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I. INTRODUCTION

The modern development of quantum technology enables
people to control the quantum processes of a microscopic
system by an external field �1–6�. From the point of view of
quantum mechanics, the objective of quantum control is to
reach a desired state �called the target state� from the initial
state of the controlled system by manipulating its external
parameters. Some aspects of quantum information can be
understood as quantum control �7�. For example, quantum
computation, which manipulates the evolution of a quantum
system by appropriate logic gate operations, is essentially a
quantum control process using external parameters. In quan-
tum error correction, feedback control is used to detect the
unwanted couplings and correct them �1�. Quantum measure-
ment can also be regard as a special control process, which
projects the unknown state into a definite state that we desire
with maximized probability through wave-function collapse.

In quantum control, an intriguing concept is to use the
quantum Zeno effect �8,9�. This effect freezes the evolution
of a quantum state through frequent measurements. For in-
stance, in quantum bang-bang control �1�, the measurement
operations are generalized by a sequence of pulses. Recently
a quantum control scheme associated with an effect opposite
to the quantum Zeno effect was discovered, which acceler-
ates the decay of the unstable state by frequent measure-
ments. This effect is called the anti-Zeno effect �10–14� or
inverse Zeno effect. This discovery opens a new area for
quantum control and has been used to control various physi-
cal systems, such as trapped atoms in an optical-lattice po-
tential �15�, a superconducting current-biased Josephson
junction �16�, ultracold atomic condensates �17�, and so on.

In this paper, we consider the anti-Zeno effect with an
engineered system formed by an experimentally accessible
ring-type quantum-dot array and an extra quantum dot. Here,
the extra dot is coupled to one dot of the array. Since it is an
artificial system with more flexibly controlled parameters,
we can study the dynamic details of the transition between
the quantum Zeno and the quantum anti-Zeno effects in the

one-directional quantum tunneling of an electron from the
extra dot to the quantum-dot array. Our main purpose is to
find a way of controlling the electron tunneling. Our inves-
tigation is mainly based on the discovery that the k-space
representation of the quantum-dot ring model is equivalent to
the famous Anderson-Fano-Lee model �18–20�, which cor-
rectly describes the irreversible quantum process of a single
energy level coupled with a continuous-spectrum bath. Then
the standard approach �21� is used to obtain the analytic so-
lution for the quantum tunneling dynamics. We also consider
the tunneling dynamics of bosons in a one-dimensional op-
tical lattice with the same configuration as that of fermions.

This paper is organized as follows. In Sec. II, we describe
the engineered model of the quantum-dot array. Then we
point out that its k-space representation is essentially the
Anderson-Fano-Lee model. In Sec. III, we study the quan-
tum irreversible process of quantum tunneling in the Heisen-
berg picture. In Sec. IV, we calculate the modified tunneling
rate by successive projective measurements, which are per-
formed on one dot to detect whether an electron is trapped
there. We also use a numerical calculation to confirm our
observations. In Sec. V, we discuss similar problems for
bosons. Finally, in Sec. VI, we conclude the paper with some
remarks.

II. QUANTUM-DOT ARRAY MODEL FOR ONE-
DIRECTIONAL QUANTUM TUNNELING

We begin with a system of 2N identical quantum dots
arranged in a ring threaded by a magnetic flux �. Here, each
structureless quantum dot traps only one electron in a single
state. The sites of the quantum-dot ring are labeled by 0,
1,¼, 2N−1. The zeroth quantum dot interacts with an addi-
tional quantum dot in addition to those placed on the ring, as
is illustrated schematically in Fig. 1�a�.

Under the tight-binding approximation, the model Hamil-
tonian reads �22–25�

H = �J �
j=0

2N−1

ei�/N�âj
†âj+1 + ��AâA

† âA + �gâ0
†âA + H.c., �1�

which describes the electron tunneling dynamics of this
quantum-dot system controlled by a magnetic flux. Here, J
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denotes the hopping integral over the jth and �j+1�th sites.
For simplicity, we assume J is a constant. g is the coupling
strength between the quantum dots at the zeroth site and the
additional site A; �A is the on-site potential �also called the
chemical potential� of site A; � is the magnetic flux through
the ring; and aj

† �aj� is the fermion creation �annihilation�
operator at the jth site. We note here that the above Hamil-
tonian was presented by Peierls �22� to study the magnetic
flux effect phenomenologically up to the second-order ap-
proximation.

We consider a dual picture �Fig. 1�b�� of the above
quantum-dot model illustrated by Fig. 1�a�. Through the Fou-
rier transformation

âj =
1

�2N
�
k=0

2N−1

ei�/Nkjâk, �2�

the original Hamiltonian is transformed into a k-space repre-
sentation �26�. In this momentum representation, the Hamil-
tonian becomes

H = � �
k=0

2N−1

�kâk
†âk + ��AâA

† âA +
�g

�2N
�
k=0

2N−1

�âk
†âA + H.c.� ,

�3�

where

�k = 2J cos
�

N
�� + k� �4�

is the well-known Bloch dispersion relation. In this dual
model �3�, the quantum dots in the ring-type array are
coupled to the single quantum dot A homogeneously. The 2N
modes of the ring quantum-dot array are characterized by the
operators âk

† and âk, which create and annihilate a quasiexci-
tation in the kth mode.

From the above dual picture of the quantum-dot array
model, it can be observed that a one-directional quantum
tunneling in our quantum-dot model can occur as a typical
quantum dissipation phenomenon. Since the quantum dot A
is coupled to the other quantum dots of the ring array, the
electron in this dot can easily tunnel into the array, but it is
very difficult for all the electrons in the array to go back to
the dot A simultaneously. Thus the electron in the quantum
dot A will experience an irreversible process. A similar phe-
nomenon was studied as the Fano model �18� for atomic
physics, the Anderson model for condensed matter physics
�19�, and even as the Lee model for particle physics �20�. In
this paper we focus on the quantum control problem for ir-

reversible quantum tunneling, namely, we explore the possi-
bility of changing the microscopic quantum tunneling pro-
cess by adjusting the external field, since many parameters in
such an artificially engineered system can be tuned to a great
extent.

III. EVOLUTION DYNAMICS IN THE HEISENBERG
PICTURE

The total system described by Hamiltonian �3� is isolated
as a closed system, but the electron in each dot, such as dot
A, is an open system. When we are only interested in the
dynamics of quantum dot A, the quantum-dot array can be
regarded as an engineered environment. In the terminology
of the quantum open system approach, the Hamiltonian �3�
describes a single-level system interacting with an environ-
ment �27�. Such an engineered environment is composed of
an ensemble of 2N qubits. State �1� denotes one electron in
the dot, and �0� denotes no electron in the dot. The unitary
operator generated by the Hamiltonian �3� entangles the sys-
tem with the environment.

Now we investigate the dynamics of the model �3� in the
Heisenberg picture. The Heisenberg equation driven by the
Hamiltonian �3� results in the following equations:

d

dt
âk�t� = − i�kâk −

ig
�2N

âA, �5�

d

dt
âA�t� = − i�AâA − ig �

k=0

2N−1
âk

�2N
. �6�

The motions of âk and âA are coupled via the coupling con-
stant g. For convenience in the following discussions, we
consider only its short-time behavior, by employing the op-
erator ordering prescription. We should point out that the
short-time behavior has been studied in Ref. �10� for the
general case with the coupling of a discrete state to a con-
tinuum. With an analytical approach in the Schrödinger pic-
ture, the authors of �10� found that the decay process of a
single state coupled to a discrete or a continuous spectrum is
determined by the energy spread caused by the measure-
ments �10�. Our approach will be carried out in the Heisen-
berg picture for the present realistic system.

Defining two fermion operators

Ĉk = âke
i�kt, B̂ = âAei�At �7�

to remove the high-frequency effect, we have the integro-
differential equation

dB̂

dt
= −

ig
�2N

�
k=0

2N−1

e−i��k−�A�tĈk�0�

−
g2

2N
�
k=0

2N−1 	
0

t

B̂�t1�ei��k−�A��t1−t�dt1 �8�

from the above Eqs. �5� and �6�. Integrating both sides of Eq.
�8�, we proceed with an iteration method to obtain a suitable
operator ordering prescription for the dynamic evolution of

FIG. 1. �Color online� �a� The real-space schematic illustration
for 2N identical quantum dots arranged in a ring threaded by a
magnetic flux, with the zeroth dot interacting with dot A. �b� The
virtual-space schematic illustration for a ring quantum-dot array
coupled with quantum dot A homogeneously.
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âk�t� and âA�t�. If the coupling strength g is small, we can
omit terms with the order of g higher than 2. It is a reason-
able assumption that âA�t� varies slowly within a short time

interval. By replacing B̂�t1� with B̂�0� in the right-hand side
of the above equation, the evolution of the annihilation op-
erator âA�t� is approximately calculated as

âA�t� = âA�0�e−i�At − �
k=0

2N−1
igâk�0�
�2N

e−i�At	
0

t

e−i��k−�A�t�dt�

− âA�0�e−i�At	
0

t

dt��t − t��ei�At���− t�� , �9�

where the memory function �16�

��t� =
g2

2N
�
k=0

2N−1

ei�kt �10�

depends only on the quasiexcitation in the 2N modes of the
ring quantum-dot array and the magnetic flux.

IV. QUANTUM TUNNELING AFFECTED BY A SEQUENCE
OF PROJECTIVE MEASUREMENTS

Now we consider the decay of the tunneling rate induced
by an instantaneous projective measurement into the initial
state of the total system. Suppose that the entire system is
initially prepared in a state with an electron in the quantum
dot A and no electron in the ring array. Let �0� denote the
vacuum state that no electron exists in the entire system.
Then the initial state can be written as

���0�� = âA
†�0��0� . �11�

Obviously, this state is unstable since the electron may tunnel
to any dot of the quantum-dot array in Fig. 1�b�. After a
period of evolution, the probability for finding the electron
inside the dot A and no electrons in the ring array is

p�t� = 
���0��U�t����0��
2, �12�

where U�t�=exp�−iHt /�� is the unitary operator.
Assume the coupling strength g is small. For a projective

measurement into the initial state, the probability for finding
the electron in the initial state is

p�t� = exp�− Rt� , �13�

which decays exponentially with a decay rate R calculated as

R = 2 Re 	
0

t

dt�G�t,t��e−i�At���− t�� , �14�

where ��t�� is just the memory function we defined above
and G�t , t��= �1− t� / t�. This is a similar expression to the
ones obtained in Refs. �10–14�.

To justify the above result, we assume the system is ini-
tially prepared in the state ���0��= âA

†�0��0�. The probability
for finding the electron inside the dot A and no electrons in
the array is p�t�= 
�0�âA�t��1A�
2. With the explicit expression
Eq. �9� for âA�t�, we obtain

p�t� = �1 − 	
0

t

dt��t − t��e−i�At���− t���2

. �15�

Since g is small and ��t� is proportional to g2, we approxi-
mately have

p�t�  �exp�− 	
0

t

dt��t − t��e−i�At���− t����2

, �16�

or Eq. �13� with R�t� defined by Eq. �14�.
After such measurements have been done n= t /� times,

the survival probability for finding the electron still in dot A
is

p�t = n�� = exp�− 2n	
0

�

dt��� − t��e−i�At���− t���
= exp�− 2t	

0

�

dt�G��,t��e−i�At���− t���
= exp�− 2t Re 	

0

�

dt�G��,t��	


�� − t��e−i�At���− t��� , �17�

which gives the decay rate modified by measurement:

R = 2 Re 	
0

+�

dt�G��,t��	�� − t��e−i�At���− t�� , �18�

where 	�x� is the Heaviside unit step function, i.e., 	�x�
=1 for x�0, and 	�x�=0 for x0.

Define the modulation function caused by measurement
as

f�t� = G��,t�e−i�At	�� − t� . �19�

By applying the Fourier transformation to the modulation
function f�t� and the memory function ��−t�, the decay rate
modified by frequent projective measurement is calculated as

R =
g2�

4�N
�
m=0

2N−1

sinc2��J cos
�� + m��

N
−

�A

2
��� . �20�

Equation �20� shows that the decay rate R depends on four
parameters: the time interval � between two successive mea-
surements; the number 2N of quantum dots placed on the
ring; the on-site-potential �A, which is applied to the dot A
by the electrode; and the magnetic flux � through the ring
quantum-dot array; but only �, �A, and � can be adjusted
experimentally.

To study the dynamic details of the irreversible quantum
tunneling, we first consider the dynamic behavior of the elec-
tron with no measurement performed. The Fermi golden rule
is used to calculate the decay rate as
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R =
g2

4N
�
m=0

2N−1

��2J cos
�� + m��

N
− �A� . �21�

Equation �21� shows that the decay rate depends on �A, N,
and �. If ��A��2J and the number of quantum dots placed
on the ring is finite, there are two situations for the electron
motion when one adjusts the magnetic flux �: �1� The elec-
tron tunnels into the quantum-dot array arranged in a ring
and never comes back; �2� the electron stays in site A. In the
following, we will explain the physical mechanism for the
switch between these two situations by adjusting �. The en-
ergy level of the ring quantum-dot array is discrete in Fig.
1�b�, and electron tunneling between dots occurs when the
discrete energy level of one dot matches that of the other dot.
The magnetic flux � controls the discrete energy levels of
the quantum-dot array to match or not to match the energy
level of quantum dot A so that the above two phenomena can
occur. As the number of quantum dots placed on the ring
increases, the discrete energy levels of the dot array approach
each other. Thus the effect of magnetic flux � becomes van-
ishing, and the controllable parameter is only the on-site po-
tential �A. The two phenomena described above happen to
the electron when ��A� is smaller or larger than 2J.

Actually, as for Eq. �21�, one can also use the Wigner-
Weisskopf approach �21� to describe the electron dynamic
evolution approximately. To this end, we first take the
Laplace transformation of Eq. �8�,

B̂�s� =
B̂�0�
f�s�

− �
k=0

2N−1
igĈk�0�

�2Nf�s��s + i��k − �a��
, �22�

where

f�s� = s + �
k=0

2N−1
g2/�2N�

s + i��k − �a�
. �23�

As the coupling strength g is small, the Wigner-Weisskopf
approach gives the zero point of f�s� �21�, which results in
the approximate solution

B̂�t� = B̂�0�e−Rt − �
k=0

2N−1
ige−RtĈk�0�

�2N�i��k − �A� − R�
, �24�

where R has the same expression as Eq. �21�. So long as the
Wigner-Weisskopf approximation is valid for some time in-
terval, the above solution can correctly describe the quantum
tunneling phenomenon in the coupled-quantum-dot configu-
ration.

Next we study the dynamic behavior of the electron in
quantum tunneling when �→0, i.e., the system is measured
continuously. In this case the decay rate for the electron tun-
neling from quantum dot A to the quantum-dot array van-
ishes. This means the electron is frozen in the quantum
dot A.

Then we consider the behavior of the electronic quantum
tunneling with a finite time interval between two successive
measurements. Due to the finiteness of the time interval, we
find that only the quantum anti-Zeno effect can occur in
some cases. From Eq. �20�, we can see that, when one of the
energy levels of the ring dot array matches that of dot A, that
is, the parameters � and �A satisfy the following equation:

2J cos
�� + m��

N
= �A, �25�

the tunneling rate is an increasing function of time interval �.
Consequently, the quantum Zeno effect occurs. When all en-
ergy levels of the array are out of resonance with that of dot
A, i.e., Eq. �25� cannot be satisfied for any m, the tunneling
rate is roughly a descending function of �. Thus the quantum
anti-Zeno effect occurs. Hence, when the time interval � be-
tween two successive measurements is finite, in the region of
��A�2J, the occurrence of the quantum Zeno or anti-Zeno
effect depends on the magnetic flux � for a given on-site
potential �A; and for a given magnetic flux �, the occurrence
of the quantum Zeno or anti-Zeno effect depends on the on-
site potential �A. In the region of ��A��2J, only the quantum
anti-Zeno effect occurs when the time interval � is in an
appropriate finite range.

FIG. 2. �Color online� �a�
Three-dimensional �3D� diagram
for the behavior of the decay rate
as a function of � and � under the
setting J=5, g=1, N=20, and �A

=0. �b� The cross sections of the
3D surface for �=2,7 ,15. �c� The
cross sections of the 3D surface
for �=0.6,1.2,2.7. The figure
shows that the tunneling rate can
be modulated by the magnetic
flux. The unit of time interval is �
and the unit of magnetic flux is
Wb.
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In Figs. 2 and 3�a�, we numerically plot the decay rate as
a function of � and the magnetic flux � for different on-site
potentials �A. Figure 2 is plotted when the on-site potential
�A is just within the energy range of the ring dot array. It
shows that, when the time interval approaches zero, the
quantum Zeno effect does occur, which coincides with our
above discussion; for a small time interval, the tunneling rate
is a constant; for an appropriate time interval, whether the
electron tunnels out of the quantum dot A to another dot or
stays in quantum dot A is dependent on the magnetic flux.
This means we can inhibit or accelerate the dissipative mo-
tion of the electron. Figure 3�a� shows that when the on-site
potential �A is outside the energy range �−2J ,2J�, the tun-
neling rate depends only on the interval �. As �→0, the
quantum Zeno effect also occurs, but there exists a range of
finite �, within which the system decays rapidly as the mea-
surement frequency increases, so only the quantum anti-
Zeno effect occurs. These findings verify our arguments
above.

For different time intervals � between two successive
measurements, in Figs. 3�b� and 4, we numerically plot the
tunneling rate as a function of the magnetic flux � and on-
site potential �A. In this system, �A is controlled by the
electrochemical gate electrode. It can be seen that for a
sufficiently small interval �, shown in Fig. 3�b�, the tunnel-
ing rate modified by measurement is independent of the
magnetic flux �, but for an appropriate interval �, shown in

Fig. 4, one can modulate the tunneling rate via the magnetic
flux when the on-site potential �A is smaller then 2J.

V. IRREVERSIBLE QUANTUM TUNNELING OF BOSONS
IN AN OPTICAL LATTICE

We consider bosonic atoms trapped in a ring optical lat-
tice �28,29�, which is described as a periodic potential V�x�
=V�x+a� with spatial period a. In general, we can use the
many-body Hamiltonian

H =	 �†�x�� p2

2m
+ V�x����x�

+	 dx dy �†�x��†�y�W�x,y���x���y� �26�

to describe the quantum dynamics of a many-atom system.
In the case of a dilute atomic gas, we can neglect the inter-
action term. When each potential well in the optical lattice is
sufficiently deep, the tight-binding approximation can be
used by assuming the wave function as ��x�=� jbjuj�x�,
where uj�x� is localized around the site j. If we neglect the
overlaps of two localized basis states that are not next neigh-
bors, the coefficient bj will be approximately described as a
boson operator. Hence the Hamiltonian of this boson system
�30–34� can be approximated as Eq. �1� with �=0,

H = �J �
j=0

2N−1

b̂j
†b̂j+1 + ��Ab̂A

† b̂A + �gb̂0
†b̂A + H.c. �27�

Here, b̂j
† �b̂j� is the creation �annihilation� operator of

bosonic atoms and the operators satisfy the commutation re-
lations.

By Fourier transformation of the boson operators b̂j
† and

b̂j, the boson model �27� can be transformed into a dual
model similar to that of fermions �see Eq. �3��:

H = �
k=0

2N−1

�kb̂k
†b̂k + ��Ab̂A

† b̂A +
g

�2N
�
k=0

2N−1

�b̂k
†b̂A + b̂A

† b̂k� ,

�28�

where the Bloch dispersion relation is �k=2J cos��k /N�.
We now use the Heisenberg equation to study the system

dynamics. By considering the short-time behavior that is de-
scribed in Sec. III, we find that the evolution of the annihi-

lation operator b̂A is similar to Eq. �9�:

b̂A�t� = b̂A�0�e−i�At − �
k=0

2N−1
igb̂k�0�
�2N

e−i�At	
0

t

e−i��k−�A�t�dt�

− b̂A�0�e−i�At	
0

t

dt��t − t��ei�At���− t�� , �29�

where

FIG. 3. �Color online� The independence of the decay rate R on
magnetic flux �. �a� 3D diagram for the behavior of the decay rate
as a function of � and � under the setting J=5, g=1, N=20, and
�A=20. �b� 3D diagram for the behavior of the decay rate as a
function of �A and � under the setting J=2.5, g=1, N=20, and �
=10.
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��t� =
g2

2N
�
k=0

2N−1

ei�kt �30�

is the memory function �16�. Thus we can consider the decay
of the atomic tunneling rate modified by an instantaneous
projective measurement with respect to the initial state of the
total system. Unlike fermions, there can be more than one
boson in a site. Thus, in the following we will investigate the
decay rate of this system with respect to three different initial
states, and try to find the behavior difference between bosons
and fermions.

First suppose the total system is initially prepared in a

Fock state b̂A
† �0� with only one atom in lattice site A. For M

successive instantaneous projective measurements into b̂A
† �0�,

the decay rate is of the form

� =
g2�

4�N
�
m=0

2N−1

sinc2��J cos
m�

N
−

�A

2
��� , �31�

which is exactly the fermion tunneling rate with magnetic
flux �=0. It can be seen from Eq. �31� that the atomic tun-
neling rate depends on only three parameters: the time inter-
val � between two successive measurements, the number of
lattice sites arranged on the ring, and the on-site potential �A,
which is controlled by the laser intensity; but only � and �A
can be adjusted experimentally. When � is very small and
approaches zero, the well-known quantum Zeno effect oc-
curs, and the system’s evolution is frozen. For a finite num-
ber of sites, when � has a finite value, the quantum Zeno and
anti-Zeno effects can be switched by adjusting the laser in-
tensity: the quantum Zeno effect occurs when the control-
lable variable �A=2J cos�m� /N�, and the anti-Zeno effect
occurs when the on-site potential �A�2J cos�m� /N� or
��A��2�J�. Also, for a finite number of sites, when no mea-
surement is performed, the system decays rapidly and the
atom never goes back to site A when �A=2J cos�m� /N� for

arbitrary m; when �A�2J cos�m� /N� or ��A��2�J�, the sys-
tem never evolves and the atom stays in site A forever. When
the number of sites 2N→�, the energy of the ring array
become continuous, and thus for a proper �, the switch be-
tween the quantum Zeno and anti-Zeno effects is determined
by whether ��A� is larger or smaller than 2�J�.

Now we consider the case with one site containing more
than one particle. Assume the initial state of this total system
is a number state �nA� with all n particles in site A. After time
t, the probability for finding �nA� is

p�t� =
1

n!

�0��b̂A�t��n�nA�
2. �32�

By substituting Eq. �29� into Eq. �32�, we find that after M
successive projective measurements into the initial state, the
probability modified by the measurements has a form similar
to Eq. �16�:

p�t� = exp�− 2nt	
0

t

dt�G��,t��e−i�At���− t��� . �33�

Through defining the modulation function introduced in Eq.
�19� in the energy spectra, we find that the atomic tunneling
rate is n times lager than that of fermions:

� = n
g2�

4�N �
m=0

2N−1

sinc2�J cos
m�

N
−

�A

2
�� . �34�

The value of Eq. �34� is determined by four external control-
lable parameters: the time interval �, the number of sites
placed on the ring, the on-site potential �A, and the total
number n of atoms in the entire system. The new controllable
element n is added because of the boson enhancement effect.
When n is large, the bosonic atoms have a strong tendency to
leave site A. This just exhibits the statistical effect in quan-
tum measurements for the localization of the boson system.

FIG. 4. �Color online� �a� 3D
diagram for the behavior of the
decay rate as a function of �A and
� under the setting J=2.5, g=1,
N=20, and �=10. �b� The cross
sections of the 3D surface for �A

=0,4.5,7. �c� The cross sections
of the 3D surface for �
=0,1.2,3.4. The figure shows that
the motion of the electron can be
modulated by electromagnetism.
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Except for the n-enhanced decay of the boson atomic tun-
neling, the situation we discussed above is not surprising
since it is very similar to that of fermions. To show the spe-
cial features of boson tunneling control, we consider the case
with the initial state of this total system prepared in a quasi-
classical state—the coherent state ��A�=DA����0�, where

DA��� = e�b̂A
†−�*b̂A �35�

is the displacement operator. Like the Fock state listed
above, this coherent state is also unstable, and the atoms at
site A may tunnel to the array. Once atoms are found in one
site of the array, they will spread on the array by resonant
tunneling. Thus, it is difficult for all the atoms to go back to
site A. In order to keep all the atoms in their original state, a
sequence of measurements are performed, which project the
entire system into ��A�. A measurement projects the system
into the original state with probability

p�t� = 
e−���2/2�0�e�*b̂A�t����
2. �36�

To calculate the explicit expression of the above probabil-
ity, we define

r � 	
0

t

dt��1 −
t�

t
�e−i�At���− t�� . �37�

As the evolution of b̂A�t� was already obtained in Eq. �29�,
we obtain the explicit expression of the probability

p�t� = e−���2����t��2+3−4 cos��A����t��


 exp�− �
m

��g�2 sin2���m − �A�t/2�
N��m − �A�2 � , �38�

where ��t�=1−rt. After M successive projective measure-
ments, we find that the atomic tunneling rate � is modified as

� =
���2

�
����t��2 + 3 − 2 cos��A����t� − �r�2� . �39�

Here the expression of r is transformed into the following
form through Fourier transformation:

r =
g2�

4�N
�
m=0

2N−1

sinc2�J cos
m�

N
−

�A

2
�� . �40�

In order to study the physical phenomena with ��A� as the
initial state, in Fig. 5, we numerically plot the decay rate as a
function of two controllable external parameters � and �A.
The figure shows the following. �1� For a given on-site po-
tential �A, as �→0, this unstable state decays rapidly. This
phenomenon is totally different from the fermion case, where
the electron is frozen in its initial state. �2� For any on-site
potential �A, the tunneling rate can be slightly modulated by
the intensity of the laser beam, but overall, it is enhanced as
the measurement frequency 1/� increases. However, in the
Fermi system, the crossover of the quantum Zeno and anti-
Zeno effects can be controlled only by modulation of the
on-site potential.

FIG. 5. �Color online� The be-
havior of the decay rate as a func-
tion of � and �A with the system
initially in a coherent state. �a� 3D
diagram for a Fermi system with
J=5, g=2, N=20, �=0. �b� 3D
diagram for a Bose system with
J=5, g=0.01, N=20, �=0.1. �c�
The cross sections of the 3D sur-
face for �A=0.1,6 ,12. �d� The
cross sections of the 3D surface
for �=0.5,1 ,3. The figure shows
that the tunneling rate can be
slightly modulated by the intensity
of the laser beam, but overall, �
is a decreasing function of � for
any �A.
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VI. SUMMARY

In conclusion, we have investigated the quantum tunnel-
ing dynamics for both fermion and boson systems in an ex-
perimentally accessible engineered configuration. In the case
with electrons, the tunneling rate modified by projective
measurements can be controlled by the time interval between
two successive measurements, the electrochemical gate elec-
trode, and the magnetic flux. Our results show that �1� what-
ever the value of the on-site potential �A, for vanishing time
interval, the quantum Zeno effect occurs; �2� for �A off reso-
nance with the energy of the dot array, the quantum anti-
Zeno effect occurs as the measurement frequency increases;
�3� for the on-site potential �A resonating with the energy of

the dot array, we can inhibit or accelerate the evolution of the
electron by adjusting the magnetic flux and the on-site po-
tential. In the case of a boson system, generally, the time
interval and the laser intensity control the decay of the sys-
tem. The boson system shows an enhanced decay for quan-
tum tunneling.

ACKNOWLEDGMENTS

This work was supported by the NSFC by Grant Nos.
90203018, 10474104, and 60433050, and by NFRPC by
Grant Nos. 2001CB309310 and 2005CB724508. One of the
authors �L.Z.� also acknowledges the support of the K. C.
Wong Education Foundation, Hong Kong.

�1� L. Viola and S. Lloyd, Phys. Rev. A 58, 2733 �1998�; S.
Lloyd, ibid. 62, 022108 �2000�.

�2� G. S. Agarwal, M. O. Scully, and H. Walther, Phys. Rev. A 63,
044101 �2001�; Phys. Rev. Lett. 86, 4271 �2001�.

�3� P. Zanardi and S. Lloyd, Phys. Rev. A 69, 022313 �2004�.
�4� Fei Xue, S. X. Yu, and C. P. Sun, Phys. Rev. A 73, 013403

�2006�.
�5� A. G. Kofman and G. Kurizki, Phys. Rev. Lett. 93, 130406

�2004�.
�6� S. Pellegrin and G. Kurizki, Phys. Rev. A 71, 032328 �2005�.
�7� V. Ramakrishna and H. Rabitz, Phys. Rev. A 54, 1715 �1996�.
�8� B. Misra and E. C. G. Sudarshan, J. Math. Phys. 18, 756

�1977�.
�9� C. B. Chiu, E. C. G. Sudarshan, and B. Misra, Phys. Rev. D

16, 520 �1977�.
�10� A. G. Kofman and G. Kurizki, Nature �London� 405, 546

�2000�.
�11� M. Lewenstein and K. Rzążewski, Phys. Rev. A 61, 022105

�2000�.
�12� A. G. Kofman and G. Kurizki, Phys. Rev. Lett. 87, 270405

�2001�.
�13� W. C. Schieve, L. P. Horwitz, and J. Levitan, Phys. Lett. A

136, 264 �1989�.
�14� A. G. Kofman and G. Kurizki, Phys. Rev. A 54, R3750

�1996�.
�15� M. C. Fischer, B. Gutierrez-Medina, and M. G. Raizen, Phys.

Rev. Lett. 87, 040402 �2001�.
�16� A. Barone, G. Kurizki, and A. G. Kofman, Phys. Rev. Lett. 92,

200403 �2004�.
�17� I. E. Mazets, G. Kurizki, N. Katz, and N. Davidson, Phys. Rev.

Lett. 94, 190403 �2005�.
�18� U. Fano, Phys. Rev. 124, 1866 �1961�.
�19� P. W. Anderson, Phys. Rev. 124, 41 �1961�.
�20� T. D. Lee, Phys. Rev. 95, 1329 �1954�.
�21� W. H. Louisell, Quantum Statistical Properties of Radiation

�Wiley, New York, 1973�.
�22� R. Peierls, Z. Phys. 80, 763 �1933�.
�23� S. Yang, Z. Song, and C. P. Sun, Phys. Rev. A 73, 022317

�2006�.
�24� P. Koskinen and M. Manninen, Phys. Rev. B 68, 195304

�2003�.
�25� G. Fáth and J. Sólyom, Phys. Rev. B 47, 872 �1993�.
�26� Elliott Lieb, Theodore Schultz, and Daniel Mattis, Ann. Phys.

�N.Y.� 16, 407 �1961�.
�27� C. P. Sun, H. Zhan, and X. F. Liu, Phys. Rev. A 58, 1810

�1998�.
�28� L. Amico, A. Osterloh, and F. Cataliotti, Phys. Rev. Lett. 95,

063201 �2005�.
�29� X. Wang, Z. Chen, and P. G. Kevrekidis, Phys. Rev. Lett. 96,

083904 �2005�.
�30� D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller,

Phys. Rev. Lett. 81, 3108 �1998�.
�31� Ana Maria Rey, Guido Pupillo, and J. V. Porto, Phys. Rev. A

73, 023608 �2006�.
�32� R. Bhat, L. D. Carr, and M. J. Holland, Phys. Rev. Lett. 96,

060405 �2006�.
�33� Jiannis K. Pachos, and Peter L. Knight, Phys. Rev. Lett. 91,

107902 �2003�.
�34� André Eckardt, Christoph Weiss, and Martin Holthaus, Phys.

Rev. Lett. 95, 260404 �2005�.

ZHOU et al. PHYSICAL REVIEW A 74, 032102 �2006�

032102-8


