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We examine the entanglement dynamics generated by two coupled angular momenta. For initially spin-
coherent states, we show that fractional revivals can lead to a well-defined sequence of fractional disentangle-
ments, at which the purity of each subsystem is almost a fractional number 1/n �where n is an integer�. This
interesting effect is interpreted as the formation of entangled macroscopic superposition states.
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When two or more quantum systems interact with each
other, the evolution of quantum entanglement provides a fun-
damental picture describing how nonclassical correlations
develop in time. By analyzing the quantum entanglement,
one can also identify correlated observables relevant to the
entangled states involved. Apart from the most extensively
studied two-qubit problems, the dynamics of quantum en-
tanglement has been discussed in various basic physical pro-
cesses. These include, for examples in atomic physics, the
ionization processes �1,2�, two-body scattering processes �3�,
and spontaneous emission �4�.

In this paper, we address the interesting question of how
two large spin systems become entangled via angular mo-
mentum coupling. Specifically, we consider two spin-s sys-
tems A and B. The Hamiltonian is a simple form of angular
momentum coupling:

H = gJA · JB �1�

where JA and JB are the angular momentum operators of A
and B, and g is the coupling strength. Such an interaction
appears in many physical situations, and high-spin systems
could be realized by wave-mixing processes in Bose-Einstein
condensates �5�. Classically, JA and JB execute precessions
about a fixed axis, with the precession speed determined by
the total angular momentum. In quantum mechanics, if the
initial states of A and B are wave packets described by spin-
coherent states �6�, then the wave packets will follow the
classical motion at short times. However, since different
parts of wave packets precess at different speeds, the wave
packets spread in a correlated manner. Consequently, the two
systems become entangled as time increases.

For pure systems, quantum entanglement can be charac-
terized by the loss of purity of subsystems �1�. Interestingly,
for the interaction described by �1�, we find that the purity
can exhibit a kind of fractional revival phenomenon. The
partial recovery of purity implies that the system is partially
disentangled. We note that fractional revival is a general con-
sequence of wave-packet dynamics in systems with discrete
and quadratic energy spacings �7,8�, and previous investiga-
tions have considered mainly the dynamics in single systems.
In this paper we investigate a composite system in which a
close relation between fractional revivals and quantum en-
tanglement can be found. In contrast to single systems where
autocorrelation functions are sufficient to reveal the revival
behavior �7�, here the correlations between subsystems re-
quire a different indicator. As we shall see below, the purity

function provides a useful way to detect both quantum en-
tanglement and fractional revivals.

To begin with, we employ the addition of angular momen-
tum J=JA+JB, so that the Hamiltonian takes the form H
=g�J2−JA

2 −JB
2� /2. Since JA

2 and JB
2 are constants of motion,

the general solution of the time-dependent system state vec-
tor is given by

������ = eis�s+1���
J=0

2s

�
M=−J

J

CJMe−iJ�J+1��/2�J,M� �2�

where �=gt is the dimensionless time, and �J ,M� are eigen-
vectors of J2 and Jz. The amplitude CJM is determined by
initial conditions.

Since we are interested in quantum entanglement between
A and B, it is more convenient to rewrite the solution �2� in
terms of basis vectors of individual systems. With the help of
Clebsch-Gordan coefficients, we have

������ = eis�s+1�� �
m=−s

s

�
m�=−s

s

Fmm�����s,m�A�s,m��B �3�

with

Fmm���� � �
J=0

2s

�
M=−J

J

CJMe−iJ�J+1��/2G�s,s,m,m�;J,M� . �4�

In writing Eq. �3�, �s ,m�i �i=A ,B� are common eigenvectors
of Ji

2 and Jiz
, i.e., Ji

2�s ,m�i=s�s+1��s ,m�i and Jiz
�s ,m�i

=m�s ,m�i. In addition, G�s ,s ,m ,m� ;J ,M�
= �	s ,m��	s ,m���JM� are Clebsch-Gordan coefficients.

Let the initial state of the system be a disentangled state:

���0�� = �
m=−s

s

Am�s,m�A � �
m�=−s

s

Bm��s,m��B. �5�

Then CJM is related to the initial amplitudes Am and Bm� by

CJM = �
m=−s

s

�
m�=−s

s

AmBm�G
*�s,s,m,m�;J,M� . �6�

Quite generally, Fmm���� cannot be factorized into a product
of functions of m and m�, except at full revival times �
=2k� �k=integer�. Therefore the two particles are entangled
most of the time.

To characterize the time dependence of quantum entangle-
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ment, we employ the purity function of subsystem A �or B�
as an entanglement measure,

P��� = Tr��A���2� = Tr��B���2� �7�

where �A���=TrB������ is the reduced density of the particle
A, and ���� is the whole �A+B� density matrix. A disen-
tangled �product� state corresponds to P=1. The smaller the
value of P, the higher the entanglement. Comparing with the
usual measure based on entanglement entropy −Tr��A ln �A�,
the calculation of purity is more convenient as it does not
involve diagonalization of density matrices.

From Eq. �3�, P takes the explicit form

P��� = �
m=−s

s

�
n=−s

s

�
p=−s

s

�
q=−s

s

FmnFpn
* FpqFmq

* . �8�

Together with Eqs. �4� and �6�, the time dependence of en-
tanglement can be determined. In this paper, we will restrict
our study to initial states described by spin-coherent states

�
m=−s

s

Am�s,m�A = ��1,�1�A �9�

�
m=−s

s

Bm�s,m�B = ��2,�2�B. �10�

Here the spin-coherent states �� ,�� are defined by �6�

��,�� � �
m=−s

s 
 �2s�!
�s + m�!�s − m�!�

1/2 �s+m

�1 + ���2�s �s,m� �11�

with ��cot�� /2�e−i�. For convenience our notation of � is
the same as that in the usual spherical coordinates, which is
different from that used in �6�. Physically, �� ,�� is a wave
packet localized at the angular coordinate �� ,��. Since the
interaction �1� is spherically symmetric, we have the freedom
to choose axes such that the centers of wave packets are
symmetrically placed about the z axis in the positive z re-
gion, i.e., �2=�1��0	� /2. In addition, �1=0 and �2=�
can be taken by the choice of axes.

In Fig. 1, we present an example of P��� with s=100 and
�0=� /4. At early times, the generation of entanglement is
signaled by a rapid decrease of P. As time increases, we see
a sequence of peak structures. The most prominent feature is
that P peaks at almost fractional values 1/n, where n
=1,2 ,3 , . . . are integers. Specifically, we find that

P
� =
2�l

n
� �

1

n
�12�

where l is an integer, and l and n are relatively prime. Some
of these fractional values are indicated in Fig. 1, and agree
with the exact numerical peak values of P with errors less
than or equal to 4%. For the parameters used in Fig. 1, up to
n=15 can be observed.

To explain Eq. �12�, we follow the theory of fractional
revivals by Averbukh and Perelman �8�. For angular-
momentum-coherent states, Rozmej and Arvieu have also
provided a detailed account of revivals in single systems �9�.

Here we extend these previous studies to address entangle-
ment in composite systems. The strategy is based on the fact
that the phase factor e−iJ�J+1��/2 is periodic in J when �
=2�l /n, i.e., e−i��J+r��J+r+1�l/n=e−i�J�J+1�l/n with an integer pe-
riod r. It can be shown that r=n when n is odd, and r=2n
when n is even.

By exploiting the periodicity of the phase factor, a dis-
crete Fourier transform gives

e−i�J�J+1�l/n =
1

r
�
k=1

r

ake
−2�iJk/r �13�

where ak are Fourier amplitudes that can be obtained by
inverse discrete Fourier transform of �13�. For odd n’s, ak

=ei
kn /n, and for even n’s, a2k=0 and a2k−1=ei
kn /n,
where 
kn are real angles. Hence the number of nonzero
amplitudes in Eq. �13� is always n, and all the nonzero ak
have the same absolute value. Therefore the state vector �2�
can be decomposed into a superposition state,

��
2�l

n
�� =

ei2�s�s+1�l/n

n
�
k=1

n

ei
kn��k� �14�

where

��k� = �
J=0

2s

�
M=−J

J

CJMe−2�iJ�k+��/n�J,M� �15�

with �=mod�n+1,2� /2.
We now make use of the spin-coherent states assumed in

the initial condition. Owing to the complicated forms of
Clebsch-Gordan coefficients, CJM do not have simple closed
forms. However, by numerical calculations, we observe that
M =J terms constitute most of the system state vector �2�, as
long as �0 is not too close to � /2. Such an observation can
be quantified by �J=0

2s �CJJ�2, which corresponds to the prob-
ability of finding the system in the subspace formed by �J ,J�
eigenvectors. We find that for �0	� /4 and s2, �J=0

2s �CJJ�2
is greater than 98% �10�. Such a high probability can be
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FIG. 1. Time evolution of the purity P of subsystem A �or B�
with s=100. The initial state is a spin-coherent state specified by the
parameter �0=� /4 �see text�. At revival times �=2�l /n, the purity
attains nearly the value 1/n as indicated in the figure.
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understood classically by adding the angular momentum vec-
tors of A and B within the widths associated with their cor-
responding spin coherent states. Such a classical picture
gives Jz /J=1−O�1/s�, i.e., Jz and J are nearly the same up
to a correction term of order O�1/s� due to fluctuations.
However, we remark that the classical picture is valid when
Jz�1. It fails to describe situations when 2s cos �0 is small.
This happens when �0 is close to � /2, and in this case the
fluctuations become important; the set of �J ,J� states is not
sufficient to expand the system state vector.

Let us focus on initial conditions with �0	� /4 so that
Eq. �15� is well approximated by keeping M =J terms only.
In this way ��k� can be thought of as a rotation generated by
the Jz operator:

��k� � e−iJz�k�
J=0

2s

CJJ�J,J� � e−iJz�k���0�� �16�

where �k=2��k+�� /n is the rotation angle dependent on the
index k. Since Jz=JAz

+JBz
, the state vector �14� at fractional

revival times becomes

��
2�l

n
�� �

ei2�s�s+1�l/n

n
�
k=1

n

ei
kn��0,�k�A��0,� + �k�B.

�17�

Equation �17� is a kind of entangled spin-coherent state in
which the initial packet pair is now split into n identical and
equally spaced pairs. If these wave packets are well sepa-
rated such that 	� ,�k �� ,�k����kk�, then Eq. �17� is an ap-
proximate form of Schmidt decomposition in which the
Schmidt modes are spin-coherent states, and all the n
Schmidt eigenvalues are of the same absolute value. Conse-
quently, the purity is approximately 1/n. Note that the n=1
case corresponds to full revivals, i.e., complete disentangle-
ment P=1. Hence the fractional revivals of P may be con-
sidered as “fractional disentanglement.”

We remark that the survival probability �	��0� �������2

also displays peaks with fractional values, according to the
state obtained in Eq. �17�. However, one needs to distinguish
that the survival probability itself is not a measure of quan-
tum entanglement. In our system, the time dependence of the
survival probability is highly oscillatory due to the fast pre-
cession of wave packets. As such fast oscillations are not
related to entanglement, they do not appear in the purity
function.

It is useful to estimate the maximum number of wave
packets that are well separated on the precession orbit. The
inverse of this number also provides an estimation of the
minimum purity. Since spin-coherent states are minimum
wave packets, they have the widths about s. If we let w be
the minimum number of widths required for good separation,
then �2�s sin �0� /ws is the maximum n, after taking the
precession radius s sin �0 into account. It is quite sufficient to
choose w�3, and the minimum purity is estimated to be
Pmin�3/ �2�s sin �0�. Hence, the larger the value of s, the
stronger the entanglement. For the parameters used in Fig. 1,
the estimation gives Pmin�0.068, which is close to the actual

minimum purity 0.06 observed in Fig. 1. We have also per-
formed calculations for �0 smaller than � /4 �Fig. 2�. This
corresponds to a smaller precession radius, and hence fewer
well-separated packets can be accommodated. This explains
why there are fewer revival peaks of low purity values in
Fig. 2.

It is worth noting that, although the systems considered
here have the same spin s, a similar analysis can be applied
to systems with different spins. This is because our results
are based on Eq. �13�, which is a property of total spin J,
independent of individual spin values. A slight complication
is that the z axis should be chosen as the precession axis,
such that the classical J and Jz are almost the same as before.
As long as individual spins are sufficiently large and their
initial angles support a large J, then Eq. �12� is expected to
hold for some finite numbers of n. This is confirmed also in
our numerical calculations �not shown�.

To summarize, we investigated the evolution of entangle-
ment driven by angular momentum coupling �1� with near-
classical initial conditions. In the large-s limit, the emergence
of 1 /n purity peaks at fractional revival times corresponds to
the generation of n pairs of coherent states. Our results could
have applications in bipartite systems described by angular
momentum coupling �1�. One example is atomic wave mix-
ing in a spin-1 Bose condensate proposed by Goldstein and
Meystre �5�. In such a process, the effective Hamiltonian can
be reduced to �1� and the value of s is of the order of the
number of atoms in the condensate. Another example is
based on photon-atom interaction. By making use of
Schwinger’s oscillator representation of angular momentum,
one can construct the interaction �1� by coupling atoms with
two quantized field modes. Specifically, the interaction �1�
describes the collective Raman coupling inside a cavity �11�.
In such systems, the state �17� corresponds to a kind of
photon-atom entanglement in which the Schmidt modes are
coherent states of atoms and photons.

The authors thank S. K. Y. Lee for discussions. This work
is supported in part by the Research Grants Council of the
Hong Kong Special Administrative Region, China �Project
No. 401305 and No. 400504�.
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FIG. 2. Time evolution of the purity P of subsystem A �or B�
with s=100 and �0=� /8. The approximate values of purity at frac-
tional revival times are shown as in Fig. 1.
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