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The ground state energies and the one-body densities of parahydrogen clusters have been systematically
calculated by the diffusion Monte Carlo technique in steps of one molecule from 3 to 50 molecules. These
calculations show that parahydrogen clusters exhibit a clear geometrical order which excludes any liquidlike
structure. A definite confirmation of the magic size for the cluster with 13 molecules is also obtained.
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At low temperature, parahydrogen molecules �p-H2�
are in the ground state with zero angular momentum, and
thus are spinless bosons such as 4He atoms. Although the p
-H2 molecule has a lighter mass than 4He, the van der Waals
interaction is much more attractive, and the bulk phase is a
hcp solid. The path integral Monte Carlo simulations
of Sindzingre et al. �1� have shown that at temperatures
below T�2 K the superfluid fraction in clusters with 13 and
18 p-H2 molecules become large. These results have moti-
vated both experimental �2� and theoretical �3–6� research of
the rotational spectra of the OCS molecule inside small p
-H2 clusters, analogously to the OCS-4HeN systems where
superfluidity in finite systems was established �7�.

In this work we address the question of the structure of
pure small p-H2 clusters at very low temperature. These clus-
ters can be pictured as small pieces of the bulk solid �i.e., a
crystalline structure� or as nanodroplets of a liquid or, finally,
as clusters with a geometrical ordered noncrystaline struc-
ture. In the latter case, magic sizes related to the completion
of geometrical shells are to be expected.

In a recent experiment �8� small p-H2 clusters have been
produced in a cryogenic free jet expansion and studied by
Raman spectroscopy. It has been observed that the Q�0� Ra-
man line of the H2 monomer is shifted as the number of
molecules in the cluster changes, thus providing a method to
determine the cluster mass. The first resolved peaks next the
monomer line have been assigned to �p-H2�N clusters with
N=2, . . . ,8 molecules. The resolution in that experiment was
not enough to resolve larger cluster sizes, but broad maxima
were observed at N�13, 33, and 55. These maxima were
considered as magic sizes related to geometric shells. Inter-
estingly, such numbers correspond to the so-called Mackay
icosahedra �9�, which are expected structures for small clas-
sical Lennard-Jones clusters. A very complete discussion of
classical geometrical patterns and their relation with the
interaction features can be found in Ref. �10�.

Quantum Monte Carlo methods have been used in the
past to study p-H2 clusters, namely, variational Monte Carlo
�VMC� and diffusion Monte Carlo �DMC� methods �11–13�
or path integral Monte Carlo �PIMC� methods �1,14�. In all
cases the study has been limited to specific values of the
number of constituents N, presumably motivated by the clas-
sical static �16–18� or molecular dynamics �18,19� results
related to a generic Lennard-Jones interaction potential.

We present in this paper DMC simulations to systemati-

cally analyze the energetics and structure of �p-H2�N clusters
at T=0 with N=3, . . . ,50, with the aim of finding signal of
magic sizes in this interval and also discern their structure.
We have used the isotropic pairwise interaction modelled by
Buck et al. �20�.

The calculations are based on a Jastrow-like importance
sampling wave function depending on just two parameters

� = �
i�j

N

exp�−
1

2
� rij

b
	5

−
rij

p
	 , �1�

where rij is the relative coordinate of the pair �i , j�. After
systematic minimization of the parameters for each value of
N it was found that the parameter b controlling the short-
range part of the correlations is practically constant, with the
value b=3.70 Å. On the other hand, the long-range param-
eter p varies almost linearly, from 2.24 Å for N=3 up to
23.6 Å for N=50. Afterwads, the DMC calculations were
carried out with very small real-time steps �5�10−5 to 1
�10−5 K−1, for the light and heavier clusters, respectively�
and very long number of evaluation steps. Notice that the
Bose symmetry of the above guiding wave function is not
modified in the DMC process.

The calculated DMC ground state energies are displayed
in Table I. Special care was taken to estimate the statistical
error: the raw results were analyzed by averaging in blocks
of increasing number of successive time steps until the stan-
dard deviation became stable, thus removing the unavoidable
correlations inherent to the short-step stochastic evolution.
The numbers given in parenthesis in the table are the errors
in the final digit shown. Our results agree, as they should,
with previous calculations employing the same interaction.
For instance, the DMC energies per molecule obtained in
Ref. �13� are −12.1649�7�, −14.13�2�, −22.85�7�, and
−35.12�6�, respectively for N=6, 7, 13, and 33. Although the
trial wave function used in Ref. �13� contains nine param-
eters, our simpler wave function leads to similar VMC values
and, after a long enough simulation run, to compatible DMC
energies. There is also a qualitative agreement with the ex-
trapolation to zero temperature of the PIMC results of Ref.
�1�, based on the same intermolecular interaction, as well as
the PIMC results of Ref. �14�, which used instead the
Silvera-Goldman interaction �15�.

The total binding energies grow monotonically with the
number of constituents. In order to determine an enhanced
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stability related to magic sizes it is convenient to analyze the
variation with N of the dissociation energy or chemical po-
tential, defined from the ground state energies E�N� as

�N = E�N − 1� − E�N� . �2�

This quantity is plotted in Fig. 1. The most appealing feature
of this plot is the presence of a bump around N=13; the
bump starts at N=10, with a clear change of the slope,
reaches its maximum at N=13 and afterwards there is a sud-
den drop followed by a plateau until N=17. This indicates
that N=13 is a true magic cluster, in agreement with the
experimental findings of Ref. �8�.

Afterwards there is no clear signal of any local enhance-
ment of the chemical potential. It should be mentioned that
even if the sampling has been pursued until the standard

deviation of the energy per particle remains constant, near
0.02 K, when subtracting the total energies to obtain the
chemical potential the corresponding standard deviation
grows monotonically thus hiding possible minor local struc-
tures. So, the only local irregularities �near 30 and 40 con-
stituents� cannot be properly considered as real bumps, and
consequently as real magical numbers.

The other question of relevance for p-H2 clusters is
their shape. It is convenient to consider briefly the corre-
sponding results from classical simulations. From the static
point of view the potential energy surfaces have an enor-
mously large number of local minima. In fact, it has been
stated �22� that determining the ground state of a cluster of
identical atoms interacting under two-body central forces be-
longs to the class of Np-hard problems, meaning that no
polynomial time algorithm solving this problem exists. For
the N=13 problem Hoare and McInnes �23� found 988 local
minima. Honeycutt and Andersen �18� heated and cooled the
molecular dynamics evolution to find the most favorable pat-
terns at T=0, and from their results �not covering all clusters�
it is interesting to mention that for N=13 and N=55 they
found a quite large energy gap between the absolute mini-
mum and the next geometrical arrangement, both minima
corresponding to icosahedral shapes, as well as a less pro-
nounced gap at N=19 �double icosahedron�. These results
correspond to Lennard-Jones systems.

Previous quantum determinations have tried to get some
parallelism with classical clusters, by analyzing instanta-
neous snapshots along the stochastic random walk. In
this manner it has been found that from time to time specific
clusters do adopt geometrical shapes with pentagonal
symmetry. Thus, N=13 is pictured as a body-centered
icosahedron �12 particles, one at each vertex, plus one
in the center-of-mass�; N=19 is pictured as four single
particles in the symmetry axis alternating with three
parallel pentagons; finally, N=34 shows a 7 particle core
�bipyramidal pentagonal� plus 27 particles distributed in two
close spherical shells, with clear pentagonal symmetry. The
reader may consult Refs. �10,14� to find drawings of these
configurations.

Whereas this classical-like analysis may be done for a few
specific clusters, it will be cumbersome for a large number of
clusters. We have preferred instead to consider just the
one-body density distribution given by the expectation value

��r� = 

i=1

N

��„r − �ri − R�…� , �3�

where ri stands for the ith-particle coordinates, and
R=
iri /N is the center-of-mass of the system. Given that the
clusters have zero angular momentum, the outcoming one-
body density is spherically symmetric, within statistical
fluctuations.

The density distributions, normalized to the number of
constituents, are represented in Fig. 2, for N=3 to 50. There
is a clear evolution of the density distributions with the num-
ber of constituents: hydrogen molecules are arranged in quite
sharply defined spherical shells, with radii growing slowly
but steadily with the number of molecules. There are two

TABLE I. Ground state �p-H2�N energies per molecule E�N� /N
�in K� obtained in a DMC calculation. The statistical standard de-
viation is indicated in parenthesis �error in the final digit shown�.

N −E�N� /N N −E�N� /N N −E�N� /N

3 4.893�7� 19 27.78�2� 35 36.13�2�
4 7.618�8� 20 28.44�2� 36 36.44�2�
5 10.09�1� 21 29.13�2� 37 36.81�2�
6 12.24�1� 22 29.77�2� 38 37.10�2�
7 14.12�1� 23 29.94�2� 39 37.41�2�
8 15.78�1� 24 31.03�2� 40 37.72�2�
9 17.29�1� 25 31.64�2� 41 38.05�2�
10 18.69�2� 26 32.22�2� 42 38.34�2�
11 20.14�1� 27 32.76�2� 43 38.58�2�
12 21.65�2� 28 33.23�2� 44 38.92�2�
13 22.99�3� 29 33.73�2� 45 39.22�2�
14 23.99�2� 30 34.12�2� 46 39.56�2�
15 24.84�2� 31 34.60�2� 47 39.78�2�
16 25.62�2� 32 35.01�2� 48 40.08�3�
17 26.31�2� 33 35.41�2� 49 40.36�4�
18 27.01�2� 34 35.76�2� 50 40.61�4�
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FIG. 1. DMC chemical potential �in K� of �p-H2�N clusters as a
function of the number N of constituents.
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regions, around N=13 and 50 with a very large peak near the
center-of-mass, and in the middle region the space near the
center of mass is empty. It should be mentioned that these
two features do not appear in the densities obtained with the
optimized VMC trial functions, so that they are developed
along the DMC real-time evolution. This fact was also found
in the calculations of McMahon and Whaley �13� for clusters
with N=6, 13, and 33.

In order to ascertain the location of the second maximum
at the origin we have pushed our calculations up to N=70.
The calculations clearly show that the peak of the density at
the origin grows up to N=55, and afterwards drops to zero
around N=70. The structure pattern near N=55 is similar to
the one observed around N=13. Due to the smaller statistics
in the calculations for N�50, the calculated binding energies
are affected by a rather large statistical error. We have thus
preferred to limit the values displayed in Table I and Fig. 1 to
the maximum value N=50.

Just from Fig. 1 one may conclude that the small p-H2
clusters cannot be considered as small droplets. Actually, it is
very instructive to compare the present density distributions
with those obtained for the 4He nanodroplets �21�. The latter
are rather constant in the inner volume, as expected for a
liquid drop, presenting only slight oscillations at the surface.

In order to get a more precise description of the shells
appearing in the density distributions, it is useful to resolve
them in terms of overlapping Gaussians,

��r� � 

k

Ak exp�−
�r − ck�2

2	k
2 	 , �4�

where the number of terms of the sum depends of the shape
of the distribution. In each term, the centroid ck signals the
region where the density has a local maximum and the width
	k is a measure of how sharp this region is defined.

By integrating the individual Gaussians one may deter-

mine the number of particles lying in the corresponding
shell. The results are presented in Fig. 3, where the number
of particles has been rounded to the nearest integer. Notice
that in some cases, the existence of important overlaps be-
tween the Gaussians can create some conflict in the number
of particles assigned to each shell.

A quite surprising feature emerging from the Gaussian
resolution is that the regions with a very large value of the
density near the center of mass do actually have a single
particle. Moreover, from N=20 and beyond there are two
shells which are simultaneously filled as the size of the clus-
ter increases. In conclusion, we have observed structural
changes around N=13 and 55 �maximum density at the
origin� and no special signal at N=33.

The occupation numbers obtained here are basically in
agreement with previous findings based on snapshots of the
molecules in a cluster. For example, our calculated distribu-
tion for N=13 agrees with the geometrical picture of one
particle in the center and 12 particles in the vertices of an
icosahedron. For N=33 the occupation numbers are compat-
ible with a double pentagonal pyramid �7 particles� near the
center, and the remaining 26 particles in an external shell.
However, our density profiles are less structured than those
found by Scharf et al. �14� in their PIMC calculation at
2.5 K. Actually, for N=33 and 34 we just find two broad
peaks at around 2.5 and 6 Å, instead of the two double peaks
displayed in Fig. 6 of Ref. �14�. We believe this differences
may be a consequence of the excited states admixture
associated with the PIMC algortihm.

In conclusion, our DMC calculations at zero temperature
show that �p-H2�N clusters exhibit a clear geometrical
order, with the molecules distributed in spherical coronas. A
significant Bose condensed fraction was found in the PIMC
simulations of Ref. �1� for clusters with 13 and 18 molecules.
That result was confirmed by the experiments of Ref. �2�.
As the present DMC calculations excludes a standard liquid-
like structure, an intriguing question is open regarding
the behavior of p-H2 molecules inside the spherical coronas:
they could either move as in a liquid or, on the contrary,
they could be tied to some fixed positions as in a Mackay
icosahedron.
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FIG. 2. The density distribution of �p-H2�N clusters as a function
of the number N of constituents, obtained by the DMC method.
Distances are measured in Å and densities correspond to the number
of molecules per cubic Å.
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FIG. 3. The number of particles ascribed to each shell as a
function of the number of constituents of the cluster. The horizontal
lines correspond to 1 and 12 particles.
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With respect to magical numbers, there is a definite con-
firmation of N=13. From the present calculations we cannot
definitely conclude about the nature of N�33 hydrogen clus-
ters; in our opinion, N=33 is not a magical cluster, because
from the structure near N=13 we should expect a region of
enhanced stability, if it were magical, instead of a single
spike. To this respect it is worth mentioning that magic sizes
have also been observed in 4He clusters �24�, which are defi-
nitely liquidlike and thus the magic sizes are not related to

enhanced ground state binding energies at specific values of
N. They are instead stability thresholds, related to the cluster
sizes at which excited levels cross the chemical potential
curve and become stabilized. An analysis of the possible ex-
istence of similar stability thresholds in p-H2 could be
helpful to interpret the experimental results of Ref. �8�.
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