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We propose an optical lattice for cold atoms made of a one-dimensional stack of dark ring traps. It is
obtained through the interference pattern of a standard Gaussian beam with a counterpropagating hollow beam
obtained using a setup with two conical lenses. The traps of the resulting lattice are characterized by a high
confinement and a filling rate much larger than unity, even if loaded with cold atoms from a magneto-optical
trap. We have implemented this system experimentally, and demonstrated its feasibility. Applications in statis-
tical physics, quantum computing, and Bose-Einstein condensate dynamics are conceivable.
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Optical lattices provide a versatile tool to study the dy-
namical properties of cold and ultracold atoms. They are
presently the topic of intense research activity, in particular
because they represent an outstanding toy model for various
domains. In statistical physics, cold atoms in optical lattices,
through their tunability, made possible the observation of the
transition between Gaussian and power-law tail distributions,
in particular the Tsallis distributions �1�. Condensed matter
systems and strongly correlated cold atoms in optical lattices
offer deep similarities, as in the superfluid–Mott-insulator
quantum phase transition �2�, in the Tonks-Girardeau regime
�3� or for the emergence of a macroscopic current in periodic
potentials �4�. In quantum computing, optical lattices appear
to be an efficient implementation of a Feynman universal
quantum simulator �5�, and are among the most promising
candidates for the realization of a quantum computer �6�.

One of the main advantages of the optical lattices is their
high flexibility. By varying the shape of the lattice, a wide
range of configurations is reached. Currently, many studies
deal with one-dimensional �1D� lattices, in particular be-
cause quantum effects are stronger in low-dimensional sys-
tems �7�. A particularly interesting situation concerns 1D lat-
tices with periodic boundary conditions, because many new
effects appear �8�. Recently, an experimental implementation
has been proposed, where the lattice sites are distributed
along rings �9�. In a more complex configuration, the sites
themselves could have the shape of a ring, allowing, e.g., the
study of solitons in 1D Bose-Einstein condensates �BECs�
with periodic boundary conditions �10� or atomic-phase in-
terferences between such BECs �11�. Experimental realiza-
tion of such 1D rings is still an open question, as either a
lattice or a single trap. Large magnetic single-ring traps have
been produced, in connection with the study of the atomic
Sagnac effect �12,13�, but their transverse confinement is
weak, and they cannot be considered as 1D rings. A more
promising proposition is an optical trap built with twisted
light obtained from two counterpropagating Laguerre-
Gaussian beams with an azimuthal phase dependence �14�.
Those authors suggest that an optical lattice of such ring
traps could be created by combining several twisted molas-

ses. Such an arrangement has the drawback of trapping the
atoms where the light intensity is maximum. This may result
in serious perturbations of the atoms due to the trapping
beams �15�. In particular, some applications in quantum
computation require trapping of the atoms in dark lattices, to
make the system robust against decoherence �16�. Contrary
to bright lattices, where even a 1D configuration leads to 3D
trapping, 1D dark lattices do not trap atoms in 3D: only 3D
dark lattices trap atoms in 3D �15�. So far, the only proposal
for such a lattice consists in a Gaussian beam making a
round trip in a confocal cavity �17�. A difference of waist
between the two directions of propagation leads to a lattice
of ring traps with � /2 periodicity, where � is the optical
wavelength. Such a device has the advantage of generating
high light intensity inside the cavity and so deeper traps than
with free-propagating beams. But this is obtained at the cost
of flexibility: for example, changing the ring radius requires
changing the cavity mirrors. These difficulties probably ex-
plain why, to our knowledge, this proposal has not yet been
realized experimentally.

We propose here a different geometry for a dark lattice of
ring traps, obtained from a hollow beam and a counterpropa-
gating Gaussian beam, without any cavity. The radius and
the thickness of the rings can be adjusted independently, and
due to the stiff edges of the hollow beam, the trap steepness
is much larger than in �17�. Finally, the filling rate of each
site is much larger than unity, even when loaded with a
magneto-optical trap �MOT�, unlike 3D dark lattices, which
require the use of a BEC. The filling rate should even reach
values in excess of 1000 atoms per site if an adequate se-
quence is used to turn on the lattice.

The paper is organized as follows: We first discuss the
principle of the lattice of ring traps, then describe the experi-
mental realization, and finally show preliminary results con-
cerning cold atoms loaded in the lattice.

Each individual trap is a 3D dark ring, and the lattice is a
1D stack of such rings. Thus, the global shape of the poten-
tial is a bright full cylinder with a pile of ring wells inside.
To obtain this potential, a standard Gaussian beam interferes
with a counterpropagating hollow beam with no azimuthal
phase dependence �18�, unlike the Laguerre-Gaussian beams
used, e.g., as waveguides �19�. Both beams have the same
blue-detuned frequency, so that the trapping sites correspond
to the zero-intensity places. Both beams propagate along the*Electronic address: daniel.hennequin@univ-lille1.fr
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z vertical axis, and the hollow beam is a cylindrical beam,
with an intensity distribution along the radial direction r as
illustrated in Fig. 1�a� �solid line�. When the two beams are
out of phase, two pairs of zeros of intensity appear symmetri-
cally on each side of the center, at r=100 and 130 �m on
Fig. 1�b�, where the two beam intensities are equal. Because
of the cylindrical symmetry, these zeros correspond to two
concentric rings along the azimuthal direction. In contrast,
when the two beams have the same phase, the intensity pro-
file reaches its maximum. This interference pattern results in
a potential U which is, in the limit of weak saturation and
large detuning, proportional to the light intensity I:

U =
�

8

�2

�

I

IS
, �1�

where � is the detuning, IS the saturation intensity, and � the
width of the atomic transition. Because the outer ring is shal-
low, only the inner ring, at r=100 �m, is a trap.

A hollow beam as described above is easily produced by a
conical lens �18�. Conical lenses are extensively used to pro-
duce Bessel-Gauss �20� or annular beams �21,22�. To gener-
ate an annular hollow beam, we use a converging lens L to
shape the incident Gaussian beam, and then a conical lens.
Each incident ray is deviated toward the optical axis z by the
conical lens, and thus the incident Gaussian beam is trans-
formed into a ring �18�. A second conical lens is used to
collimate the radius r of the ring, so that after this second
lens, r becomes constant with z. The resulting hollow beam
has a radius r which depends only on the distance between
the two conical lenses, while its thickness �r depends on the
focal length of L. Thus r and �r are adjustable indepen-
dently.

The potential is obtained by focusing the Gaussian beam
and the counterpropagating hollow beam at the same point,
so that the wave surfaces are planes perpendicular to the
propagation axis. The resulting potential has a periodicity of
� /2, with a shape depending locally on the phase � between
the two beams. It is illustrated through the theoretical plots
of Figs. 1�b� and 2 where, for the sake of simplicity, we used
the parameters of the experimental demonstration described
below: the hollow and Gaussian intensities are, respectively,
IH=14 mW and IG=11.5 mW �Fig. 1�a��, with � /2�
=70 GHz. Figure 1�b� shows the potential transverse profile
at the bottom of the wells. The geometry of the ring appears
clearly, with a confinement of the order of r /10 for
U	200Er, and a height for the external barrier of 580Er,
where Er is the recoil energy. Secondary minima, originating
in the residual diffraction produced by the mask used to re-
move inner rings of the hollow beam �18�, appear inside the
main ring, but because of their weak depth, they should not
be annoying in most applications.

A better understanding of the potential distribution can be
obtained from Fig. 2, where U is plotted in gray scale versus
r and z. The potential is periodic along z, with a period � /2.
Atoms with low enough energy are confined in a torus with a
half-ellipse cross section with axes of the order of 0.1 and
10 �m, corresponding on the figure to the dark zone at the
point C. The height of the external barrier varies with z. The
minimum height UA=580Er, at point A of Fig. 2, occurs at
the same z as the bottom of the main well �Fig. 1�b��. The
internal barrier has a channel structure, with the lowest pass
at point B �Fig. 2�, at a height of UB=200Er, between two
successive longitudinal sites.

The number of atoms that we should be able to put in
each site of this lattice depends of course on the density of
the cloud of cold atoms used to load the lattice, but also on
the spatial overlap between the cloud and the lattice. In par-
ticular, when the atoms are loaded from a MOT, the capture
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FIG. 1. �a� Theoretical transverse profile of the Gaussian
�dashed� and hollow �full� beams used in the experiment. �b� The
resulting transverse potential at the bottom of the well. Parameters
are those used in the experiments.

FIG. 2. 2D representation of the potential as a function of the
radius r and the longitudinal coordinate z. The complete potential
has a revolution symmetry around the axis r=0. Parameters are
those of Fig. 1. Note that the scales along z and r are different. Dark
corresponds to a zero potential. Significance of points A, B, and C is
given in the text.
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volume of the lattice is decisive for its filling rate. In the
present case, the capture volume is determined by the hollow
beam diameter, which may be chosen as several hundreds of
micrometers. For example, with r=100 �m �Fig. 2� and an
initial cloud of radius 1 mm, 1.5% of the initial atoms are
inside the hollow beam. Thus, if the lattice is loaded with a
cloud of 108 atoms in 4 mm3, which are the typical charac-
teristics obtained from a MOT, 1.5
106 atoms are loaded in
2000 sites, leading to a filling rate much larger than 1.

To test the feasibility of this lattice, we have implemented
an experiment with the characteristics described above.
Cesium atoms are initially cooled in a standard MOT with a
−3� detuning from resonance. At time t=−40 ms, the mag-
netic field is turned off, while at time t=−30 ms, the detun-
ing is increased to −5� and the trap beam intensity is de-
creased: this sequence allows us to obtain at time t=0 a
40 �K molasses, corresponding to an energy of 200Er, with
108 atoms in typically 4 mm3.

The hollow and Gaussian beams are produced by two
laser diodes injected by a single master laser diode in an
extended cavity, which ensures the same frequency for both
beams. For this demonstration, the beams are tuned 70 GHz
above the atomic transition. In these conditions, the power of
the Gaussian and hollow beams, respectively, 11.5 and
14 mW, is sufficient to reach the needed potential depth of
200Er. The Gaussian beam has a minimum waist of 140 �m,
located at the level of the MOT. The axicon setup is mounted
on an optical rail, to guarantee good stability of the beam.
The incident beam is collimated with a waist equal to
645 �m. The two conical lenses, with a vertex angle of 2°,
are separated by a distance of about 10 cm, adjusted to ob-
tain r=1 mm. The L focal length of 500 mm leads to
�r=100 �m. A telescope located just before the trap reduces
these values to r�100 �m and �r�10 �m. We obtain in
the MOT a transverse distribution of the hollow beam which
is in excellent agreement with the theoretical one.

To load the cold atoms inside the lattice, the latter is
turned on at a time t	0, so that, when the molasses is
switched off, the atoms are already distributed inside the
wells. At time t=0, the atoms start to fall under the effect of
gravity, except for those that are trapped in the lattice. The
free atoms need typically 25 ms to quit the camera field of
view, so that for t�25 ms, only atoms interacting with the
optical lattice remain. To observe the atoms, we switch on
during 1 ms the trap laser beams near resonance, and we
used a low-noise cooled charge-couple device camera to de-
tect the fluorescence emitted by the atoms. A typical picture
is shown in Fig. 3. As the resolution of the imaging setup is
about 10 �m, individual rings separated by � /2 cannot be
distinguished. On the contrary, the picture resolves the trans-
verse distribution characterized by two maxima resulting
from the side view of the rings. The dashed line is the theo-
retical distribution obtained when the potential is approxi-
mated by a double Gaussian curve. Thus the experimental
distribution is less contrasted because the inner walls of the
actual wells are flatter than the outer ones.

Figure 4 shows the evolution of the population of the
lattice as a function of the time, for the above parameters.
The points are obtained by integrating the experimental pic-
tures along the z axis. In order to test the robustness of the

procedure, eight measurements have been done for each
point on the abscissa. Figure 4 shows that the number of
atoms decreases exponentially with time. The fit to an expo-
nential �solid line in Fig. 4� gives a lifetime of 30 ms. This
value is in good agreement with the theoretical lifetime of
the atoms resulting from collisions and spontaneous emis-
sion. The number of atoms in the lattice is also in good
agreement with the theoretical one: after 40 ms, there are
still 30 000 atoms. Assuming that these atoms are localized
in about 700 lattice sites, we reach a filling rate of 40 atoms
per site. Note that, actually, we have no direct proof of the
localization of the atoms, but only the periodic optical poten-
tial can prevent the atoms from falling. However, only a
direct observation of atom localization, through, e.g., Bragg
diffraction, would demonstrate unambiguously that atoms
are trapped in the lattice.
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FIG. 3. Left, side view of the lattice obtained by taking a snap-
shot of the fluorescence of the atoms in the lattice at time
t=40 ms. Right, the corresponding transverse distribution �solid
line� and a rough estimate of the theoretical distribution �dashed
line�. The two-bump structure reveals the annular structure of the
traps.
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FIG. 4. Number of atoms in the lattice versus time. The main
plot is on a linear scale, and the number of atoms is given as a
percentage of the molasses population. The solid line corresponds
to the fit by an exponential with a decay time �=30 ms. In the inset,
the same results are shown on a logarithmic scale, with the absolute
number of atoms. In both cases, points are experimental.
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In conclusion, we propose here a lattice geometry consist-
ing of a 1D stack of ring traps, and show its experimental
feasibility. The experimental setup remains relatively simple,
because the lattice is created from only one pair of beams
and it does not need any cavity, contrary to the propositions
in, respectively, �14,17�. The other characteristics of this lat-
tice are high confinement of the atoms due to the stiff walls
of the trapping sites; large capture volume and filling rate,
due to the independence of the torus radius and thickness;
and weak interaction between light and atoms, as the traps
are dark. We implemented such a lattice experimentally, and
loaded it directly from a MOT. We measure the lifetime of
the atoms in the lattice of 30 ms. Although we have no direct
evidence of the localization of the atoms in the lattice sites,
this demonstrates the feasibility of this system. The lifetime
should be improved by changing some parameters which
were not optimized for this feasibility demonstration. For
example, a decrease of the initial temperature of the atoms in
the molasses by an adequate cooling sequence leads to rela-
tively deeper traps. An increase of the detuning � of the
lattice, which requires more intense laser sources, reduces
the spontaneous emission. Finally, a decrease of the pressure
of the thermal atoms, through, e.g., the use of a double cell,
improves the collision rate. Each of these enhancements will
contribute to lengthening the lifetime of the atoms in the
lattice. If better filling rates are necessary, it would also be
possible to increase it. Indeed, when the lattice is switched

on, many atoms are heated on the lattice axis, because this
axis corresponds to a maximum of the potential. To avoid
these extra losses, we plan to switch on the lattice in two
steps. First, the hollow beam is switched on just after the trap
beams are switched off, so that the atoms inside the beam are
trapped and remain in the cylinder. Then, the Gaussian beam
is switched on progressively, so that the atoms are adiabati-
cally pushed into the ring traps. This precaution prevents the
atoms from being heated by a sudden increase of the poten-
tial.

Finally, it would be interesting to study the dynamics of
the atoms in this lattice geometry. Moreover, this lattice
could be used in systems where interactions between atoms
in the same or neighboring sites are required, or when peri-
odic limit conditions are necessary.
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