational basis. Then,
by projecting Eq. �9� to a state in computational basis
�k1� � �l2� � �m3� � �n4�, we have


k1� � 
l2�A�12�Uj
1

� I2�BT12�m1� � �n2�

= 
k1� � 
l2�Uj
1

� Uj
2�m1� � �n2� . �10�

Since the above equation is valid for all states in the compu-
tational basis, we derive A��Uj � I�BT=Uj � Uj. By substitut-
ing U0= I in the above formula, we can easily see B=A�*,
where A�* means the complex conjugate of A� in the
computational basis. Therefore, finally, we derive Eq. �3�.

�We look at the sufficient condition.�
Suppose Eqs. �3� and �4� are valid. Then, by defining

B=A*, we can directly check Eq. �5�.
Here, we remark the following two facts. First, from Eq.

�3�, we can easily see Tr Uj
†Uj�=� j j�. Thus, for a locally

copiable set ��� j�� j=0
N−1, �� j� must be orthogonal to each other.

Second, by the proof of the above lemma, the local copying
operation � is explicitly represented as a local unitary
transformation A13 � A*24.

In Ref. �22�, Anselmi et al. also solved Eq. �3� in the case
of N=2, that is, they completely characterized local copiabil-
ity under the assumption that the copied set consists of two
states. In this case, since U0= I, there is only one independent
equation A�U1 � I�A†=U1 � U1. The following theorem is the
conclusion of their analysis of Eq. �3� for N=2.

Theorem 2 (Anselmi et al.). There exists a unitary operator
A satisfying

A�U � I�A† = U � U , �11�

if and only if a unitary operator U satisfies the following two
conditions:

�1� The spectrum of U is the set of power of Mth roots
of unity, where M is a factor of D.

�2� The distinct eigenvalues of U have equal
degeneracy.

Thus, if D is prime and U� I, then, the set of eigenvalues
of U is completely determined to �	a�a=0

D−1, where

	 =
def

exp�2�i /D�. We use this notation of 	 throughout the
following discussion.

Here, we should remark about the number of maximally
entangled states as the resource. If we allow the use of three
entangled states as a resource, Alice and Bob could always
locally copy any orthogonal set of maximally entangled
states by performing quantum teleportation �3�. �For the case
when Alice and Bob share two entangled states as resources,
see Ref. �23�.�

III. LOCAL COPYING OF THE MAXIMALLY ENTANGLED
STATES IN PRIME-DIMENSIONAL SYSTEMS

Our main purpose is developing the relation between local
copiability and local distinguishability, and understanding
nonlocality of a set of maximally entangled states concerning
local copiability and local distinguishability. For this pur-
pose, the necessary and sufficient condition given in Lemma
1 is rather abstract, and we need a simpler criterion by which
we can easily determine whether a given set is locally copi-
able, or not. Therefore, in this section, we construct such a
simple criterion for local copiability, and completely charac-
terize local copiability of a set of maximally entangled states.
That is, we solve Eq. �3� and get the simpler necessary and
sufficient condition of local copiability for all N in the case
of prime-D-dimensional local systems �Theorem 4�. As a
consequence, we show that D is the maximum size of a
locally copiable set.

In the first step, we construct an example of a locally
copiable set of D maximally entangled states.

Theorem 3. When the set of maximally entangled states
��� j�� j=0

N−1 is defined by

�� j� = �Uj � I���0 �12�

and

Uj = 	
k=0

D−1

	 jk�k�
k� , �13�

where ��k��k=0
D−1 is an orthonormal basis of the H1, then the set

��� j�� j=0
N−1 can be locally copied.

Proof. We define the unitary operator A by

A12 = Ac−
12 =

def

	
a,b

�a � b�1�b�2
a�1
b�2, �14�

where Ac− is an extension of controlled-NOT �CNOT� gate
represented in ��k��k=0

D−1 for D-dimensional systems �“Con-
trolled Minus gate”�, and � is subtraction modulo D. Note
that in our notation of generalized controlled-NOT gate, the
first register is the target state, and the second register is the
control state. Then, we can easily verify Eq. �3� as

A12�Uj
1

� I2�A12† = Ac−
12�Uj

1
� I2�Ac−

12† = 	
a1,a2,b1,b2

�a � b�1�b�2
a1�1
b1�2�	 ja3�a3�1
a3�1 � I2��a2�1�b2�2
a2 � b2�1
b2�2

= 	
a1,b1

	 ja1�a1 � b1�1
a1 � b1�1 � �b1�2
b1�2 = 	
c,b1

	 j�b1�c��c�1
c�1 � �b1�2
b1�2 = Uj
1

� Uj
2,
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where we set c=a1 � b1. Therefore, Lemma 1 guarantees that
the set ��� j�� j=0

D−1 can be locally copied. �

As we already mentioned in the preceding section, the
copying operation can be chosen to be the local unitary op-
eration A12 � A34*=Ac−

12
� Ac−

34*. Therefore, this protocol of
local copying used in the above proof is written as Fig. 2.

Here, we should remark that U1 is the generalized
Pauli’s Z operator which is one of the generators of the
Weyl-Heisenberg group, and another Uj is the jth power of
U1=Z. Hence, in the case of non-prime-dimensional local
systems, the spectrum of Uj is different from that of U1 if j is
a nontrivial factor of D.

Moreover, the property of the Weyl-Heisenberg group not
only guarantees that the above example satisfies �3�, but also
is essential for the condition �3�. That is, as is proved below,
any locally copiable set of maximally entangled states is
restricted exclusively to the above example. Therefore, our
main theorem can be written down as follows.

Theorem 4. For systems whose local spaces are prime
dimensional, the set of maximally entangled states
�Uj � I ��0�
�0 �Uj

†
� I� j=0

N−1 can be locally copied if and only
if there exist an orthonormal basis ��a��a=0

D−1 and a set of
integers �nj� j=0

N−1 such that the unitary Uj can be written as

Uj = 	
a=0

D−1

	nja�a�
a� , �15�

where 	 is the Dth root of unity.
From Eq. �15�, we can easily see that the number of dif-

ferent candidates of Uj is at most D. Thus, D, that is equal to
the dimension of local space, is the maximum size of a lo-
cally copiable set of maximally entangled states with prime-
dimensional local systems. In comparison with the case with-
out LOCC restriction, where we can copy D2 orthogonal
states, this is actually the square root.

The proof of Theorem 4 is as follows.
Proof. �If part� We have already proven that

�Uj � I �� j�� j=0
D−1 can be copied by LOCC in Theorem 3.

Therefore, any subset of them can be trivially copied by
LOCC.

�Only if part� Assume that a unitary operator A satisfies
the condition �3� for all j.

By applying Theorem 2 to U1, we can choose an
orthonormal basis ��a��a=0

D−1 such that

U1 = 	
a=0

D−1

	a�a
a� , �16�

where 	 is Dth root of unity. Then, we focus on Eq. �3� in
the case of j=1. In this equation, �a�
a � � H is the eigens-
pace of the corresponding eigenvalue 	a of U1 � I in the
left-hand side, and span��a � c�
a � c � � �c�
c � �c=0

D−1 is the
eigenspace of the corresponding eigenvalue 	a of U1 � U1 on
the right-hand side. Since U1 � I is transformed to U1 � U1
by the action of the unitary A in Eq. �3�, the unitary A should
transform the subspace �a�
a � � Hto subspace span��a � c�


a � c � � �c�
c � �c=0

D−1, and the remaining freedom of A is uni-
tary transformations between these subspaces. That is, A is
expressed as

A = 	
a,b,c

�b,c
a �a � c��c�
a�
b� , �17�

where �b,c
a is a unitary matrix for b, c for the same a, that is,

	c=0
D−1�b,c

a �̄b�,c
a =�b,b� and 	b=0

D−1�b,c
a �̄b,c�

a =�c,c�. For every a, �b,c
a

determines a unitary transformation from �a�
a � � H to
span��a � c�
a � c � � �c�
c � �c=0

D−1. Thus, based on the basis
��a��a=0

D−1, the matrix elements of Eq. �3� for all �a1�
a2 �
� �b1�
b2� is written down as


a1�
b1�A�Uj � 1�A†�a2��b2� = 
a1�Uj�a2�
b1�Uj�b2� .

�18�

Therefore, substituting Eq. �17� to Eq. �18� for any integer j,
we obtain

	
b=0

D−1

�b,b1

a1�b1�̄b,b2

a2�b2
a1 � b1�Uj�a2 � b2� = 
a1�Uj�a2�
b1�Uj�b2� ,

�19�

for all a1, a2, b1, and b2.
To see that U1 and Uj can be simultaneously diagonalized,

we need to prove the following lemma.
Lemma 2. A nonzero D
D matrix Uab satisfies the

following equation:

�b1b2

a1�b1,a2�b2Ua1�b1a2�b2
= Ua1a2

Ub1b2
, �20�

where �b1b2

cc =�b1b2
and all indices have their value between 0

and D−1, then Uab is a diagonal matrix.
Proof. See the Appendix.
We apply Lemma 2 to the case when Uab= 
a �Uj �b� and

�b1 b2

a1 a2 =	b=0
D−1�bb1

a1 �̄bb2

a2 . Then, this lemma shows that, 
a �Uj �b�
is a diagonal matrix for all j, therefore unitaries �Uj� j=0

N−1 are

simultaneously diagonalizable in the eigenbasis ��a��a=0
D−1 of

U1. Then, we can get the formula of �Uj� j=0
N−1 explicitly as

follows. From the diagonal element of �19�, we derive

FIG. 2. �Color online� The protocol of local copying �cf. Theo-
rem 3�.
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a � b�Uj�a � b� = 
a�Uj�a�
b�Uj�b� . �21�

From Theorem 2 and Lemma 1, all Uj have the same eigen-
values �	n�n=0

D−1, and from the above discussion, all Uj also
have the same eigenbasis ��a��a=0

D−1. Therefore, we can express
Uj as

Uj = 	
a=0

D−1

	Pj�a��a�
a� , �22�

where Pj�a� is a bijection from �a�a=0
D−1 to themselves. Then,

Eq. �21� guarantees that Pj�a� is a self-isomorphism of the
cyclic group �a�a=0

D−1. Since a self-isomorphism of a cyclic
group is identified by the image of the generator �32�, we
derive the formula �15� with Pj�1�=nj. �

This theorem completely characterizes local copiability of
maximally entangled states in the case of prime-dimensional
local spaces.

So far, we have solved the LOCC copying problem only
for a prime-dimensional local space. Now, we discuss about
the case of a non-prime-dimensional local space. Since
Theorem 3 is valid in this case, the “if” part of Theorem 4 is
also valid in non-prime-dimensional local systems. However,
the “only if” part is extended straightforwardly, if the set
�Uj� j=0

N−1 contains at least one unitary whose eigenvalues are
generated by 	, in other words, in the set of �Uj� j=0

N−1, there
exists Uk whose eigenspace is not degenerate. We can only
show the following statement for the “only if” part.

Theorem 5. If a set of maximally entangled states
�Uj � I ��0�
�0 �Uj

†
� I� is locally copiable, and if there exists

k such that 	 is eigenvalue of Uk, then, there exist an ortho-
normal basis ��a��a=0

D−1 and a set of integers �nj� j=0
N−1 such that,

for all j, Uj can be written down in the form of Eq. �15�.
Proof. The proof does not lose generality by the assump-

tion that U1 has eigenvalue 	. Then, by Theorem 2, Eq. �16�
holds. By the same procedure of the prime-dimensional case,
Eqs. �17� and �18� hold. Thus, we obtain Eq. �19� in the same
way as the prime-dimensional case. Then, Lemma 2 implies
that �Uj� j=0

N−1 can be simultaneously diagonalized, and also
implies Eq. �21� for all Uj. By writing Uj as �22�, we get the
equation Pj�a � b�= Pj�a� � Pj�b� and, so, Pj�a�=aPj�1�.
Hence, Theorem 2 guarantees the same representation of Uj
as �15�.

Therefore, we can solve the problem of local copying in
non-prime-dimensional local spaces as the direct extension
of Theorem 4, only in the case where eigenspace of one of
Uj is not degenerate. On the other hand, if eigenvalues of all
Uj are degenerate, our proof of the “if” part does not hold.

IV. RELATIONSHIP BETWEEN LOCC COPYING
AND LOCC DISCRIMINATION

If we have no LOCC restriction, the possibility of the
deterministic copying is equivalent to that of the perfect dis-
tinguishability. However, we can easily see that under the
restriction of LOCC, this relation is not trivial at all. As we
have already mentioned in the introduction, these two prob-
lems share the common feature, that is, their difficulty can be
regarded as a nonlocality of a set of states, and this nonlo-

cality cannot be explained only by entanglement convertibil-
ity. Therefore, the study of this relationship is really impor-
tant to understand the nonlocality of a set of states. In this
section, we compare the locally distinguishability and the
locally copiability for a set of orthogonal maximally en-
tangled states. Thus, by introducing simultaneous Schmidt
decomposition, we show the relationship between these two
problems of nonlocality.

At first, we review the definition of a locally distinguish-
able set, and then mention several known and new results of
local distinguishability. A set of states ��� j�� j=0

N−1 is called
two-way �one-way� classical communication locally distin-
guishable, if there exists a POVM �Mj� j=0

N−1 which can be
performed by two-way �one-way� LOCC and also satisfies
the following conditions:


�i�Mj��i� = �ij, ∀ i, j . �23�

In order to compare local copying and local discrimination,
we should take care of the following point: We assume an
extra maximally entangled state only in the local copying
case. This is because local copying of a set of maximally
entangled states is trivially impossible without a blank en-
tangled state. This fact is contrary to local discrimination,
that is, we do not allow the parties to share maximal en-
tanglement in the local discrimination problem, since if we
allow, they can always discriminate by teleportation.

Before we compare local copying and local discrimina-
tion, we review the known relation between local copying
and local discrimination. In the paper of Anselmi et al. �22�,
they showed that in the case where the copy set consist of
two maximally entangled states ���0� , ��1��, local copying is
strictly more difficult than local discrimination. That is, from
Ref. �12�, we know that a couple of bipartite states are al-
ways one-way local distinguishable. Also, from Theorem 2,
not all bipartite maximally entangled states are locally
copiable. One example is ���0� , I � U ��0��, where

U =
def

ei��/3��0�
0� + ei�2�/3��1�
1� + ei�4�/3��2�
2� + ei�5�/3��3�
3�
�24�

in 4
4 dimensional systems. The above set is not locally
copiable since the condition 1 of Theorem 2 is not satisfied.
In the following part of this section, by using the result of the
preceding section, we show that local copying is strictly
more difficult than local discrimination for the set of
maximally entangled states ���i��i=0

N−1 with N3.
In the preceding section, we have already proved that D is

the maximum size of a locally copiable set of maximally
entangled states. In the case of local discrimination, we can
also prove that D is the maximum size of a locally distin-
guishable set of maximally entangled states. This statement
was proved by Ref. �18� only when the set of maximally
entangled states ��� j�� j=0

N−1 consists of canonical form Bell
states, where a canonical form Bell state ��nm� is defined as

��nm� =
def

ZnXm
� I��00� ,
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��00� =
def

	
k=0

d−1

�k� � �k� ,

X =
def

	
k=1

d

�k�
k � 1� .

Such a set is a special case of a set of maximally entangled
states. Here, we give a simple proof of this statement for a
general set of maximally entangled states by the same tech-
nique as Ref. �33�.

Theorem 6. If an orthogonal set of maximally entangled
states ��� j�� j=0

N−1 is locally distinguishable, then N�D.
Proof. Suppose ��� j�� j=0

N−1 is locally distinguishable

by LOCC POVM �Mj� j=0
N−1. Then, since LOCC operation

is always separable, �Mj� j=0
N−1 can be decomposed as

Mi=	k=0
L pik ��k�
�k � � ��k�
�k�, where pik is a positive coef-

ficient satisfying 	kpik=Tr Mi, and ���k��k=0
L and ���k��k=0

L are
normalized, but not generally orthogonal sets of states. Then,
we can derive an upper bound of 
� j �Mi �� j�as follows:


� j�Mi�� j� = 	
k=0

L

pik
� j���k�
�k� � ��k�
���� j�

� 	
k=0

L

pik
�k�� 1

D
I��k�

=
Tr Mi

D
,

where the inequality comes from the monotonicity of the
fidelity under partial trace operations concerning the system
B. Since 
� j �Mj �� j�=1, we have 1�Tr�Mj� /D. Finally,
taking the summation of the inequality for j, we obtain
N�D2 /D=D, since 	 j=0

N−1Tr�Mj�=D2.
Therefore, in this case, the maximal size of both locally

copiable and locally distinguishable sets is equal to the
dimension of the local space.

When we consider the relationship between local dis-
crimination and local copying of a set of maximally en-
tangled states, it is quite useful to introduce “simultaneous
Schmidt decomposition” �13,26�. A set of states
����������H1 � H2 is called simultaneously Schmidt
decomposable, if they can be written down as

���� = 	
k=0

d−1

bk
����ek��fk� , �25�

where � is a parameter set, ��ek��k=0
d−1 and ��fk��k=0

d−1 are ortho-
normal bases of local spaces �simultaneous Schmidt basis�
and bk

��� is a complex number coefficient. Actually, it is al-
ready known that for a set of orthogonal maximally en-
tangled states, simultaneous Schmidt decomposability is a
sufficient condition for one-way local distinguishability �13�,
and, as we will show in this section, a necessary condition
for local copiability of it. Moreover, simultaneous Schmidt
decomposability is not a necessary and sufficient condition
for both cases. Therefore, a family of locally copiable sets of

maximally entangled states is strictly included by a family of
one-way locally distinguishable sets of maximally entangled
states. In the following, we prove this relationship.

First, we explain the relationship between local discrimi-
nation and simultaneous Schmidt decomposition which has
been already obtained by Ref. �13�. If an unknown state
�����HA � HB is in a simultaneously Schmidt decompos-
able set of states ���������, such a state can be transformed
to a single local space HA or HB by LOCC. Rigorously
speaking, there exists an LOCC � on HA � HB1B2

which
transforms ���

AB1� � �0B2� to �A � ���
B1B2� for all ���, and

there also exists an LOCC ��on HA1
� HA2

� HB which
transforms �0A1� � ���

A2B� to ���
A1A2� � �B for all ���.

This LOCC transformation � can be written down as the
following Kraus representation �13�:

�, � � 	k=0

d−1
Fk�Fk

†,

where

Fk =
def

�IA � �CNOT�B1B2
��Uk � IA,B2

��Pk � IB1,B2
� ,

Pk =
def

1/D�	
i

	ki�ei��	
l

	kl
el�

Uk =
def

	
i

	ki�f i�
f i�

�CNOT�B1B2
=
def

	
kl

�ek
B1� � �fk� l

B2 �
fk
B1� � 
lB2� .

In the above formula, both ��ek��k=0
D−1 and ��f l��k=0

D−1 are si-

multaneous Schmidt bases of ���������, and ��l��l=0
D−1 is the

standard computational basis. This protocol can be depicted
in Fig. 3, where �Gk� is a garbage state with no information.
Using the above protocol, if a set ������ is simultaneously

FIG. 3. �Color online� A set of simultaneous Schmidt decom-
posable states can be sent to Bob’s space by LOCC.
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Schmidt decomposable, there exists a one-way-LOCC
POVM M�= �Mi�� for a given arbitrary POVM M = �Mi� such
that


���Mi���� = 
���Mi�����, ∀ i, ∀ � .

That is, any POVM can be essentially realized by one-way
LOCC. Therefore, “a simultaneously Schmidt decomposable
set of orthogonal maximally entangled states is one-way
locally distinguishable.”

On the other hand, there exists a set of orthogonal
maximally entangled states which is not simultaneously
Schmidt decomposable, but locally distinguishable. For
example, a set of maximally entangled states
���0� ,X � I ��0� ,Z � I ��0�� is not simultaneously Schmidt
decomposable in any prime-dimensional systems, since
�X ,Z��0. However, this set is one-way locally distinguish-
able in D�3 dimensional systems, since all N-canonical
Bell states are one-way locally distinguishable, if
N�N−1� /2�D �17�. Note that we can easily extend this
example for the set with N3. That is, if a set of canonical
Bell states ���i��i=0

N−1 include the above three states, and if
N�N−1� /2�D is valid, then, such a set is locally distin-
guishable, but not locally copiable. Note that, the set of
���0� , I � U ��0�� with unitary �24� is another type of ex-
ample of a locally disitinguishable, but not locally copiable
set. In this case, they are simultaneously Schmidt decompos-
able �actually all couples of bipartite maximally entangled
states is simultaneously Schmidt decomposable�, however
not canonical Bell states.

Thus, a family of simultaneously Schmidt decomposable
sets of maximally entangled states is strictly included by a
family of locally distinguishable sets of maximally entangled
states.

On the other hand, the relationship between simultaneous
Schmidt decomposability and local copiability can be
described by the following theorem.

Theorem 7. In prime-dimensional local systems, an or-
thogonal set of maximally entangled states ��� j�
� j � � j=0

N−1 is
locally copiable, if and only if it is a simultaneously Schmidt
decomposable subset of canonical form Bell states under the
same local unitary operation.

Proof. We can easily see the “only if” part of the above
statement from Theorem 4 as follows. In Theorem 4, since
Eq. �15� means that each Uj is equivalent to Znj under the
same unitary operation, a set of maximally entangled states
�Uj � I ��0�� j=0

N−1 is local unitary equivalent to �Znj

� I ��0�� j=0
N−1, which is a simultaneous Schmidt decomposable

subset of canonical form Bell states. The “if” part can be
shown as follows. Reference �26� shows that a canonical
Bell set ��n�m�

� ��=1,2 , . . . , l� are simultaneously Schmidt
decomposable, if and only if there exist integers p, q, and
r �p�0 or q�0� satisfying pn� � qm�=r for all �, where �

is the summation modulo D. Since the ring ZD is a field in
the prime number D case, the above condition is reduced to
the existence of f and g such that m�= fn� � g. Then, we get

��n�m�
� = ��n��fn�+g�� = C��ZXf�n�Xg

� I��00� , �26�

where C� =
def

	−f��n�−1�!� is a phase factor. Since ZXf is unitary
equivalent to Z �17�, the state ��n�m�

�
�n�m�
� is locally uni-

tary equivalent with Uj � I ��0�
�0 �Uj
†

� I in Theorem 4. �

We add a remark here. Under the assumption of simulta-
neous Schmidt decomposition, a set has canonical Bell form,
if and only if the set of corresponding unitary operators is a
cyclic group, that is, the group with only one generator.
Therefore, we can rephrase this necessary and sufficient
condition as follows, the set is simultaneously Schmidt
decomposable and satisfies the following condition by a
renumbering:

�27�

Finally, we derive Fig. 1, and, therefore, for maximally
entangled states, a family of locally copiable sets is strictly
included by a family of simultaneously Schmidt decompos-
able sets. In other words, local copying is more difficult than
local discrimination.

In this last part of this section, we discuss our main results
in Fig. 1, in the viewpoint of nonlocality of a set of states.

In the case of bipartite pure states, all information of a
bipartite state ���=	i=0

D−1�i �ei� � �f i� can be separated to two
parts, that is, Schmidt coefficients �i and Schmidt basis
��ei� , �f i��i=0

D−1, where �i�0. Because of local unitary equiva-
lence, Schmidt coefficients completely determine entangle-
ment convertibility �5�. Therefore, conversely, we can regard
the nonlocality coming from interrelationship among
Schmidt basis as nonlocality of a set of states which is purely
beyond entanglement of individual states. In the following
discussion, we try to separate nonlocality which depends on
Schmidt coefficients and Schmidt basis.

At first, all sets in Fig. 1 are sets of maximally entangled
states, that is, they have the same Schmidt coefficients and
the same amount of entanglement. Thus, the structure of
nonlocality in Fig. 1 is determined only by the interrelation-
ship of Schmidt bases, and the effect of Schmidt coefficients
do not appear directly in this figure. On the other hand, when
we calculate the maximal sizes of local distinguishable and
copiable sets, we need to optimize all possible choices of
Schmidt bases. That is, the maximal sizes depend only on
Schmidt coefficients. Therefore, Schmidt coefficients may
affect only the maximal size of local distinguishable and
copiable sets.

The interrelationship of Schmidt bases is determined by
the unitary operator U=	i=0

D−1 �ei�
f i�. In Fig. 1, the two prop-
erties of the interrelationship of Schmidt basis, that is, such
unitary operators, are related to nonlocality of a set. That is,
simultaneous Schmidt decomposability and canonical Bell
form seems to reduce nonlocality of a set. For simultaneous
Schmidt decomposable sets, we can explain their lack of
nonlocality as follows. As we well know, in the case of pure
bipartite states, one person can always apply the local opera-
tion which causes the same transformation for a given state
as another person’s local operation causes �Lo-Popescu’s
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theorem �34��. The simple structure of entanglement convert-
ibility originates in the above symmetry between local sys-
tems. This symmetry is caused by the existence of Schmidt
decomposition. Similarly, in the case of local discrimination,
the protocol Fig. 4 seems to utilize this kind of symmetry
between local systems. Therefore, the existence of simulta-
neous Schmidt decomposable basis can give the symmetry
between the local systems, and this fact may decrease the
nonlocality of the sets of states.

In the case of canonical Bell form, the interesting fact is
that the algebraic property of Weyl-Heisenberg group is re-
lated to local copiability, and not to local distinguishability.
As we have already seen, since a simultaneous Schmidt
decomposable set can be transformed to a single local space
by LOCC, we can use any global discrimination protocols to
such a set by only LOCC. Therefore, concerning local dis-
crimination, the sets of simultaneous Schmidt decomposable
states seem not to possess any nonlocality which originates
in interrelationship between their Schmidt basis. However, if
such a set does not have a canonical Bell form, it is not
locally copiable. That is, a set has extra nonlocality beyond
individual entanglement concerning local copying, if it has
no algebraic structure given in �27�, even if it is simultaneous
Schmidt decomposable. Finally, we can conclude that, in the
view point of problems of nonlocality beyond individual en-
tanglement, the above algebraic nonlocality is a most re-
markable difference between local copying and local
discrimination.

V. APPLICATION TO CHANNEL COPYING,
ENTANGLEMENT DISTILLATION,

AND ERROR CORRECTION

So far, we have treated local copying mainly in the con-
text of nonlocality of a set. On the other hand, we now con-
sider how local copying itself is a benefit to the information
processing. In this last section, we apply our results, espe-
cially Theorem 7 on different contexts, and give several
other interpretations for our results, like channel copying,
entanglement distillation, error correction, and QKD. Thus,
these many connections imply the fruitfulness of local copy-
ing problems as a fundamental two-party protocol. More-
over, seeing local copying from these various points of view,
we may also derive some clue which helps us to construct
further development of understanding of nonlocality beyond
entanglement convertibility.

A. Channel copying

In Sec. III, in the analysis of local copying, we treated not
directly maximally entangled states, but unitary operators
which represent the maximally entangled states based on
some standard maximally entangled states. This method is a
kind of operator algebraic method, or equivalent to Heisen-
berg picture. Therefore, we can interpret our results as di-
rectly the results for these unitary operators themselves.
Then, as a result, we can look at the problem of “unitary
channel copying.”

Here, we consider a problem “channel copying,” that is, a
problem in which we ask a question as follows: in the case
that we do not have complete description of a channel, “Can
we simulate two copies of an unknown channel by using the
unknown channel only once and also using a known blank
channel once.” For example, such a question may occur in
the following case. There exists an unknown and rare quan-
tum operation, of which we would like to have the outputs
�results of the operation� be as many as possible. However,
we can not restrict inputs of the channel, therefore the inputs
might be arbitrary states. Under the above condition, we
would like to decrease the frequency of use of the operation.
Such a situation may occur in query complexity problem
�35�. In this case, an unknown channel is a query which is
represented by a unitary operation.

As we will see in the following discussion, channel copy-
ing with the help of one-way classical communication be-
tween sender and receiver is equivalent to local copying of
corresponding entangled states with the help of one-way
classical communication between Alice and Bob. The prob-
lem setting of channel copying can be written as follows.

Definition 1. We call that a set of channel
��i�i=1

N ;B�HA1�→B�HB1� is copiable with one-way
classical communication and a blank channel �b, if for all i,
there exists sets of Kraus’s operators �Ak�k=1

K �B�HA1

� HA2�, �Bl
k�l=1

L �B�HB1 � HB2� such that 	k=1
K Ak

†Ak= IA,
	l=1

L Bl
k†Bl

k= IB for all l, and for all i and � on HA1 � HA2,

	
kl

Bl
k��i � �b�Ak�Ak

†��Bl
k† = �i � �i��� . �28�

The meaning of the above definition can be sketched as Fig.
4, that is, by an encoding operation �Ak�k=1

K and a decoding
operation �Bl

k�l=1
L , one copy of unknown channel �i with one

copy of blank channel �may be noisy� �b works as two cop-
ies of unknown channels �i � �i. For simplicity, we always
assume dim HA1=dim HA2=dim HB1=dim HB2 in the fol-
lowing discussion.

Then, we can easily show that the channel copying prob-
lem with one-way classical communication is exactly the
same as the local copying of corresponding entangled states
with one-way classical communication.

Theorem 8. A set of channel ��i�i=0
N−1 is copiable with one-

way classical communication and a blank channel �b, if and
only if a set of entangled states ��i � I����
� � ��i=N is locally
copiable with one-way classical communication and blank
states �b � I����
� � �, where ��� is an arbitrarily fixed
maximally entangled state.

FIG. 4. �Color online� Definition of channel copying with one-
way classical communication. By suitable encoding �Ak� and decod-
ing �Bl

k� operations, each �i works as �i � �i.
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Proof. Suppose ��i�i=0
N−1 is copiable with one-way classical

communication and a blank channel �b. Consider four sys-
tems H1 � H2 � H3 � H4, and prepare two copies of maxi-
mally entangled states ���
�� on H1 � H3 and H2 � H4, re-
spectively. Then, by applying channel copying protocol for
H1 � H2, we derive the following calculations:

	
kl

Bl
k12

� I34��i
1

� �b
2

� I34�Ak
12

� I34��13�
�13�

� ��24�
�24�Ak
†12

� I34��Bl
k†12

� I34

= 	
kl

Bl
k12

� I34��i
1

� �b
2

� I34�I12
� Ak

t34��13�
�13�

� ��24�
�24�I12
� Ak

*34��Bl
k†12

� I34

= 	
kl

Bl
k12

� Ak
t34���i

1
� I3���13�
�13��

� ��b
2

� I4��24�
�24���Bl
k†12

� Ak
*34

= �i
1

� I3���13�
�13�� � �i
2

� I4���24�
�24�� ,

where the last equality comes from Eq. �4�. Therefore, �i
� I����
� � � is locally copiable with one-way classical com-
munication. We can also easily check the opposite direction
of the proof. �

The correspondence between channels � and entangled
states � � I����
� � � is called Choi-Jamiolkowski’s isomor-
phism �36�. The above theorem shows that the channel copy-
ing problems can be always identified to corresponding local
copying problems of entangled states in the case of one-way
classical communication. On the other hand, since not all
states can be written down as � � I����
� � � for some maxi-
mally entangled state ���, not all local discrimination
problems can be considered as a channel copying problem.

Choosing all �i as unitary channels, we derive maximally
entangled states for corresponding entangled states. There-
fore, our results in Secs. III and IV give also results for
unitary channel copying as follows.

Corollary 1. In a prime-dimensional system, a set of uni-
tary channels ��i�i=0

N−1 where �i���=Ui�Ui
† is copiable with

blank noiseless channel �b= I and one-way classical commu-
nication, if and only if �Ui�i=0

N−1 is a simultaneous diagonaliz-
able subset of Weyl-Heisenberg �generalized Pauli� group.

Proof. We can easily see from Theorems 7 and 8.
As we will see later, the above analysis of channel copy-

ing can also be used in the context of error correction of the
quantum channel.

B. Entanglement distillation

As the next example of applications of our results, we
consider entanglement distillation. Although we have only
considered the local copying of pure states so far, we apply
our protocol for mixed states in backward directions in this
section.

Since our local copying protocol consists of local unitary
operations, we can also consider the opposite direction of our
protocol. This inverse of local copying protocol is actually
entanglement distillation protocol by local unitary. Since we

usually use measurements in entanglement distillation proto-
cols �6,8,37�, this is a really rare example of entanglement
distillation by unitary transformation. As we can see in Fig.
2, the inverse of our protocol transforms ��i� � ��i� to ��i�
� ��0� by a local unitary operation. Therefore, if we consider
mixed states like

� = 	
ij

aij��i� � ��i�
� j� � 
� j� , �29�

and apply our local copying protocol, where ���i��i=0
D−1 is a set

of simultaneous Schmidt decomposable subset of canonical
Bell states, then we derive

A†
� At�A � A* = �	

ij

aij��i�
� j� � ��0�
�0� , �30�

where A is a local unitary operator defined at �17�. This
protocol is actually entanglement distillation protocol
deriving one e-bits for all mixed states which satisfy the
above condition. Moreover, in the case aij =�ij /D, since
	i=0

D−1 1
D ��i�
�i� is a separable state, this distillation protocol

by the local unitary is optimal. Actually, the states �29� be-
long to a class of states called “maximally correlated states,”
and the simple formula of distillable entanglement for maxi-
mally correlated states has been already known �8�. However
the above protocol is deterministic and moreover unitary, this
is actually an important point. Generally speaking, determin-
istic distillable entanglement is strictly less than the usual
asymptotic one �9�. Therefore, this is a very rare case where
we can derive the meaningful lower bound of deterministic
entanglement distillation for mixed states.

C. Error correction and QKD

As another application, we apply our result to error cor-
rection and quantum key distribution with the following spe-
cific noisy channel in this section. Now, we consider the
inverse of channel copying protocols in Sec. V A, and we
derive the error correcting protocol which corresponds to the
above distillation protocol. Consider a channel ����
=	k=1

N Ek�Ek
† on H1 � H2, where Ek satisfies 	k=1

N Ek
†Ek= I and

can be written down as Ek=	i=0
D−1ckiUi � Ui by a simultaneous

diagonalized subset �Ui�i=0
D−1 of generalized Pauli’s group. �In

particular, when a channel can be decomposed by a set of
Kraus operators which have a form Ek= pkUk � Uk, the chan-
nel is called collective noise. Such a noise may occur, for
example, in the case when we send two photonic qubits si-
multaneously through optical fiber or free space �38�.� Since
whole dimension of operator space B�H1 � H2� is D4, these
error operators have very limited forms. However, in this
case, the inverse of our copying protocol gives one noiseless
channel as follows. If the channel � satisfies the above con-
dition, then the channel � can be written down as ����
=	ijaijUi � Ui�Uj

†
� Uj

†. Then, by the inverse of channel
copying operation, we have the following relation:
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A†���A�A†��A = 	
ij

aijA
†�Ui � Ui�A�A†�Uj

†
� Uj

†�A

= 	
ij

aij�Ui � I���Uj � I� .

Thus, using an ancilla �0, encoding operation A and decod-
ing operation A†, we derive a noiseless channel in H2 as
follows:

Tr1 A†���A��o � ��A†��A = � .

Similarly to the distillation case, as is shown later, when
aij =�ij /D, this error correcting protocol attains the
asymptotic optimal rate of transmitting the quantum state
through the channel �. That is, the transmission rate of this
protocol is equal to the quantum capacity of this rate.

This fact can be seen by the correspondence between
quantum capacity and distillable entanglement given in Ref.
�6�. Thus, for generalized Pauli’s channel, quantum capacity
coincides with distillable entanglement of the corresponding
state, which is the state derived as the output state when
inputting a part of a maximally entangled state, i.e.,
	i=0

D−1 1
D ��i� � ��i�
�i � � 
�i�. Since our protocol is the opti-

mal distillation protocol for this state, this channel coding
protocol is also optimal.

Next, we apply this error correcting protocol to QKD. In
the D-dimensional case, we apply the above encoding and
decoding operations for D-dimensional version of Bennett-
Brassard 1984 �BB84� protocol �39�. Here, we fix noise op-

erators as Ui =
def

Xi=FZF†, and encoding operation as A =
def

F

� F�CNOT�F† � F†, where F =
def

	i � ĩ�
i� is Fourier transforma-

tion, and �ĩ� =
def

1
�D

	 j=0
D−1	ij � j� is a Fourier transformed basis.

Then, we can easily see these Ui and A satisfy Eq. �3�. For

simplicity, we choose ancilla �0= �0̃�
0̃�.Then, applying the
error correcting code to BB84 protocol, we derive the fol-
lowing protocol.

Protocol �1� State preparation: Alice randomly chooses a

basis from ��0� � �i��i=0
D−1 and ��0� � �ĩ��i=0

D−1, and generates one
state from the chosen basis randomly. �2� State transmission:
Alice sends those two qudits to Bob. �3� Decoding: Bob
randomly chooses measurement basis from �	 j=0

D−1 �a�
a �
� �a � i�
a � i � �i=0

D−1 and �I � �ĩ�
ĩ � �i=0
D−1, and measures the

states. �4� Basis announcement: Alice and Bob discard any
digits where they prepared and measured in a different basis.

We can easily see that the step �1� can be decomposed
into the following steps �1A� and �1B�, and the step �3� can
be decomposed into the following steps �3A� and �3B�. �1A�
Preparation of BB84 states: Alice randomly chooses a basis

from ��i��i=0
D−1 and ��ĩ��i=0

D−1, and creates a qubits from the cho-
sen basis. �1B� Encoding: Alice encodes the qubits by our
error correcting code, that is, applies encoding operation

A=F � F�CNOT�F† � F† with ancilla qubit �0̃�. �3A� Error cor-
rection: Bob applies the decoding operation F � F�CNOT†�F†

� F†, and throws away the ancilla qudit. �3B� Detection: Bob

randomly chooses a basis from ��i��i=0
D−1 and ��ĩ��i=0

D−1, and mea-

sures the decoded qudits. Therefore, if the noise of the quan-
tum channel satisfies our assumption �that is, noise operator
Ek can be written as Ek=	i=0

D−1ckiX
i � Xi�, by means of the

error correction code, we can realize the noiseless QKD by
the above protocol.

VI. DISCUSSION

In this paper, we focus on a set consisting of several maxi-
mally entangled states in a prime-dimensional system. In this
case, we completely characterized locally copiability and
showed the relationship between locally copiability and local
distinguishability. In Secs. III and IV, we proved that such a
set is locally copiable, if and only if it has a canonical Bell
form and a simultaneous Schmidt decomposable �Theorem
7�. This theorem deduces the following two conclusions. At
first, as well as the maximal size of local distinguishable sets,
the maximal size of locally copiable sets is D, that is, equal
to the dimension of the local space. This maximal size is the
square root of the maximal size without the LOCC restric-
tion. Second, as we can see in Fig. 1, when such a set is
locally copiable, it is also one-way locally distinguishable,
and the opposite direction is not true. In other words, at least
in prime-dimensional systems, local copying is more difficult
than one-way local discrimination for a set of maximally
entangled states.

In the case of local discrimination, a simultaneous
Schmidt decomposable set is locally distinguishable. How-
ever, if such a set of states does not have canonical Bell
form, the set is not locally copiable. We can interpret the
above fact as follows. A simultaneous Schmidt decompos-
able set does not possess nonlocality beyond individual en-
tanglement concerning local discrimination. On the other
hand, if such a set does not have canonical Bell form, such a
set still has nonlocality concerning local copying.

Although we only treated orthogonal sets of maximally
entangled states in this paper, our result of Fig. 1 also regard
as the classification of sets of Schmidt basis by their nonlo-
cality. Therefore, in the case of a set of general entangled
states, the structure of nonlocality of sets of Schmidt basis
may be similar to Fig. 1, though it possesses additional non-
locality which originates in various Schmidt coefficients.
Therefore, our result may be useful as the base for more
general discussion of nonlocality problems of Schmidt basis,
especially for general discussion of the local copying prob-
lems.

In Sec. IV, we showed that our results and protocol of
local copying can be interpret as results of several different
and closely related quantum information processing, that is,
channel copying, entanglement distillation, error correction,
and quantum key distribution. These close relations with
many other protocols suggests the importance of local copy-
ing as a fundamental protocol of nonlocal quantum informa-
tion processing.

Finally, we should mention a remaining open problem. In
this paper, we showed the necessity of the form of states �15�
for LOCC copying only in prime-dimensional local systems.
However, we restrict this dimensionality only by the techni-
cal reason, and this restriction has no physical meaning.
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Thus, the validity of Theorem 7 for non-prime-dimensional
systems still remains an open question.

After finishing the first draft �40�, the authors found a
related paper �41� which contains a different approach to
Theorem 6, and also found a paper which extends our result
to a set of nonmaximally entangled states based on our main
theorem �Theorem 4� �42�.
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APPENDIX: PROOF OF LEMMA 2

In this appendix, we prove Lemma 2 by induction.
Proof. First, in Eq. �20� by choosing c=a1 � b1=a2 � b2,

we have

�b1b2
Ucc = Uc�b1 c�b2

Ub1b2
. �A1�

In addition, choosing b1�b2, we derive

Uc�b1 c�b2
Ub1b2

= 0 �A2�

for all c. The above equation means,

b1 � b2 ⇒ Ub1b2
= 0 or Uc�b1 c�b2

= 0, ∀ c , �A3�

By means of the above fact, we prove

Ub b�n = Ub b�n = 0 �A4�

for all b and for all 0�n�D−1 by induction concerning the
integer n. At first, we prove Ub b�1=0 and Ub b�1=0 for all
b by a contradiction, and then, under the assumption of
Ub b�k=Ub b�k=0 for all b and for all k�n−1, we prove
Ub b�n=Ub b�n=0 for all b.

Proof of Ub b�1=0 for all b. We prove Ub b�1=0 for all b
by contradiction. We assume that there exists b1 such that
Ub1 b1�1�0, then, Eq. �A3� implies Ub b�1=0 for all b. In
order to show the contradiction, we prove Ub b�k=0 for all b
and k by induction concerning k.

We assume Ub b�k=0 for all b, and show Ub b�k�1=0 for
all b. By substituting a1=b � b1, a2=b � b1 � k � 1, and
b2=b1 � 1, Eq. �20� guarantees that

�b1 b1�1
b b�k Ub b�k = Ub�b1 b�b1�k�1Ub1 b1�1. �A5�

Then, by substituting Ub b�k=0, Eq. �A5� guarantees that

Ub�b1 b�b1�k�1Ub1 b1�1 = 0 �A6�

for all b. Since we assumed Ub1 b1�1�0, Eq. �A6� guaran-
tees that Ub�b1 b�b1�k�1=0 for all b, that is, Ub b�k�1=0 for
all b.

Therefore, by induction concerning k, we derive
Ub b�k=0 for all b and k by induction. This is a contradiction
for the assumption that Ub1 b1�1�0. So, we derive
Ub b�1=0 for all b.

Proof of Ub b�1=0 for all b. Similarly, we can prove
Ub b�1=0 for all b by a contradiction as follows. Suppose
there exists b1 such that Ub1 b1�1�0, then, Eq. �A3� implies
Ub b�1=0 for all b. In order to show the contradiction, we
prove Ub b�k=0 for all b and k by induction concerning k.
Eq. �20� implies

�b1 b1�1
b b�k Ub b�k = Ub�b1 b�b1�k�1Ub1 b1�1. �A7�

Thus, if Ub b�k=0 for all b, we derive Ub b�k�1=0 for all b.
Therefore, by induction, we have Ub b�k=0 for all k and b.
This is a contradiction for the assumption Ub1 b1�1�0.
Therefore, Ub b�1=0 for all b.

Proof of Ub b�n=Ub b�n=0 for all b and 0�n�D−1. As
the final step, in order to proof Ub b�n=Ub b�n=0 for all b
and 1�n�D−1, we use induction for n again. We
assume Ub b�k=Ub b�k=0 for all k�n−1 and show
Ub b�n=Ub b�n=0 for any b by a contradiction. Assume that
there exists b1 such that Ub1 b1�n�0, then Equation �A3�
implies that Ub b�n=0 for all b. To show the contradiction,
under the above assumption, we prove Ub b�k=0 for all b, all
0�k� ln−1, and all l, �that is, for all k�, by induction con-
cerning 1� l. We assume Ub b�k=0 for all b and all
�l−1�n�k� ln−1, and show Ub b�k=0 for all b and all
ln�k� �l+1�n−1. By substituting a1=b � b1, a2=b � b1

� n � k, and b2=b1 � n, Eq. �20� implies

�b1 b1�n
b b�k Ub b�k = Ub�b1 b�b1�n�kUb1 b1�n. �A8�

By substituting Ub b�k=0 for all b and �l−1�n�k� ln−1,
we have Ub b�k=0 for all ln�k� �l+1�n−1 and b. There-
fore, by induction concerning l, we derive Ub b�k=0 for all b
and all 1�k. This contradicts Ub1 b1�n�0. Therefore,
Ub b�n=0 for all b.

By means of the same discussion for Ub b�n, we can
prove Ub b�n=0 for all b, �what we only have to do is chang-
ing � to � in the above proof�. Finally, by the mathematical
induction concerning n, we prove Ub b�n=Ub b�n=0 for all b
and all 0�n�D−1. Therefore, Uab is a diagonal matrix. �
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