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The basic idea of spin-chain engineering for perfect quantum state transfer �QST� is to find a set of coupling
constants in the Hamiltonian such that a particular state initially encoded on one site will evolve freely to the
opposite site without any dynamical controls. The minimal possible evolution time represents a speed limit for
QST. We prove that the optimal solution is the one simulating the precession of a spin in a static magnetic field.
We also argue that, at least for solid-state systems where interactions are local, it is more realistic to charac-
terize the computation power by the couplings than the initial energy.
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The transfer of a quantum state from one part of a physi-
cal unit, e.g., a qubit, to another part is a crucial ingredient
for many quantum-information processing protocols �1�. In
fact, the ability to transmit “flying qubits” is known as one of
DiVincenzo’s desiderata �2� for quantum communication.
For long-distance communication, it is natural to rely on op-
tical means �3�. However, for systems involved on a suffi-
ciently small scale where qubits can interact either directly or
indirectly through other qubits, it seems to be more natural to
exploit the interactions between them directly. In these sce-
narios, a typical assumption usually made is that the interac-
tions between pairs of qubits can be arbitrarily switched on
and off �4,5�. In this way, a quantum state can be transmitted
by a series of swap �SOS� operations. However, even in the
absence of decoherence, the intrinsic problem of this proto-
col is that each swap would necessarily introduce some er-
rors due to dynamical controls; the fidelity of the transferred
states would therefore decay exponentially as the number of
swaps increases. It is therefore of great practical interest to
study schemes of perfect state transfer by free Hamiltonian
evolution that is primarily designed to minimize dynamical
controls as much as possible.

This work is also motivated by the question of the ulti-
mate speed limit of solid-state quantum computers. The
Margolus-Levitin theorem �6� suggests that the shortest time
for a quantum state to evolve into an orthogonal state is
limited by the initial energy. With this result, one can quan-
tify the speed limit for elementary operations involving one
or two qubits �7�. However, this theorem does not give an
appropriate bound on the speed limit for the initial state to
evolve into a particular state, for example, the one-
dimensional quantum state transfer �QST� problem �cf. Eq.
�2��. The aim of this paper is to establish the speed limit for
the QST problem. Following the scheme described in Ref.
�8�, one can generalize the study to more general quantum
operations. In contrast with the Margolus-Levitin theorem,
the quantum speed limit for QST will be characterized di-
rectly by the couplings in the Hamiltonian, instead of the
initial energy. As we shall see, this makes it not only experi-
mentally more accessible, but also physically more reason-
able.

Imperfect QST �9,10� over a uniform spin chain was stud-
ied numerically, showing that perfect state transfer is impos-
sible for long chains. However, it has been suggested �11�
that perfect QST, without dynamical controls, is possible if
we allow the couplings between the spins to be nonuniform.
Moreover, it has also been pointed out �12� that there are
many possible solutions for constructing spin chains that al-
low perfect state transfer, and the search for the solutions is
in general an inverse eigenvalue problem. Recently, there
have been many quantum-information processing proposals
�8,13–21� related to the concept of spin-chain engineering.
To boost the performance of the spin chains, or to evaluate
the ultimate speed limit of these proposals, it is highly desir-
able to know how to engineer spin chains with optimal per-
formance.

In the following, we shall show that the optimal solution
for perfect state transfer is exactly the one proposed in Refs.
�11,22�. It is interesting that this optimal set of couplings is
the same as that describing spin precession in a static mag-
netic field. In discussing the one-dimensional QST problem,
one usually considers the Hamiltonian for the engineered
spin-1/2 chains to be of the following form �23�:

H = �
j=1

N−1
� j

2
�� j

x� j+1
x + � j

y� j+1
y � + �

j=1

N
� j

2
�� j

z + 1� , �1�

where the � j’s are the standard Pauli matrices for the site j,
and N is the total number of sites in the spin chain. Both � j
and � j are real constants to be determined. We shall adopt the
convention that �0 j� ��1 j�� represents the spin-down �spin-up�
state.

In the quantum state transfer protocol, one site is encoded
with a quantum state � �1�+� �0� representing the informa-
tion of one qubit, while the rest are initialized to be spin
down. Define U���=e−iH�, where � is the evolution time and
�=1. Since U��� �000. . .00�= �000. . .00�, the state is said to
be perfectly transferred whenever

U����100 . . . 00� = ei��000 . . . 01� , �2�

where � is some known phase. Although the transferred state
in general differs from the input state by a relative phase
factor, i.e., �ei� �1�+� �0�, the phase factor can be corrected
by some local operations and is thus usually ignored. To
investigate further, it is clear that we can simply focus on the*Electronic address: myung2@uiuc.edu
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single-particle subspace ��1�	�100. . .0�, �2�
	�010. . .0� , . . . 
, where �x�, x=1,2 ,3 , . . . ,N refers to a
state with a single excitation at site x. In this subspace, the
Hamiltonian in Eq. �1� is real, symmetrical, and tridiagonal:

HS =�
�1 �1 0 ¯ 0

�1 �2 �2 ¯ 0

0 �2 �3 ¯ 0

� � � � �N−1

0 0 0 �N−1 �N


 . �3�

The eigenvalues, which must be nondegenerate �24�, and the
corresponding eigenvectors are denoted by Ek and �ek�, re-
spectively. Let us consider not only transferring states from
one end to the other but more generally the transition ampli-
tude between the state �x� and its mirror-inverted state �x̄�,
with x̄	N−x+1,

�x̄�U����x� = �
k=1

N

�x̄�ek��ek�x�e−iEk�. �4�

Provided that the Hamiltonian in Eq. �1� or Eq. �3� is mirror
symmetrical, i.e., � j =� j̄ and � j =�N−j, one can show �12�
that �x̄ �ek�= �−1�k�x �ek�, and hence ��x̄ �U��� �x� � =1 if

e−iEk� = �− 1�kei�. �5�

The phase factor ei� here is exactly the same as that appear-
ing in Eq. �2�. It has been shown �12� that the condition in
Eq. �5� is not only sufficient but also necessary for perfect
state transfer in mirror-symmetric chains. Given an eigen-
value spectrum �Ek
 satisfying Eq. �5�, the corresponding
coupling constants �� j ,� j
 can be uniquely determined. The
task of solving for the solutions of �� j ,� j
 is therefore an
inverse eigenvalue problem �24,25�, which generally has to
be solved numerically. A spin chain is said to be engineered
if its couplings are found in this way.

Perhaps the simplest solution to Eq. �5� is the linear spec-
trum �11�. By mapping the states �x� to be the eigenstates of
the Jz angular momentum operator, this solution also de-
scribes the precession of a spin J= �N−1� /2 under a constant
magnetic field pointing along the x direction. Explicitly, the
matrix elements of HS can be chosen as

� j = 0 and � j =
1

2
�j�N − j� . �6�

The eigenvalue spectrum is linear in the sense that the energy
spacing is uniform, Ek=−�N−1� /2+k−1, k=1,2 ,3 , . . . ,N.
From Eqs. �4� and �5�, perfect state transfer can be achieved
for a time period of �=	.

Clearly, there is an unlimited number of eigenvalue spec-
tra satisfying the condition in Eq. �5�. A number of particular
solutions have also been found �12,13,15,20� recently. To
compare different sets of interqubit coupling constants �� j

generated from different energy eigenvalue spectra �Ek
, the
efficiency 
 can be quantified by the evolution time � for
completing the task of perfect state transfer, subject to the
constraint that the maximum value of interspin coupling
�max	max�� j
 being normalized. Alternatively, one may fix

the evolution time and compare the maximum coupling
strength for different chains. Both cases can be properly
captured by defining the efficiency as


 =
�max�

�̃max�̃
, �7�

where �̃max and �̃ are, respectively, the maximum coupling
and the evolution time of a reference spin chain, which we
shall choose to be the one described in Eq. �6�, i.e., �̃=	 and

�̃max = �
1

4
�N2 − 1 for odd N ,

1

4
N for even N .

�8�

With these definitions, our goal is to show that 
�1 for all
engineered spin chains. This implies that the set of couplings
in Eq. �6� is optimal and the quantum speed limit for one-
dimensional QST is established �i.e., given the same maxi-
mum couplings �max= �̃max, �=
�̃��̃�. A comparison for
different schemes of perfect state transfer is given in Table I.

We start with the observation pointed out in Ref. �8�. Sup-
pose the eigenvalues are ordered as E1�E2� ¯ �EN. De-
fine 
k	Ek−Ek+1 and the range of the spectrum as 
E

	E1−EN=�k=1
N−1
k. From Eq. �5�, the evolution time is lim-

ited by the minimum energy interval 
min	min�
k
,
��	 /
min, while �̃=	 / 
̃min. From Eq. �7�, we have


 �
�max
̃min

�̃max
min

. �9�

Suppose we scale the eigenvalue spectra such that


̃min=
min; then 
�1 if �max��̃max. We shall show that it
is indeed true.

In the single-spin subspace, applying the Hellmann-
Feynman theorem to the Hamiltonian in Eq. �1�, we have
�Ek /�� j =

1
2 �ek � �� j

z+1� �ek� and �Ek /�� j =2�ek � j��j+1 �ek�. It
is clear that �Ek /�� j �0. On the other hand, it is known �24�

TABLE I. Comparing the efficiency 
 �defined in Eq. �7�� for
various possible solutions to the problem of perfect state transfer
through a spin chain of N spins. For convenience, we have scaled
the maximum tunneling matrix element �max such that the minimal
evolution time �=	 is fixed.

Type of spectrum �max Efficiency 


Lineara �̃max 1

Quadraticb q�2�+N��̃max q�2�+N�
Gapped linear Ic �1+4q /N��̃max �1+4q /N�
Gapped linear IId q q

Cosinee 108.5 14.0

aSee Ref. �11�. �̃max is defined in Eq. �8� and 
=1 by definition.
bSee Ref. �13�. For N2�1, q��+1��1/2 as required by E1−E0

�1, where q is a positive integer and � is a rational number.
cSee Ref. �15�. For N2�1.
dSee Ref. �12�. For N=4 only.
eSee Ref. �20�. For N=31 �no analytic solution given�.
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that the eigenvector �ek� has exactly k−1 sign changes in the
position basis ��j�
. In other words, �E1 /�� j �0 and
�EN /�� j �0. Suppose we replace all �� j→�max, � j→�max

and �� j→�max,� j→�min
, respectively, and invoke the so-
lution of the eigenvalues for a uniformly coupled chain,
�+2� cos� k	

N+1
�, we have


E � 
� + 4�max, �10�

where 
�	�max−�min is the range of the spatial variations of
the local potentials. Suppose that, in the absence of, or with
uniform, local potentials, we set 
�=0. Under the constraint

that the evolution time be the same, i.e., 
min�
̃min	1, the
range of any nonlinear spectrum must be at least greater than

that of the linear spectrum by 1, 
E�
̃E+1=N, as the ratio
between any two 
k’s must be a rational number �11�. One
can then show from Eqs. �8� and �10� that �max��̃max. Of
course, this argument is based on the assumption that the
terms � j play no role in the eigenvalue spectrum except for a
constant shift. The question is, could the speed limit be
boosted, if spatially varying local potentials are allowed?
The aim of the following paragraphs is to exclude this pos-
sibility, and at the same time provide a more rigorous proof.

Exploiting the symmetry of our problem, we can divide
the HS in Eq. �3� into two different subspaces �10,12�. For
even N, they are simply 1

�2
��j�+ �j̄�
 and 1

�2
��j�− �j̄�
,

j=1,2 , . . . ,N /2. The N�N Hamiltonian reduces into two
N
2 �

N
2 ones:

�
�1 �1 0 ¯ 0

�1 �2 �2 ¯ 0

0 �2 �3 ¯ 0

� � � � �N/2−1

0 0 0 �N/2−1 �N/2 ± �N/2


 . �11�

These two matrices are almost identical except for one
diagonal matrix element �N/2±�N/2. Recall that
�x̄ �ek�= �−1�k�x �ek�; the eigenvectors of HS are automatically
grouped into these two subspaces. In other words, the eigen-
value spectra of these two matrices are, respectively,
�k= �E1 ,E3 ,E5 , . . . ,EN−1
 and �k= �E2 ,E4 ,E6 , . . . ,EN
. Con-
sequently, the trace difference between the two matrices
gives �N/2= �1/2��k��k−�k�= �1/2��k
2k−1, which is mini-

mized when all 
2k−1= 
̃min, which corresponds to the case
�N/2= �̃max. Hence we can conclude that
�max��N/2��̃maxfor even N.

For odd N�5 �the case N=3 can be analytically solved
separately�, it becomes slightly more complicated. The sub-
spaces are spanned by 1

�2
��j�− �j̄�
 and 1

�2
��j�+ �j̄�
 together

with �m�, where j=1,2 ,3 , . . . ,m−1 and m	�N+1� /2. The
matrix formed by the latter is

�
�1 �1 0 0 0

�1 � � � �
0 ¯ �m−2 �m−1 0

0 ¯ �m−1 �m−1 �2�m

0 ¯ 0 �2�m �m


 , �12�

and the counterpart by the former can be obtained from the
above matrix by removing the last row and the last column.
Similar to the case of even N, the eigenvalue spectra are
�k= �E1 ,E3 , . . . ,EN
 and �k= �E2 ,E4 , . . . ,EN−1
, respectively.

Our goal is still to show �m��̃max when 
min�
̃min. To
proceed, one can diagonalize the upper part of the matrix in
Eq. �12�, i.e., the part from �1 to �m−1, and the resulting
matrix is of the bordered diagonal form �arrowhead matrix�
�25�

�
�1 0 ¯ 0 b1

0 �2 ¯ 0 b2

� � � 0 �
0 0 0 �m−1 bm−1

b1 b2 ¯ bm−1 a

 , �13�

where a=�m=�k=1
m �k−�k=1

m−1�k is the trace difference, and bk
are the off-diagonal matrix elements satisfying the condition
2�m

2 =�k=1
m−1bk

2, as a result of the diagonalization.
The characteristic polynomial P�E�=�k=1

m �E−�k� of the
matrix above can be written as

P�E� = �E − a�Q�E� − �
k=1

m−1
bk

2

�E − �k�
Q�E� , �14�

where Q�E�=�k=1
m−1�E−�k�. By setting E=�k, we have

bk
2 = −

�
j=1

m

��k − � j�

�
j�k

m−1

��k − � j�

� 0, �15�

where the negative sign here is because of the interlacing
property �k��k. One can solve for �m recursively
using Eqs. �14� and �15�. We found a recursive relation
�m

2 = �̄m−1
2 + 1

2
N−1��k=1
�N−1�/2
2k−1�, where �̄m−1 is the counter-

part of �m when we solve the same inverse eigenvalue prob-
lem without the last two eigenvalues EN−1 and EN. Since �m

2

is a positive sum of the products 
 j
k, it is minimized when

all 
k= 
̃min, and hence �max��m��̃max. This completes
our proof for 
�1 for all possible engineered spin chains.

In the following, we shall analyze the implications of the
speed limit. It is natural to ask, apart from the advantage of
not requiring dynamical controls, if the schemes of engi-
neered chains can be fundamentally faster than the series of
swaps protocol mentioned at the beginning. The answer is
positive. Suppose we now consider the ideal case where each
swap operation can be achieved with the same maximum
possible coupling �̃max in Eq. �8�; the evolution time for
each swap is �0=	 /2�̃max. Since it will take in total N−1
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steps to transfer a state through a chain of N spins, we can
generalize our definition of the efficiency for this case as

sos= �N−1� /2�̃max, which is an increasing function of N,
and one can easily show that 1�
sos�2 for N�2. There-
fore, the engineered spin chains can have roughly a factor of
2 gain in speed for sufficiently long chains.

According to the Margolus-Levitin theorem �6�, the mini-
mum time for a quantum state ��i� to evolve into an orthogo-
nal state �� f�, where �� f ��i�=0, is limited by the initial en-
ergy max(	 /2�E−E0� ,	 /2
E), where E= ��i �H ��i� is the
initial energy, E0 is the ground state energy, and 
E
=���i � �H−E�2 ��i� is the energy uncertainty of the initial
state. The computational power of physical systems as quan-
tum computers was analyzed �7� along this line of thought.
Here we shall argue that, at least for solid-state systems
where the interactions are local, it is more realistic to char-
acterize the computational power by the couplings in the
Hamiltonian than the initial energy. We shall again focus on
the 1D QST problem �cf. Eq. �2�� as an example, as the
generalization to more complicated quantum operations is
straightforward through the scheme proposed in Ref. �8�. For
the linear spectrum, we have E−E0=N /2 for large N. Given
the same amount of initial energy N /2, the minimal evolu-
tion time for the SOS protocol is �=	 /N �as E−E0=
E�.
For a linear chain of N spins, the SOS protocol seems to be

as efficient as the engineered chains. However, as we have
just analyzed, for each swap the tunneling strength would be
N /2, which is twice the maximum possible coupling �̃max

assumed before.
In conclusion, we have generalized the study of the quan-

tum speed limit to the problem of the quantum state transfer
in one dimension. We have argued that for solid-state sys-
tems it is more realistic to characterize the computation
power explicitly by the coupling terms in the Hamiltonian
than the initial energy. This work also implies that quantum
algorithms, when implemented in solid-state devices, can be
optimized, if we employ the concept of spin-chain engineer-
ing �8�. More practically, systematic errors are expected to be
significantly minimized with the reduction of dynamical con-
trols. We last comment that such a speed limit, if not con-
fined to nearest-neighbor interactions in one dimension,
could be overcome by increasing either the network com-
plexity �10,18� or the Hamiltonian complexity �26�. Details
will be discussed elsewhere.
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