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The presence of an additive-conserved quantity imposes a limitation on the measurement process. According
to the Wigner-Araki-Yanase theorem, perfect repeatability and distinguishability of the apparatus cannot be
attained simultaneously. Instead of repeatability, in this paper, the distinguishability in both systems is exam-
ined. We derive a trade-off inequality between the distinguishability of the final states on the system and the
one on the apparatus. An inequality shows that perfect distinguishability of both systems cannot be attained
simultaneously.
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According to the Wigner-Araki-Yanase theorem, the pres-
ence of an additive-conserved quantity imposes a limitation
on the measurement process. Wigner, and later Araki and
Yanase, showed �1–3� that in the sense of von Neumann’s
ideal measurement one cannot precisely measure observables
which do not commute with the conserved quantity. That is,
repeatability of the measurements and perfect distinguish-
ability of the final states of the measuring apparatus cannot
be realized simultaneously. On the other hand, if we abandon
the repeatability condition, perfect distinguishability of the
final states on the apparatus can be attained �4,5�. Ozawa
�6,7� has derived a quantitative relation between the noise
operator and the disturbance operator by a Robertson-type
inequality to discuss the trade-off between repeatability and
distinguishability of the apparatus. We, in this paper, relax
the condition. We do not impose repeatability on the mea-
surement process; instead, we treat the distinguishability of
the final states also of the system. We ask for the quantitative
trade-off between the distinguishability of the final states of
the measured system and the one of the measuring apparatus.
According to our result, there is no interaction that achieves
perfect distinguishability in both systems. Since our result is
quantitative, it enables us to discuss the dependence on the
size of the apparatus and the environment.

Let us consider two quantum systems: a system and an
apparatus. Each system is described by a Hilbert space HS
and HA, respectively. Suppose that there exists an additive
conservative quantity. That is, there exists an observable LS
in the system and an observable LA in the apparatus such that
their summation LS+LA is conserved by any physical dynam-
ics for the closed system. Let us consider a pair of orthogo-
nal vector states, ��0� , ��1��HS. The goal of the measure-
ment process is to make them distinguishable in the
apparatus by choosing an initial state of the apparatus and
the interaction between the system and the apparatus. In the
case of the ideal measurement, the repeatability of the mea-
surements is also imposed. That is, the states ��0� and ��1�
should be invariant with the interaction. We, in this paper, do
not employ this repeatability condition. We relax the condi-

tion to the distinguishability condition in the system. That is,
we ask if it is possible for the final states to be distinguish-
able in both systems. The distinguishability is characterized
by a quantity called fidelity. The fidelity �8,9� between two
states �0 and �1 is defined byF��0 ,�1�ª tr���0

1/2�1�0
1/2�. It

takes a non-negative value less than 1 and becomes smaller
if the states are more distinguishable. The perfect distin-
guishability corresponds to the vanishing fidelity. The fol-
lowing lemma �10� justifies that the fidelity indeed represents
the distinguishability.

Lemma 1. The fidelity equals the square root of minimum
overlap coefficient between two probability distributions p0
and p1:

F��0,�1� = min
�E�	:POVM



�

�p0���p1��� ,

where p0 and p1 are defined by p0���= tr��0E�� and p1���
= tr��1E��. The minimum is taken over all the possible
positive-operator-valued measures �POVM’s�, where a
POVM �E�	 is a family of the positive operators satisfying

�E�=1. Moreover, the minimum is attained by a
projection-valued measure �PVM�, where a PVM �E�	 is a
family of the projection operators satisfying 
�E�=1.

This lemma plays an essential role in the proof of our
theorem. In the presence of the additive conserved quantity,
we have the following theorem.

Theorem 2. As described above, let us consider a pair of
orthogonal states, ��0� , ��1��HS, in the presence of the ad-
ditive conserved quantity, LS+LA. For any initial state � on
the apparatus and the unitary dynamics U satisfying conser-
vation law, the final states �0ªU���0���0 � � ��U* and
�1ªU���1���1 � � ��U* satisfy the following:

���0�LS��1 � � LA � F��0
S,�1

S� + � LS � F��0
A,�1

A� , �1�

where �i
S is the final state �i restricted to the system and �i

A

is the one restricted to the apparatus, F�· , · � is the fidelity,
and � · � represents the operator norm defined as
�A � ªsup��0,��H

�A��

��� for any operator A on a Hilbert space
H.

Proof. By the purification of �, we obtain a dilated Hilbert
space and a vector state for the apparatus. We write the*Electronic address: miyadera-takayuki@aist.go.jp
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dilated Hilbert space as HA for simplicity and the vector
state as ���. The dilated unitary operator U � 1 is also
abbreviated as U. Let us define the initial vector states
�	i�ª ��i� � ��� for i=0,1. As Wigner, Araki, and Yanase’s
original discussion, we consider the following quantity:

��0�LS��1� = �	0�LS + LA�	1� = �	0�U*�LS + LA�U�	1�

= �	0�U*LSU�	1� + �	0�U*LAU�	1� , �2�

where in the first line we have used �	0 �LA �	1�= ��0 ��1�

�� �LA ���=0. Now we consider an arbitrary �PVM� �E�	
on the system and an arbitrary PVM �Pj	 on the apparatus.
Since 
�E�=
 jPj =1 holds, the right-hand side of Eq. �2�
can be written as 
 j�	0 �U*PjLSU �	1�
+
��	0 �U*E�LAU �	1�. By using commutativity �Pj ,LS�
= �E� ,LA�=0, we obtain

��0�LS��1� = 

j

�	0�U*PjLSPjU�	1�

+ 

�

�	0�U*E�LAE�U�	1� .

Taking absolute value of the both sides, we obtain

���0�LS��1�� � 

j

��	0�U*PjLSPjU�	1��

+ 

�

��	0�U*E�LAE�U�	1��

� � LS � 

j

��	0�U*PjU�	0��	1�U*PjU�	1�

+ � LA � 

�

��	0�U*E�U�	0��	1�U*E�U�	1� .

We here choose the particular PVM’s �E�	 and �Pj	, which
attain the fidelity. Thanks to lemma 1, we finally obtain

���0�LS��1�� � � LA � F��0
S,�1

S� + � LS � F��0
A,�1

A� .

It ends the proof. �
According to this theorem, we obtain the following

theorem.
Theorem 3. Under the setting of theorem 2, the perfect

distinguishability for both systems cannot be attained
simultaneously.

Proof. The vanishing fidelities in �1� contradict with the
nonvanishing left-hand side. �

Let us consider the simplest example. The system is a
spin-1 /2 system. The conserved quantity is the z component
of the spin, Sz+LA, where LA is the z component of the spin
in the apparatus. Sz is written with the eigenvectors �1� and
�−1� as Sz= �

2 ��1��1 �−�−1��−1 � �. The observable to be
measured Sk is a component of spin in another direction.
That is, the states to be distinguished by the measurement

process are ��1�ª� �1�+� �−1� and ��0�ª �̄ �1�− �̄ �−1�,
where ���2+ ���2=1 with ��0, ��0. The observables Sz and
Sk do not commute with each other. In fact,

��0�Sz��1� = � ��

holds. If we assume rigorous repeatability as in the original
Wigner-Araki-Yanase theorem, the state change for the
dilated Hilbert space should be written as

�� j� � ��� � �� j� � � j�

for j=0,1. It gives

��0�Sz��1� = ��0�Sz��1��0�1� ,

and thus �0�= �1� holds. Therefore there is no distinguish-
ability on the apparatus side in this case. On the other hand,
if we do not impose repeatability, distinguishability in both
systems is partially attained. In particular, even perfect dis-
tinguishability in the apparatus allows partial distinguishabil-
ity in the system. Ohira and Pearle �5� have constructed the
following interaction between the system and the spin-1 /2
apparatus:

��1� � �1

2
��1� + �− 1�� � ���1� + ��− 1��

� �1

2
��1� + �− 1�� ,

��0� � �1

2
��1� + �− 1�� � ��̄�1� + �̄�− 1��

� �1

2
��1� − �− 1�� .

It gives the fidelity F��0
A ,�1

A�=0 and F��0
S ,�1

S�=2 ����. Since
�LA � = � /2 holds, this interaction satisfies

���0�Sz��1�� = � LA � F��0
S,�1

S� ,

which is the equality version of our theorem.
In the following we consider the effect of the environ-

ment. We treat a tripartite system which consists of the
system, the apparatus, and the environment. The Hilbert
space of the environment is written as HE. In the environ-
ment an operator LE is defined and the conserved quantity
is LS+LA+LE. We divide the whole system into HS and
HA � HE. Application of theorem 2 to it derives

���0�LS��1�� � ��LA � + � LE � �F��0
S,�1

S� + � LS � F��0
AE,�1

AE� ,

where � j
AE is a state over the apparatus and the environment.

Since the partial trace does not reduce the fidelity �10�, we
obtain

���0�LS��1�� � ��LA � + � LE � �F��0
S,�1

S� + � LS � F��0
A,�1

A� .

This inequality shows that to attain high distinguishability
in both systems simultaneously a large apparatus or
environment is necessary.
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