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We cannot agree with the Comment by Maquet et al. �Phys. Rev. A. 74, 027401 �2006��. It seems that
Maquet et al. are thinking in terms of classical fields. In our recent paper we have presented a study of the
two-photon rate of He making use of quantized fields. This approach becomes a natural choice if we have in
mind processes at high photon energy. In this description of the problem the squared vector potential A ·A term
is essential.
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First of all, we would like to make a comment on the
validity of perturbation treatments. Let � be the Keldysh pa-
rameter and F the field strength. We all agree that, for fixed
ionization energy IP and field frequency �, a perturbative
regime will be reached in the limit �→� �F→0�, while the
perturbation theory will break down in the opposite limit �
→0 �F→��. Yet, the value of � cannot be the only guideline
as to the applicability of the perturbation theory. The
Keldysh paper �1� had in mind ir-visible lasers, considered
uniform electric fields only, discarded the A ·A term, was
based on free-electron wave functions in the presence of uni-
form fields, and was basically a perturbation calculation it-
self. As a result, at short wavelength, especially if we think
about x rays, the concept of the Keldysh parameter gives
scanty insight on whether the perturbation theory can be ap-
plied or not. Finally, calculations using the Fermi golden rule
do not preclude a more detailed analysis, such as the one we
believe to have presented.

On very general grounds we can state that the use of a
complete nonorthogonal set of quantum basis states does not
pose any fundamental restriction on the solution of a quan-
tum mechanical problem. However, the relative importance
of contributions from various terms in the Hamiltonian de-
pends on the basis. For our basis set, only A ·A connects the
initial �1s1s��N� and final �1s�Z=2�kelectron��N−2� states in-
volved in the two-photon transition, because our photon
states are exact energy eigenstates of the radiation field. To
say it more clearly, if the A ·A term is omitted, there is no
two-photon transition at all.

The counter argument given by Maquet et al. (“any
solution ��t� of the TDSE with the A2�t� term is
related to the solution ��t�, without A2�t� through
��t�=exp�−i�0

tA2�u�du���t� , . . .”) is quite fallacious.
As a matter of fact, if i��� /�t= �H+ f�t�	�, if we define
U=exp�−i�0

tf�u�du /�� and �=U�, then, quite generally,
i��� /�t= �U−1HU	�. It is only when H and U commute that
U−1HU=H and the result quoted by Maquet et al. is valid. In
our case, since we adopt a quantum description of all fields,
both H and U depend on the photon creation and annihilation
operators and do not commute at all. We have, of course,
checked that the overlap matrix is correctly taken into ac-

count and that, in the absence of external laser field, the
system remains in the initial state, to a precision of 1 part in
107 in the occupation probabilities.

Let us also state that the electric dipole approximation is
in no way an essential feature of our calculation. As a matter
of fact, it is expected to be invalid for experiments with the
hard x-ray lasers presently under development. However, it
was convenient for two reasons. First, kradR �R=some effec-
tive size of the He atom� was not large in our experiments;
second, we estimate that errors incurred in the truncation of
the basis set and in the approximate nature of the He eigen-
states are the limiting factors in the quality of our calcula-
tion. Should exact energy eigenstates ��j� for He become
available, they would automatically satisfy 
�i��j�=0 if Ei

�Ej. It is obvious that then, in the electric dipole moment
approximation �spatially uniform A�, 
�i�A ·A��j�=0 if

�i ��j�=0, as observed by Maquet et al. The exact A ·A
interaction, however, which should be dominant at shorter
wavelengths and larger field intensities, has a space-
dependent factor exp�±2ikrad ·r� and now the Cohan Haneka
theorem �2� can no longer be invoked to guarantee that all
off-diagonal elements vanish.

Regarding the Schmidt orthogonalization of the approxi-
mate He eigenstates available in the literature �and used in
our calculation�, let us observe that this procedure mixes in
states of different energy. Were we to orthogonalize the He
ground state �1s1s� and the state �1s�Z=2�keletr� related to the
two-photon transitions under discussion, we should for con-
sistency also orthogonalize the state �1s2s� with regard to
�1s1s�. This would result in a shift of the expected value

1s2s�H�1s2s�. Then it becomes legitimate to ask whether the
orthonormalized but spectrally shifted states are a better ap-
proximation of the He exact eigenstates at all, given the ex-
quisite agreement of the energies derived from the He states
used in our calculation and both the “reference” calculation
�3� and experimentally measured spectra �4�.

Still in this connection �too few functions in the
helium Hilbert space� we should like to thank Maquet
et al. for calling our attention to such treacherous
pitfalls. However, consider: we approximated each He
eigenstate with some linear combination of about 60
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functions ��r1 ,r2�=r1
mr2

nr12
q exp�−ar1−br2−cr12�, where

r12= �r1−r2� and n, m, q=0,1 ,2 , . . . . The factor exp�−cr12�
is equivalent to an infinite sum involving products of the
spherical harmonic functions Y�	

*�
1�1�Y�	�
2�2�. Our or-
bital basis is therefore seen to include the same one-particle
states and the same correlated factors r12 as in Ref. �5�, ex-
cept insofar as Scrinzi and Piraux used only a finite set of
such one-particle states.

The E ·r interaction is equivalent to p ·A only for uniform
electric fields. Although we saw no cogent reason to invoke
E ·r in our calculation, we did estimate the accuracy of our
relevant matrix elements comparing the numerical values of

final�pz�initial� and m�Efinal−Einitial�
final�z�initial�. Quite in-
dependently of electromagnetic gauge transformations, these
two quantities should be equal for exact eigenstates of our
He Hamiltonian. We found a discrepancy of about 40%,
which we take as an indication on the accuracy of the abso-
lute values of the transition probability calculated in the pa-

per. However, since this is a systematic error related to the
He wave functions, we believe that the dependence of the
transition probabilities on radiant field intensity I is affected
to a much lesser degree, roughly speaking, by an overall
factor slowly dependent on I. By the way, no error estimate
is given in the calculation of Ref. �5�. It has not yet been
possible to measure absolute transition probabilities in the
experiments reported in our Physical Review A papers, but
we do believe that final validation of any proposed theoreti-
cal model rests on a detailed comparison with experiment.

In conclusion, there is no doubt that the quantized field
approach used in our paper, where the A·A term is respon-
sible for two-photon transitions, is legitimate. On the other
hand we can agree that the A·A term might play only a
minor role on theoretical work based on classical fields, such
as Ref. �5�. Further theoretical work and comparison with
experiments can help to clarify this point.
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