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We show that the derivation of the approximate solution for the motion of an unbound electron in the
simultaneous presence of the Coulomb field and a circularly polarized plane wave given in Reiss and Krainov
Phys. Rev. A 50, 910�R� �1994� contains an error caused by confusing the space coordinates before and after
the Kramers-Henneberger transformation.
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In �1�, an attempt was made to derive a simple approxi-
mate solution for an unbound electron in the simultaneous
presence of Coulomb and circularly polarized laser fields. In
the present Comment, we shall show that the derivation of
�1� contains an error that, quite surprisingly, not only seems
to have escaped notice so far but has also been repeated in
some publications in which “generalizations” of the deriva-
tion of �1� were proposed.

For convenience, we start by repeating in some detail the
derivation given by the authors of �1�. They begin with the
Schrödinger equation for an electron moving in the presence
of the atomic �Coulomb� potential and the field of a circu-
larly polarized monochromatic electromagnetic wave,
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In the above equation, r and p̂=−i� are the coordinates and
�canonical� momentum operator, respectively, for the
electron. Further, V�r� is the atomic potential, A�t� �with
A�t→−��→0� is the vector potential of the wave field taken
in the dipole approximation, and c is the speed of light.
Atomic units are used.

The authors of �1� are especially interested in the motion
of an unbound electron and, in order to find an approximate
solution for this motion, introduce the Kramers-Henneberger
transformation �2�. This transformation consists of express-
ing the wave function � via a new function � according to
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where ��t�=− 1
c 
−�

t A�t��dt�. By inserting Eq. �2� into Eq. �1�
and multiplying from the left both sides of the resulting
equation by the operator exp�−� ·��, one obtains
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where in the case of the Coulomb atomic potential
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with Z being the charge of the atomic nucleus �atomic core�.
Up to now the consideration of �1� followed the standard
lines repeated many times in the literature.

If the interaction V in Eq. �3� is neglected, the solution of

Eq. �3� is a plane wave which, after inserting into Eq. �2�,
transforms into the well known nonrelativistic Volkov solu-
tion for a free electron in the field of a circularly polarized
plane wave. The authors of �1� want to obtain a Coulomb
correction to the Volkov solution. To this end, they first re-
mark that for laser fields strong enough one has �0= ���t��
�1/Z, where �0 represents the radius of a circular motion of
a free �classical� electron in a circularly polarized wave �3�
and 1/Z is the typical size of the atomic ground state. Fur-
ther, the authors note that the solution they want to derive is
to be incorporated into a transition matrix element with the
ground state, and, therefore, electron-nucleus distances of
importance for the transition amplitude will typically be of
the order or less than 1/Z. As a result, they argue that in Eq.
�3� one can set
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The approximation �5� is the key step in the consideration
given in �1�. Once this step has been made, the derivation of
the approximate solution becomes straightforward and yields
this solution as
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where k is the electron momentum. Equation �6� is simply a
product of the Volkov solution and the Coulomb correction
factor exp�i Z

�0
t�. In �1�, the wave function �6� is termed the

Coulomb-Volkov solution. Equation �6� is the main result of
�1�.

Let us now point out that, while it is certainly true that the
main contribution to the transition matrix element is given by
the region of small electron-nucleus distances where the
atomic ground state is located, this observation is by no
means a justification for the approximation �5� to be valid.

First, note that it is the state ��r , t� given by Eq. �2� �but
not the function ��r , t� from Eq. �3�� that directly enters the
transition matrix element with the atomic ground state. Let
us assume for the moment that we were able to find the exact
solution of Eq. �3�, �ex�r , t�. Inserting this solution into Eq.
�2� and taking into account that the action of the operator
exp�� ·�� is just to shift r in �ex�r , t� by �, we obtain
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From the second line of Eq. �7� it is obvious that in the
region r�1/Z, which is the only region where the state
��r , t� may have a substantial overlap with the initial
�ground� atomic state and which is thus most important for
the transition matrix element, the absolute value of the space
argument of the function �ex�r+� , t� at �0�1/Z is in fact
close to �0 and not to 1/Z. But this means that in Eq. �3� the
region of r, which is most important for the transition matrix
element, is given not by �r��1/Z��0 but by �0−1/Z� �r�
��0+1/Z, where �r���0, and the approximation �5� turns
out to have no grounds.

In addition to the initial coordinate system, in which the
atomic nucleus rests at the origin and the absolute value of
the coordinate of the ground-state electron is of the order of
1 /Z �Eqs. �1� and �6� are written in this system�, the
Kramers-Henneberger transformation introduces the new co-

ordinate system. In the latter, the nucleus coordinates are
given by ��t� and, provided �0�1/Z, the absolute value of
the coordinate of the ground-state electron is of the order of
�0 �Eqs. �3�–�5� and also �8� are given in the new system�. In
the “derivation” of the Coulomb correction to the Volkov
solution given in �1�, there was a confusion of the space
coordinates before and after the Kramers-Henneberger trans-
formation. The approximation �5�, which is the key ingredi-
ent of the consideration of �1�, is the result of this confusion.

Although the results of �1� have been cited in quite a few
articles, we were not able to find in the literature any critical
discussion of the way these results were obtained. Moreover,
there have even been attempts to “generalize” the “deriva-
tion” of �1� to the case of ionization of two-electron atoms
�see �4�� and to “improve” its accuracy by taking �see �5,6��
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Since the region r��0 in Eq. �3� is most important for the
transition matrix element, clearly neither of the expansions
�5� and �8� makes sense.
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