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In a recent paper Yu and Eberly �Phys. Rev. Lett. 93, 140404 �2004�� have shown that two initially
entangled and afterward not interacting qubits can become completely disentangled in a finite time. We study
transient entanglement between two qubits coupled collectively to a multimode vacuum field, assuming that
the two-qubit system is initially prepared in an entangled state produced by the two-photon coherences, and
find the unusual feature that the irreversible spontaneous decay can lead to a revival of the entanglement that
has already been destroyed. The results show that this feature is independent of the coherent dipole-dipole
interaction between the atoms but it depends critically on whether or not collective damping is present.
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The problem of controlling the evolution of entanglement
between atoms �or qubits� that interact with the environment
has received a great deal of attention in recent years �1–4�.
The environment may be treated as a reservoir and it is well
known that the interaction of an excited atom with the res-
ervoir leads to spontaneous emission which is one of the
major sources of decoherence. In light of the experimental
investigations, the spontaneous emission leads to irreversible
loss of information encoded in the internal states of the sys-
tem and thus is regarded as the main obstacle in practical
implementations of entanglement.

This justifies the interest in finding systems where spon-
taneous emission is insignificant. However, in many treat-
ments of the entanglement creation and entanglement dy-
namics, the coupling of atoms to the environment is simply
ignored or limited to the interaction of the atoms with a
single-mode cavity �5–7�.

It is well known that under certain circumstances a group
of atoms can act collectively so that the radiation field emit-
ted by an atom of the group may influence the dynamics of
the other atoms �8–11�. The resulting dynamics and the spon-
taneous emission from the atoms may be considerably modi-
fied. It was recently suggested that two suitably prepared
atoms can be entangled through the mutual coupling to the
vacuum field �1,2,12–14�. Stationary two-atom entanglement
is possible when the atoms are damped to the squeezed
vacuum �15�. It has also been predicted that two initially
entangled and afterward not interacting atoms can become
completely disentangled in a time much shorter than the de-
coherence time of spontaneous emission. This feature has
been studied by Yu and Eberly �16� and Jakóbczyk and Jam-
róz �17�, who termed it the “sudden death” of entanglement,
and elucidated many new characteristics of entanglement
evolution in systems of two atoms. Their analysis, however,
concentrated exclusively on systems of independent atoms.

In this paper, we consider a situation where the atoms are
coupled to the multimode vacuum field and demonstrate the
occurrence of multiple dark periods and revivals of entangle-
ment induced by the irreversible spontaneous decay. We fully
incorporate collective interaction between the atoms and
study in detail the dependence of the revival time on the
initial state of the system and on the separation between the
atoms. We emphasize that the revival of entanglement in a

pure spontaneous emission process contrasts with the situa-
tion of the coherent exchange of entanglement between at-
oms and a cavity mode �5,6�.

We consider two identical two-level atoms �qubits� having
lower levels �gi� and upper levels �ei� �i=1,2� separated by
energy ��0, where �0 is the transition frequency. The atoms
are coupled to a multimode radiation field whose modes are
initially in the vacuum state ��0��. The atoms radiate sponta-
neously and their radiation fields exert a strong dynamical
influence on one another through the vacuum field modes.
The time evolution of the system is studied using the
Lehmberg–Agarwal �9–11� master equation, which reads
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z is the energy operator of the ith atom; �ii
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spontaneous decay rates of the atoms caused by their direct
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where k=�0 /c, and rij = �r� j −r�i� is the distance between the
atoms. Here, we assume, with no loss of generality, that the
atomic dipole moments are parallel to each other and are
polarized in the direction perpendicular to the interatomic
axis. The effect of the collective parameters on the time evo-
lution of the entanglement in the system is the main concern
of this paper.

It will prove convenient to work in the basis of four col-
lective states, so-called Dicke states, defined as �8�
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�e� = �e1� � �e2� ,

�g� = �g1� � �g2� ,

�s� = ��g1� � �e2� + �e1� � �g2��/
2,

�a� = ��g1� � �e2� − �e1� � �g2��/
2. �4�

In this basis, the two-atom system behaves as a single four-
level system with the ground state �g�, two intermediate
states �s� and �a�, and the upper state �e�.

In order to determine the amount of entanglement be-
tween the atoms and the entanglement dynamics, we use the
concurrence, which is a widely accepted measure of en-
tanglement. The concurrence introduced by Wootters �18� is
defined as

C�t� = max�0,
�1 − 
�2 − 
�3 − 
�4� , �5�

where ��i� are the eigenvalues of the matrix

R = ��̃ with �̃ = �y � �y�
*�y � �y , �6�

and �y is the Pauli matrix. The range of concurrence is from
0 to 1. For unentangled atoms C�t�=0 whereas C�t�=1 for
maximally entangled atoms.

The density matrix, which is needed to calculate C�t�, is
readily evaluated from the master equation �1�. Following Yu
and Eberly, we choose the atoms to be at the initial time
�t=0� prepared in an entangled state of the form

��0� = 
p�e� + 
1 − p�g� , �7�

where 0	 p	1. The state ��0� is a linear superposition of
only those states of the system in which both or neither of
the atoms is excited. As discussed in Refs. �16,17�, in the
absence of the coupling between the qubits, the initial en-
tangled state of the form �7� disentangles in a finite time.
They termed this feature the sudden death of entanglement.

In what follows, we examine the time evolution of the
entanglement of two atoms coupled to the multimode
vacuum field. If the atoms are initially prepared in the state
�7�, it is not difficult to verify that the initial one-photon
coherences are zero, i.e., �es�0�=�ea�0�=�sg�0�=�ag�0�
=�as�0�=0. This implies that, for all times, the density ma-
trix of the system represented in the collective basis �4�, is
given in the block-diagonal form

��t� =�
�ee�t� �eg�t� 0 0

�eg
* �t� �gg�t� 0 0

0 0 �ss�t� 0

0 0 0 �aa�t�
� , �8�

with the density matrix elements evolving as

�ee�t� = pe−2�t,

�eg�t� = 
p�1 − p�e−�t,

�ss�t� = pe−�t� + �12

� − �12
�e−�12t − e−�t� ,

�aa�t� = pe−�t� − �12

� + �12
�e�12t − e−�t� , �9�

subject to conservation of probability �gg�t�=1−�ss�t�
−�aa�t�−�ee�t�.

Note that the evolution of the system depends crucially on
the initial conditions, and for the present initial conditions
the evolution of the density matrix elements is independent
of the dipole-dipole interaction between the atoms, but is
profoundly affected by the collective damping �12. If the
initial conditions are chosen differently, such that there is a
nonzero coherence �as which oscillates with the frequency
2�12, the dipole-dipole interaction manifests its presence in
oscillatory behavior of the concurrence �14�.

Given the density matrix Eq. �8�, we can now calculate
the concurrence C�t� and examine the transient dynamics of
the entanglement. First, we find that the square roots of the
eigenvalues of the matrix R are


�1,2 �t� = ��ge�t�� ± ��ss�t� + �aa�t�� ,


�3,4�t� = ��ss�t� − �aa�t�� ± 
�gg�t��ee�t� , �10�

from which it is easily verified that for a particular value of
the matrix elements there are two possibilities for the largest
eigenvalue, either 
�1�t� or 
�3�t�. The concurrence is thus
given by

C�t� = max�0,C1�t�,C2�t�� , �11�

with

C1�t� = 2��ge�t�� − ��ss�t� + �aa�t�� ,

C2�t� = ��ss�t� − �aa�t�� − 2
�gg�t��ee�t� . �12�

From this it is clear that the concurrence C�t� can always be
regarded as being made up of the sum of nonnegative con-
tributions of the weights C1�t� and C2�t� associated with two
different classes of entangled states that can be generated in
a two-qubit system. From the form of the entanglement
weights it is obvious that C1�t� provides a measure of an
entanglement produced by linear superpositions involving
the ground �g� and the upper �e� states of the system, whereas
C2�t� provides a measure of an entanglement produced by a
distribution of the population between the symmetric and
antisymmetric states. Inspection of Eq. �12� shows that for
C1�t� to be positive it is necessary that the two-photon coher-
ence �eg is different from zero, whereas the necessary con-
dition for C2�t� to be positive is that the symmetric and anti-
symmetric states are not equally populated.

We consider first the effect of the collective damping on
the sudden death of an initial entanglement determined by
the state �7�. The entanglement weights C1�t� and C2�t�,
which are needed to construct C�t�, are readily calculated
from Eqs. �7� and �12�. We see that the system initially pre-
pared in the state �7� can be entangled according to the cri-
terion C1, and the degree to which the system is initially
entangled is C1�0�=2
p�1− p�.

If the atoms radiate independently, �12=0, and then we
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find from Eq. �9� that �ss�t�=�aa�t�. It is clear by inspection
of Eq. �12� that in this case C2�t� is always negative, so we
immediately conclude that no entanglement is possible ac-
cording to the criterion C2, and the atoms can be entangled
only according to the criterion C1. The initial entanglement
decreases in time because of the spontaneous emission and
disappears at the time

td =
1

�
ln� p + 
p�1 − p�

2p − 1
� , �13�

from which we see that the time it takes for the system to
disentangle is a sensitive function of the initial atomic con-
ditions. We note from Eq. �13� that the sudden death of the
entanglement of independent atoms is possible only for p

1/2. Since �ee�0�= p, we must conclude that entanglement
sudden death is ruled out for a system that is initially not
inverted.

For a collective system, when the atoms are close to each
other, �12�0, and then the sudden death appears in less re-
stricted ranges of the parameter p. This is shown in Fig. 1,
where we plot the death time as a function of p for several
separations between the atoms. We see that the range of p
over which the sudden death occurs increases with decreas-
ing r12, and for small separations the sudden death occurs
over the entire range of p.

The most interesting consequence of the collective damp-
ing is the possibility of entanglement revival. We now use
Eqs. �9� and �12� to discuss the ability of the system to revive
entanglement in the simple process of spontaneous emission.
Figure 2 shows the deviation of the time evolution of the
concurrence for two interacting atoms from that of indepen-
dent atoms. In both cases, the initial entanglement falls as the
transient evolution is damped by the spontaneous emission.
For independent atoms we observe the collapse of the en-
tanglement without any revivals. However, for interacting
atoms, the system collapses over a short time and remains
disentangled until a time tr�1.7/� at which, somewhat
counterintuitively, the entanglement revives. This revival
then decays to zero, but after some period of time a new

revival begins. Thus, we see two time intervals �dark peri-
ods� at which the entanglement vanishes and two time inter-
vals at which the entanglement revives. To estimate the death
and revival times, we use Eqs. �12� and �9�, and find that for
�12��, the entanglement weight C1�t� vanishes at times sat-
isfying the relation

�t exp�− �t� =
1 − p

p
, �14�

which for p
0.88 has two nondegenerate solutions td and
tr
 td. The time td gives the collapse time of the entangle-
ment beyond which the entanglement disappears. The death
zone of the entanglement continues until the time tr at which
the entanglement revives. Thus, for the parameters of Fig. 2,
the entanglement collapses at td=0.6/� and revives at the
time tr=1.7/�.

The origin of the dark periods and the revivals of the
entanglement can be understood in terms of the populations
of the collective states and the rates with which the popula-
tions and the two-photon coherence decay. One can note
from Eq. �9� that for short times �aa�t��0, but �ss�t� is large.
Thus, the entanglement behavior can be analyzed almost en-
tirely in terms of the population of the symmetric state and
the coherence �eg�t�.

Figure 3 shows the time evolution of C�t�, the population
�ss�t�, and the coherence �eg�t�. As can be seen from the
graphs, the entanglement vanishes at the time at which the
population of the symmetric state is maximal and remains
zero until the time tr at which �ss�t� becomes smaller than
�eg�t�. We may conclude that the first dark period arises due
to the significant accumulation of the population in the sym-
metric state. The impurity of the state of the two-atom sys-
tem is rapidly growing and entanglement disappears.

The reason for the occurrence of the first revival seen in
Fig. 2 is that the two-photon coherence �eg�t� decays more
slowly than the population of the symmetric state. Once
�ss�t� falls below 2 ��eg�t��, entanglement emerges again.
Thus, the coherence can become dominant again and en-
tanglement regenerated over some period of time during the
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FIG. 1. The death time of the entanglement prepared according
to the criterion C1 and plotted as a function of p for different sepa-
rations between the atoms: r12=� �solid line�, � /3 �dashed line�,
� /6 �dash-dotted line�, and r12=� /20 �dotted line�.
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FIG. 2. Transient evolution of the concurrence C�t� for the initial
state ��0� with p=0.9. The solid line represents C�t� for the collec-
tive system with the interatomic separation r12=� /20. The dashed
line shows C�t� for independent atoms, �12=0.
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decay process. This is the same coherence that produced the
initial entanglement. Therefore, we may call the first revival
an “echo” of the initial entanglement that has been unmarked
by destroying the population of the symmetric state. It is
interesting to note that the entanglement revival appears only
for large values of p, and is most pronounced for p
0.88.
This is not surprising because for p
1/2 the system is ini-
tially inverted, which increases the probability of spontane-
ous emission.

We have seen that the short-time behavior of the entangle-
ment is determined by the population of the symmetric state
of the system. A different situation occurs at long times. As is

seen from Fig. 2, the entanglement revives again at longer
times and decays asymptotically to zero as t→�. The second
revival has completely different origin from the first one. At
long times both �ss�t� and �eg�t� are almost zero. However,
the population �aa�t� is sufficiently large as it accumulates on
the time scale t=1/ ��−�12� which is very long when �12

��. A careful examination of Eq. �9� shows that C1�t��0 at
long times, so that the long-time entanglement is determined
solely by the weight C2, which is negative for short times,
and it becomes positive after a finite time tr2

�second revival
time� given approximately by the formula

tr2
�

1

�12
ln� 1


p

4�

� − �12
� . �15�

It follows from the above analysis and Fig. 2 that the en-
tanglement prepared according to the criterion C1 is a rather
short-lived affair compared with the long-lived entanglement
prepared with the criterion C2. Asymptotically, the concur-
rence is equal to the population �aa�t�.

We conclude with an example of possible experimental
observation of the features predicted in this paper. In prin-
ciple this system may be realized in a scheme similar to that
used by Osnaghi et al. �6� to observe entanglement between
two atoms. The scheme involves two Rydberg atoms travers-
ing a semiconductor microwave cavity of the resonant wave-
length �0.6 cm. At such long wavelengths, the interatomic
separations smaller than the resonant wavelength that we
have assumed here could be realized without much difficulty.
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FIG. 3. Origin of the first dark period and revival of the en-
tanglement of a collective system. The time evolution of the coher-
ence 2 ��eg�t�� �dashed line� is compared with the evolution of the
population �ss�t� �dash-dotted line� for the same parameters as in
Fig. 2. The solid line is the time evolution of the concurrence C�t�
=C1�t�.
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