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Genuine tripartite entangled states with a local hidden-variable model
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We present a family of three-qubit quantum states with a basic local hidden-variable model. Any von
Neumann measurement can be described by a local model for these states. We show that some of these states

are genuine three-partite entangled and also distillable. The generalization for larger dimensions or higher

number of parties is also discussed. As a by-product, we present symmetric extensions of two-qubit Werner

states.
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I. INTRODUCTION

One of the most striking characteristics of quantum me-
chanics is nonlocality. If quantum mechanics could be de-
scribed by a local hidden-variable model (LHV) then the
values measured for multiparticle correlations could be re-
produced assuming that all measurable single-particle opera-
tors had already a value before the measurement. Bell
showed that there are quantum states for which the many-
body correlations cannot be explained based on this assump-
tion [1]. However, such correlations arise only for some en-
tangled quantum states while for separable states the
correlations can always be mimicked by a LHV model [2].

Proving that the measurement results on a quantum state
cannot be obtained from a LHV model is done by finding a
Bell inequality which is violated by the state [1]. However,
this is difficult since the determination of all Bell inequalities
is a computationally hard problem [3]. To prove that any
measurement on a given state can be described by a LHV
model is perhaps even more challenging. This is because in
order to do that one has to find a LHV model for any number
of arbitrary operators measured at each party.

Due to the difficulty of the problem, LHV models have a
quite limited literature. The first and most fundamental result
of the subject was presented by Werner in Ref. [2]. He de-
scribed a LHV model for arbitrary von Neumann measure-
ments for some U® U symmetric bipartite states [2]. For the
qubit case these are of the form

1
pw=pli )W+ (1=p)7. (1)

where [¢7)=(|01)=]10))/12 is the singlet state. In the same
paper Werner also gave the first modern definition of quan-
tum entanglement, thus distinguishing it from nonlocality.
Indeed, states py are entangled for p>1/3 and local for
p=<1/2[2]. It is hard to overestimate the importance of these
results for the development of quantum information science.
Later, Barrett obtained a model for general measurements,
also called positive operator valued measures (POVMs), for
a subset of Werner states [4]. LHV models were also con-
structed for finite number of settings for states with positive
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partial transpose exploiting symmetric extensions [5]. Apart
from their fundamental interest, these results are also rel-
evant from a quantum information theory viewpoint. Simu-
lating entanglement by classical means (e.g., Ref. [6]) sheds
light on the power of entanglement as information resource.
In this context, those quantum states for which the correla-
tions can be reproduced by a LHV model are useless for
communication tasks, since they do not provide any advan-
tage over shared classical randomness [7].

New and interesting open questions on the relationship
between nonlocality and entanglement appear in the multi-
partite scenario. Recall that multipartite entanglement is
known to be inequivalent to bipartite entanglement [8].
Moreover, genuine multipartite entanglement is the property
most often detected in experiments (e.g., Ref. [9]). We know
that the Bell inequality violation required for genuine multi-
partite entanglement (i.e., when all parties are entangled with
each other [10]) increases exponentially with the number of
parties [11]. Hence one could expect that entanglement of
this type for large enough number of parties provides a suf-
ficient condition for a state to be nonlocal. However, beyond
the bipartite case, the connection between nonlocality and
entanglement remains largely unexplored. Indeed, LHV
models for multipartite entangled systems are still missing.

In this paper, we present a one-parameter family of three-
qubit states whose correlations for von Neumann measure-
ments can be reproduced by a LHV model. Thus these states
do not violate any Bell inequality. Then, we prove that, re-
markably, some of these states have genuine three-qubit en-
tanglement [10] and we also show that they are distillable. To
our knowledge, these are the first examples of genuine mul-
tipartite entangled states allowing for a local description. The
generalization of the construction to other situations, more
parties or higher dimensional systems, is also discussed.

Before proceeding, let us introduce the notation. We de-
note von Neumann measurements on n parties A,B,C,..., as
My, Mpg,Mc,.... The spectral decomposition of M, is given
as M A=EzzlakPk. In the case of qubits, which we mostly
consider in this work, a;=+1 and a,=-1, while M =7, &,
where 71, is the normalized vector defining the direction of
the von Neumann measurement and ¢ is the vector of Pauli
matrices 0=(0,,0,,0,).

©2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevA.74.030306

GEZA TOTH AND ANTONIO ACIN

FIG. 1. (Color online) Schematic representation of our two-
qubit hidden variable model. Party B receives a standard Bloch
vector. The dashed arrow on the left-hand side points opposite to
this vector. Party A receives a vector pointing to one of the eight
vertices of a cube tangent to the Bloch sphere. The vertex is chosen
such that the overlap with the dashed vector is maximal.

II. TWO-QUBIT CASE

The key point for the construction of our LHV model for
three qubits is an alternative derivation of Werner’s original
result for two qubits. This new derivation has the advantage
of being easily generalizable to the case of three qubits. Con-
sider the two-qubit operators

p2) 1= j M(dw)o, ® p,, 2)
wECz,|w|=1

where

1
Qw = E|:1 —C 2 Sgn(<o-k>w)0-k >

k=x,y,z

Po = |w)a]. 3)

Here |w) is a two-element state vector and M is the unique
probability measure invariant under all unitary rotations. Di-
rect calculation shows that p>¢) are Werner states (1) with
p=c/2. Based on this construction, the following statement
can be made.

Theorem 1 [2]. There exists a LHV model for von Neu-
mann measurements on states p>¢ for c<1.

Before starting the proof, let us explain the intuition be-
hind it. First of all, note that one can restrict the analysis to
c¢=1. In this case, the decomposition (2) can be understood
as a sort of local model for which party B receives a standard
Bloch vector 71, while A receives one of the vectors pointing
to the vertices of a cube. This cube is tangent to the Bloch
sphere for the Bloch vectors, which point to the directions
+x, +y, and +z (see Fig. 1). Actually, A receives the vector
with maximum overlap with —7,,. Using the standard trace
rule (M,Q@Mpg)=M(dw)Tr(M,0,)Tr(Mgp,), we have a
LHV model for M4=+0,,, and arbitrary M. The choice of
M, is restricted since if party A chooses other operators to
measure, for some w she would obtain [(M), |> 1. We then
say that party B has a physical qubit, while A is receiving a
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nonphysical Bloch vector. As we have already said, state
p(z") is a Werner state, i.e., it is invariant under transforma-
tions of the form U® U where U is an arbitrary unitary ma-
trix. Using this symmetry, we can construct a LHV model for
all measurements. The detailed proof goes as follows.
Proof of Theorem 1. The goal is to find a LHV model for
the state (2) with ¢=1, that is to write its correlations as

Tr(M, ® Mgp™V) = f M(dw){M ) Mp),,  (4)

where (M ,p),, are the expectation values of M 4 if the value
of the hidden variable is w, and we require
KM )|, [{Mp),| < 1. Identifying the subensemble index  in
Eq. (2) with the hidden variable in Eq. (4), one has a LHV
model with

>

1
(M), =Tr(M,0,) =— ETr M, > sen((o),) o],
k=x,y,z

<MB>w = Tr(MBpw) = TI'(MB|(O><(1)|) . (5)

It is clear that this model works only if My=+0,..

Now we modify our LHV model in order to allow arbi-
trary operators M, of the type 7i,&. Such an operator can be
written in the form

My=Uo,U,. (6)

We can take advantage of the invariance of Werner states
under transformations of the form U® U, so (M,® Mp)

=<O'£A)®M;9>, where M },=U,MzU}. Hence

(My),=Tt(0-0,) == sgn[Tr(o-|w)a|)],

(M) =Tr(Mpp,) = Tr(UsM U} | 0)(w)]). (7)

Indeed, substituting Eq. (7) into Eq. (4) reproduces all two-
qubit correlations (M4 ® M g). However, Eq. (7) is not a LHV
model for arbitrary M, and My yet. This is because (M),
depends on Uy, i.e, it depends on what operators are mea-
sured on party A. This dependence can be removed by defin-
ing |@')=U'|w). We obtain the desired LHV model with o’
as the hidden variable given as

(M z)or == sgn[Tr(M,|0"Xo'])],

(M) =Tr(Mplo"Xo']). (8)

This can trivially be extended to arbitrary M, [12]. One can
recognize now Werner’s model [2], where

)

1 if (w|P}w) < (w|P]|w) for all | # k,
<Pk>w = .
0 otherwise
for party A while
(M), = Tr(Mg|w)w|) (10)

for B. This finishes the proof of theorem 1.
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IV. THREE-QUBIT CASE

The previous construction is, in principle, easy to gener-
alize to more parties as follows:

1) o= f Moo, ®pS" . (1)
wel”|wl=1

Here, party A receives again a nonphysical Bloch vector,
while B,C,..., get a standard qubit. We are now in the po-
sition to prove the main result of this work.

Theorem 2. There exists a LHV model for von Neumann
measurements on states p> for ¢<1. These states contain
genuine three-qubit entanglement if ¢ > (\s’T3— 1)/3=0.869.

Proof of Theorem 2.Based on our discussion on the two-
qubit case, it is clear that there is a LHV model for von
Neumann measurements on p if, and this is an important
condition, this state is U®? invariant. After long but straight-
forward calculation, one obtains

1 1
p(3"')=§l®l®l+ > —100 a0
k=x,y,z

c
_E(Uk®]®ok+a-k®a-k®1)' (12)

This state is invariant U® U® U by inspection if we know
that 2,0, ® oy is U® U invariant. Thus correlation measure-
ments on this state fit the LHV model given in Egs. (9) and
(10) for parties A/B, while we have (M ),=Tr(M | w)w|)
for C.

We now show that p<) is genuine three-partite entangled
when ¢> (V13-1)/3, i.e., it cannot be constructed by mixing
pure states with two-qubit entanglement. In particular, it can-
not be constructed by mixing different bipartite Werner states
of the form p®9® pc, py® p><), etc. In what follows, we
adopt the definitions of Ref. [13]:

1
R, = E(ZVBC_ Vea— VAB),

1
R,= ,_S(VAB_ Vea), (13)
\’

where V); exchanges two qubits, and we use the notation r;,
=(R;). In order to examine the entanglement properties of
the three-qubit states p®°), we consider the projection of the
set of biseparable states on the r;/r, plane [13], as shown in
Fig. 2. The union of the three solid disks corresponds to the
union of biseparable pure states of the three possible bipar-
titioning. One of these disks has the equation [13]

[~ 2
/3 1 1
(\—r1+7> +r§<—. (14)
2 243 3

The other two can be obtained through +120° rotations
around the origin. The straight solid lines indicate the bound-
ary of the convex hull of these sets. Any biseparable mixed
state corresponds to a point within this set. Based on Eq. (14)
and its rotated versions one can see that for biseparable states
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FIG. 2. (Color online) Union of three solid ellipses: Projection
of the points corresponding to pure biseparable states on the r;/r,
plane. Together with the solid straight lines: Set of mixed bisepa-
rable states. (Diamond) State p©-. (Circles) States obtained from
p(3*1) by permuting its qubits. (Triangles) Two-qubit Werner state of
the form p®!Y®1/2 and states obtained from it by permuting the
qubits. For more details see text.

\"T3+1
(R)) < P =~ 0.77. (15)

In Fig. 2 points fulfilling Eq. (15) are on the left-hand side of
the dashed vertical line. For p®©) we have r;= (2+3¢)/6 thus
the state is genuine three-party entangled if ¢>(113-1)/3.
This finishes the proof of Theorem 2.

For the state p® the reduced two-qubit states p,p and
pac are entangled if ¢>2/3. This means that for c>2/3 a
singlet between A and B, and also between A and C can be
distilled. Hence from many copies of our state any three-
qubit state can be obtained with local operations and classi-
cal communication.

V. STATES p) AND U®"-INVARIANT SYMMETRIC
EXTENSIONS OF TWO-QUBIT WERNER STATES

At first sight, there is no reason to limit our discussion to
n=3. Direct calculation, however, shows that p(4’1) is not
U®* invariant, so the previous local model cannot be applied.
Nevertheless, the states of Eq. (2) can be used to construct
symmetric extensions [14,15]. Recall that a (1,n—1) sym-
metric extension of a two-party state p is an n-party operator
H, such that p=Tr34 ,H, and H, is symmetric under the
permutation of parties 2,3, ...,n. For being an extension, we
also need that H,, is positive semidefinite [14] and for a
quasiextension that it is positive on product states [5].

It can be seen by inspection that if p” is positive
semidefinite then it is an extension of p>¢). Symmetric ex-
tensions can be constructed for a larger range of ¢ if the
matrix p"< is twirled:

030306-3
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p(Tn,c) = J dUU'I‘@np(n,c) U®n
UeU(2)

- J M(dw)T, ® p2" Y, (16)
wEC2,|w|:l

where dU denotes the Haar measure and p,, is defined in Eq.
(3) and

Tw%{l—ic > <ak>wok]. (17)

2 k=x,y,2

Direct calculation shows that for Werner states with p=2/3,
5/9, and 1/2, (1,m) symmetric extensions can be obtained
from Eq. (16) for m=2, 3, and 4, respectively.

VI. GENERALIZATION TO MORE PARTIES OR HIGHER
DIMENSION

Now rather than fixing the quantum state from the very
beginning, we will look for the four-qubit quantum state for
which the correlations fit the local model of Egs. (9) and
(10), when party C and D also get physical qubits. Note,
however, that there is no a priori reason why a LHV model
should give correlations compatible with a quantum state.
The desired state must be U®* invariant and thus it must
be a linear combination of the 4!=24 permutation operators
[13]. It must fit all three-qubit correlations of our
LHV model and must be invariant under the permutation
of qubits B, C, and D. It can be proved that this state
must have the form p’:=py—K{3Z_, .04 ® 0} ® 0 ® 0y
+2, 1[0y ® 0, ® 0,® 7]}, where TI[A] denotes the sum of
all distinct permutations of A and K is a constant. Here pyy
contains the terms that do not affect four-qubit correlations
of the form (o,® 0, ® 0,.® 7). Setting K=1/128 our state
gives the same four-qubit correlations as the LHV model for
Myp=0, and M¢p=0,. Due to the finite number of free
parameters there is only one such Hermitian matrix with unit
trace. However, for M ,p/c;p=0, this matrix fails to repro-
duce correlations of the LHV model (i.e., —1/4). Thus, there
is not a matrix corresponding to the n-qubit version of the
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LHV model given in Egs. (9) and (10) for n=4 qubits.

Finally, one can explore whether the local model Egs. (9)
and (10), with (M),=Tr(M]w){w|) can be associated to a
three-qudit state. Surprisingly, it turns out that the model
obtained this way is not a valid LHV model for a quantum
state when d>2. In order to see this, let us consider the
case d=3. Take M,=|1)(1|, defined by {a}={1,0,0} and
{P={11)(1],]12)¢2|,13)3]}, and M)=|1)1|, which is
actually equal to M, but defined by {¢;}={1,0,0} and
{P={11)(1],12")2"[,[3")(3"|}, where [2")=a|2)+p|3) and
I3"y=8"2)-a"|3), with |a|*+|B|*=1. Moreover, on the
other two qudits we measure Mz=M=|2)(2|. Using the
methods of Ref. [2], we obtain (M,®Mz®M)=13/162,
while (M,®Mz@M)=15/162 for a=p=1/y2. Thus
(MA@MgOMe)# (M, @Mp@Mc). A similar lack of self-
consistency can be found for d>3.

s s’

s b}

VII. CONCLUSIONS

We presented a family of three-qubit states for which cor-
relations for all von Neumann measurements can be de-
scribed by a LHV model. We proved that some of these
states are genuine three-qubit entangled and distillable, so
three-qubit entanglement is not sufficient for a state to be
nonlocal. We also showed that there is not a quantum state
corresponding to our model with more parties or higher di-
mension. In the future, it would be interesting to extend our
model to general measurements. For details of our calcula-
tion, see [16].

ACKNOWLEDGMENTS

We thank F. M. Spedalieri and M. M. Wolf for
many useful discussions. We acknowledge the support of
the EU projects RESQ and QUPRODIS and the Kompetenz-
netzwerk Quanteninformationsverarbeitung der Bayerischen
Staatsregierung. G.T. is thankful for the support of the Euro-
pean Union (Grants Nos. MEIF-CT-2003-500183 and
MERG-CT-2005-029146) and the National Research Fund of
Hungary OTKA under Contract No. T049234. A.A. thanks
the MPQ, Garching, for hospitality, and acknowledges the
Spanish “Ramén y Cajal” grant (MEC).

[1] J. S. Bell, Physics (Long Island City, N.Y.) 1, 195 (1964).

[2] R. F. Werner, Phys. Rev. A 40, 4277 (1989).

[3] L. Pitowsky, Math. Program. 50, 395 (1991).

[4]J. Barrett, Phys. Rev. A 65, 042302 (2002).

[5] B. M. Terhal, A. C. Doherty, and D. Schwab, Phys. Rev. Lett.
90, 157903 (2003); A. C. Doherty, P. A. Parrilo, and F. M.
Spedalieri, Phys. Rev. A 69, 022308 (2004).

[6] B. F. Toner and D. Bacon, Phys. Rev. Lett. 91, 187904 (2003);
N. I. Cerf et al., ibid. 94, 220403 (2005).

[7] C. Brukner et al., Phys. Rev. Lett. 92, 127901 (2004).

[8] C. Bennett et al., Phys. Rev. A 63, 012307 (2000).

[9] M. Bourennane et al., Phys. Rev. Lett. 92, 107901 (2004); H.
Hiffner et al., Nature (London) 438, 643 (2005); N. Kiesel et
al., Phys. Rev. Lett. 95, 210502 (2005); P. Walther et al., Na-
ture (London) 434, 169 (2005).

[10] Pure biseparable states can be created such that two groups of
the parties never interact and they remain unentangled. A
mixed state is called biseparable (not genuine multipartite en-
tangled) if it is the mixture of biseparable pure states. See A.
Acin et al., Phys. Rev. Lett. 87, 040401 (2001).

[11] K. Nagata, M. Koashi, and N. Imoto, Phys. Rev. Lett. 89,
260401 (2002).

[12] In particular, for My=c,l+cysG we have (My),=c,
—¢; sen[Tr(ny o Yw')].

[13] T. Eggeling and R. F. Werner, Phys. Rev. A 63, 042111 (2001).

[14] R. F. Werner, Lett. Math. Phys. 17, 359 (1989).

[15] For the extension of Werner states see also T. Eggeling, Ph.D.
thesis, Technical University of Braunschweig, Germany, 2003;
T. Eggeling, R. F. Werner, and M. M. Wolf (unpublished).

[16] G. Téth and A. Acin, quant-ph/0512088.

030306-4



