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We discuss the detection of field quadrature fluctuations in conditional homodyne detection experiments and
possible sources of error in such an experiment. We also present modifications to these experiments to help
eliminate such errors and extend their range of applicability.
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I. INTRODUCTION

Fluctuations of light provide a window on the underlying
quantum dynamical evolution of a light-emitting source.
Emission of a photon by a light source signals quantum
fluctuations in progress, and a measurement that is condi-
tioned on a photodetection allows us to study the time
evolution of the fluctuations �1�. For example, measurement
of light intensity conditioned on a photodetection, also
known as two-time intensity correlation, reveals information
regarding bunching and antibunching that is not available in
unconditional intensity measurements �2–6�.

The conditional measurement of quadrature fluctuations
�CMQF� proposed by Carmichael et al. �7� reveals in a novel
way the nonclassical nature of light from a cavity containing
two-level atoms; this has been experimentally observed by
Foster et al. �8�. Nonclassical effects in conditional intensity
and squeezing in light from a degenerate parametric oscilla-
tor have been studied �6�. The conventional methods of de-
tecting quadrature squeezing involve unconditional measure-
ments that are degraded by detection inefficiencies and do
not explore the time evolution of quadrature fluctuations
�1,2,9,10�. The CMQF, on the other hand, is essentially in-
dependent of detection efficiency and provides a sensitive
probe of the fluctuations’ development over time. It has been
shown that the conditional measurement can reveal remark-
able nonclassical behavior of not only squeezed but also of
unsqueezed quadrature fluctuations �6–8�.

In Sec. II, we briefly summarize the theoretical concepts
underlying a CMQF experiment �6,7�. We then consider int-
racavity second harmonic generation �ISHG� �11–13� and
present a theoretical analysis of the nonclassical features of
ISHG quadrature fluctuations.

The CMQF technique achieves a measurement of the
quadrature fluctuations of a given source field by cross-
correlating a photon count with a balanced homodyne detec-
tion. This technique requires the use of auxiliary coherent
oscillators �coherent laser sources�, and the amplitudes
or intensities of the coherent oscillator fields must be set
to values that depend on the properties of the source field. It
can be shown that the accuracy of the measurement’s
final results is extremely sensitive to the precision of these
adjustments. In some cases, a very small error in these
adjustments may give rise to incorrect conclusions about the
state of the source field’s quadrature fluctuations. We dem-
onstrate this in Sec. III by developing a theoretical model of
such an error in the CMQF measurement and exploring its

effects on conclusions that might be drawn about the state of
the ISHG field.

Weak fields with approximately Gaussian fluctuations are
ideal candidates for accurate quadrature fluctuation measure-
ments using the CMQF method, provided that coherent field
adjustments can be made sufficiently precise. However, the
technique is limited in its applicability to a source field with
nonzero third-order moments �14,15�, which may obscure
the results of the measurement, even with perfect control of
coherent light parameters. In Sec. IV, we propose an exten-
sion of the CMQF method that can achieve a measurement
of the quadrature fluctuations of a completely generic source
field while eliminating the effects of third-order fluctuation
moments. Additionally, this extended CMQF measurement
avoids the need for precise adjustments of coherent laser
fields, thus perhaps averting the kinds of error discussed in
Sec. III. In Sec. V, we summarize our findings.

II. CONDITIONAL MEASUREMENT OF QUADRATURE
FLUCTUATIONS FOR ISHG

The quadrature variables for an optical field with annihi-
lation and creation operators âs and âs

† are defined by

X̂� = 1
2 �e−i�âs + ei�âs

†� , �1�

Ŷ� =
1

2i
�e−i�âs − ei�âs

†� = X̂�+�/2, �2�

where � is an arbitrary phase �2�. It follows from this

quadrature definition that the variances �:��X̂��2 : � and

�:��Ŷ��2 : � are related to the intensity of the field fluctuations
��âs

†�âs� by

��âs
†�âs� = �:��X̂��2:� + �:��Ŷ��2:� , �3�

where colons denote time and normal ordering of the
operators enclosed by them. For classical fields, both quadra-
ture variances are always greater than or equal to zero,
being equal to zero only in the classical coherent state.
For quantum fields, however, the normally ordered variance

of a quadrature X̂� can become negative as long as the nor-

mally ordered variance of Ŷ� increases in such a way that

Eq. �3� is still satisfied. In such a case, the quadrature X̂� is
said to be squeezed and the field â is said to be in a squeezed
state �2�. This fact and the fact that the fluctuation intensity is
nonnegative lead to the inequality �6,7�
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0 �
�:��X̂��2:�
��âs

†�âs�
� 1. �4�

This is satisfied by classical fields but is violated by quantum
fields in squeezed states. This inequality has the potential to

reveal nonclassical behavior both when the quadrature X̂� is
squeezed and when it is unsqueezed �i.e., when it has a non-

negative variance�. The lower bound is violated if X̂� is

squeezed, whereas the upper bound is violated if X̂� is un-
squeezed but nonetheless nonclassical in that its conjugate

Ŷ� is squeezed.
One can also establish a classical bound for the two-time

autocorrelation function of the quadrature fluctuations

�:�X̂��0��X̂���� : � by using the Schwarz inequality �6,7�

�:�X̂��0��X̂����:�
��âs

†�âs�
�

�:��X̂��2:�
��âs

†�âs�
, �5�

which holds for all time intervals ��0. This inequality is not
directly related to quadrature squeezing; rather, violation of
this inequality is a sign of nonclassical temporal correlations.

It is possible for a quadrature X̂� to be unsqueezed �or even
for the field âs not to be in a squeezed state� but still violate
inequality �5� and, thus, still exhibit this uniquely quantum

behavior. Note that, the variance �:��X̂��2 : � is simply the

value of the correlation function �:�X̂��0��X̂���� : � at �=0.
Thus, the classical inequalities �4� and �5� can be used to
probe the nonclassical character of the quadrature fluctua-
tions of any optical field âs, provided that its normalized

quadrature correlation function �:�X̂��0��X̂���� : � / ��âs
†�âs�

can be experimentally measured.
Figure 1 shows the setup for a conditional homodyne de-

tection experiment that can measure this function for a
source field âs. The coherent oscillators CO0, CO1, and CO2
are assumed to be lasers operating far above threshold, thus
emitting coherent-state fields of definite complex amplitudes
�0= ��0 �ei�0, �1= ��1 �ei�1, and �2= ��2 �ei�2. Phases of these

coherent fields are measured relative to the phase the field
�âs�. The beam splitters BS0, BS1, and BS2 are assumed to be
lossless and antisymmetric and to have coefficients of reflec-
tion and transmission R=T=1/2. A glass plate with a
silvered upper surface is an example of such a beam splitter.

The source field is mixed with the field from CO0 at BS0,
producing the output field â0 given by

â0 = 1
�2

��0 + âs� . �6�

At BS1, the field â0 is mixed with the field from CO1; the
resulting output modes are

â1 = 1
�2

��1 + â0� , �7�

â2 = 1
�2

��1 − â0� . �8�

The light in mode â1 is sent to the photoelectric detector D1,
and that in mode â2 is mixed with the light from CO2 at the
beam splitter BS2. The output fields at BS2 are then given by

â3 = 1
�2

�â2 + �2� , �9�

â4 = 1
�2

�â2 − �2� , �10�

and the light in these modes is sent to the photoelectric de-
tectors D3 and D4.

This configuration allows for a balanced homodyne mea-
surement of mode â2 conditioned on a photodetection of
mode â1. A photodetection by D1 is made to initialize a sam-
pling of the homodyne current in a standard “start” or “stop”
scheme �15�, and when averaged over a large number of
samples, the measurement will result in a function of � �time
elapsed since a photodetection of â1� given by �6,7�

F��� =
�: n̂1�0��n̂3��� − n̂4����:�

�n̂1�
, �11�

where n̂i= âi
†âi is the number operator for the field mode âi.

Using Eqs. �6�–�10� for the field modes and the definition of

the quadrature variable X̂� from Eq. �1�, and recalling that

�Ô= Ô− �Ô� for any operator Ô, we find

F��� = ��2���2��1� cos��1 − �2� − ��0� cos��0 − �2�

− ��âs�� cos �2� −
��2�

4�n̂1�
�2��âs���:�X̂0�0��X̂�2

���:�

+ 2��0��:�X̂�0
�0��X̂�2

���:� + �8��1�

��:�X̂�1
�0��X̂�2

���:� + �:�âs
†�0��X̂�2

����âs�0�:�� ,

�12�

where the mean photon number �n̂1� is given by

�n̂1� = 1
4 ���âs��2 + ��âs

†�âs� + ��0�2 + 2��1�2

+ 2��âs����0� cos �0 + �8��âs����1� cos �1

+ �8��0���1� cos��1 − �0�� . �13�

For the single measurement F��� to be useful for detecting
quadrature squeezing, we must first place a restriction on

CO0 CO1

D1

0 1

aŝ

a2̂

0 1

Source

_

D3

D4

CO22

a4̂

a3̂

2

BS0 BS1

BS2

a1̂a0̂

FIG. 1. �Color online� An outline of the setup for conditional
measurement of quadrature fluctuations of a source âs with
vanishing third-order field correlations.
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the types of source fields that can be used. We require that
third-order moments in the source field fluctuations �âs and
�âs

† be equal to zero, so that the last term in Eq. �12� will
vanish. This requirement is satisfied exactly if the field fluc-
tuations are Gaussian or otherwise symmetric about the
mean and approximately if the source field is weak �7�. Sec-
ond, we require that the experimenter make three precision
adjustments to the coherent oscillator fields, which we label
adjustments �i�, �ii�, and �iii� for future reference.

Adjustment �i�: the field amplitude from CO0 is chosen
to have the same magnitude as the source field’s mean
amplitude �âs� but opposite phase

��0� = ��âs��, �0 = � Þ �0 = �âs�ei�. �14�

As can be seen from Eq. �6�, this will cause the field â0 to be
of zero mean amplitude.

Adjustment �ii�: the mean photon number from CO1 is
made equal to the mean photon number in mode â0:

��1�2 	 �n̂0� = 1
2 ����âs� + �0��2 + ��âs

†�âs�� = 1
2 ��âs

†�âs� ,

�15�

which is now due only to the source field fluctuations, as
follows from Eqs. �6� and �14�.

Adjustment �iii�: the fields from CO1 and CO2 are made to
have the same phase:

�1 = �2 = � . �16�

This common phase is to be varied in order to change the
phase of the quadrature amplitudes that will be measured.
The magnitude of the field amplitude from CO2 ���2 � � may
be chosen arbitrarily.

Substituting Eqs. �14�–�16� into Eq. �12� �minus the final
term�, we find that F��� simplifies to

F��,�� = ��2����âs
†�âs�
1 −

�:�X̂��0��X̂����:�
��âs

†�âs�
� .

�17�

Here, we have explicitly taken into account the fact that F
also depends on the phase parameter �, which now corre-
sponds to the phase of the quadrature amplitude fluctuations
that are measured. Apart from the arbitrary field amplitude
��2�, F now depends only on �, �, and the properties of the
source field. F can be normalized by its limit as �→	. In
this limit, the two factors in the quadrature correlation func-
tion become uncorrelated, and the average

�:�X̂��0��X̂���� : � becomes the product of the averages

��X̂��0����X̂�����, each of which vanishes. We can therefore
write

F�	 ,�� 	 lim
�→	

F��,�� = ��2����âs
†�âs� �18�

and use this quantity to introduce the normalized function

f��,�� 	
F��,��
F�	 ,��

= 1 −
�:�X̂��0��X̂����:�

��âs
†�âs�

. �19�

The function f�� ,�� is determined entirely from laboratory
measurement. It is of the form in Eq. �19� as long as the
experiment is performed without error and third-order mo-
ments in �âs and �âs

† are zero. It can therefore be used along
with the classical inequalities �4� and �5� to detect squeezing
and other nonclassical features of the source field’s quadra-
ture fluctuations. The inequalities can easily be rewritten in
terms of f�� ,��

0 � f�0,�� � 1, �20�

f��,�� � f�0,�� . �21�

Violation of inequality �20� for any value of � indicates that
the source field is in a squeezed state. More specifically, a

violation of the upper bound indicates that the quadrature X̂�

is squeezed, whereas a violation of the lower bound is non-

classical in that it implies the squeezing of Ŷ�, the conjugate

of X̂�. A violation of inequality �21� indicates nonclassical

temporal correlations, both when X̂� is both squeezed and
when it is unsqueezed.

To demonstrate the use of f�� ,�� for detecting nonclassi-
cal effects and to develop a theoretical analysis of the
quadrature fluctuations in this system, we consider the light
produced by ISHG, using a theoretical model presented in
Refs. �11–13�. Second harmonic generation occurs when two
photons of frequency 
 combine to form a single photon of
frequency 2
 inside a nonlinear crystal. In ISHG, the crystal
is placed in an optical cavity that is resonant at both the
fundamental frequency 
 and the second harmonic fre-
quency 2
, and the fundamental mode is excited by an in-
jected classical signal. Using the positive-P representation
�16�, the annihilation and creation operators of the cavity’s
fundamental mode, which we write as âs and âs

†, can be
mapped to the complex field amplitudes �s and �s* given by
�11–13�

âs → �s = �no��n̄ + i�u1 + u2�� , �22�

âs
† → �s* = �no��n̄ + i�u1 − u2�� . �23�

Here, no is the threshold photon number, n̄ is the mean pho-
ton number in the fundamental mode in units of no, and u1
and u2 are two real Gaussian random variables with zero
mean and correlation functions given by

�ui�t�uj�t��� = �ij
n̄

4no�i
e−�i�t−t�, i, j = 1,2, �24�

where  is the cavity linewidth at the fundamental frequency
and the decay constants �1 and �2 are given by

�1 = �1 + 3n̄�, �2 = �1 + n̄� . �25�

Normally ordered averages of âs and âs
† can be calculated by

taking the corresponding averages of �s and �s* with respect
to the positive-P function.
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Because the ISHG field has Gaussian fluctuations, third-
order moments in �âs and �âs

† are zero. We can therefore
take this field to be the source field âs in the experiment
outlined above and find the resulting function f�� ,�� by di-
rect use of Eq. �19�. Using Eqs. �22� through �24� to describe
the ISHG field, we find

f��,�� = 1 −
�u2

2�e−�2�sin2 � − �u1
2�e−�1�cos2 �

�u2
2� − �u1

2�
, �26�

where �u1
2�	��u1�0��2� and �u2

2�	��u2�0��2� are simply the
variances of u1 and u2 as given by Eq. �24�.

Figure 2 shows plots of f�� ,�� vs 2� for �=0, 11� /48,
� /4, and � /2 for typical values of the ISHG parameters
�no=106 and n̄=0.2�. The quantity 2� is the number of cav-
ity lifetimes elapsed since the initialization of the correlator.
Using the inequality �20� for classical bounds on the initial
values of these functions, we can immediately see that the
ISHG field is in a squeezed state; the fact that f�0,0� exceeds

1 �by a factor of 4� indicates that the quadrature X̂0 is
squeezed. Additionally, the value of f�0,� /2� is −3, thus
violating the lower bound of inequality �20�; it is noteworthy

that a measurement of the quadrature X̂�/2 reveals quadrature

squeezing even though X̂�/2 itself is unsqueezed.
The function f�� ,� /4� violates neither of the bounds of

inequality �20�, and the behavior of X̂�/4 that it reveals is
characteristic of the typical classical quadrature amplitude.
The initial value of f�� ,11� /48� is also within classical

bounds, but the quantum nature of X̂11�/48 can nonetheless be
seen in its time development. We see that f�� ,11� /48� vio-
lates the Schwarz inequality �21� as it first decreases from its
initial value before increasing toward the steady-state value

of 1. This observation highlights a key advantage of the abil-
ity to make a conditional measurement; whereas noncondi-

tional measurements would conclude only that X̂11�/48 is un-
squeezed, f�� ,11� /48� reveals a temporal quantum
phenomenon of great interest. This same violation of the
Schwarz inequality can be seen in the function f�� ,0�.

Each function plotted in Fig. 2 is a representative of one
of the four classes of quadrature amplitude states that can be
distinguished by the classical conditions �20� and �21�, show-
ing that each of the two inequalities can be satisfied or vio-
lated independently of the other and that such phenomena
can be readily observed with the CMQF technique. In addi-
tion to providing this significantly expanded view of quadra-
ture amplitude fluctuations in comparison to nonconditional
measurements, f�� ,�� is found to be largely unaffected by
detection inefficiencies due to its normalization in Eq. �19�.

III. ANALYSIS OF POTENTIAL
SOURCES OF ERROR

If any of the adjustments given by Eqs. �14�–�16� in Sec.
II is not executed precisely, the measured function F will not
be of the form shown in Eq. �17�. Instead, it will contain
extra terms that prevent the experimenter from obtaining an
accurate measurement of the normalized quadrature correla-
tion function. We develop an appraisal of the room for error
in this experiment by exploring the ways in which imprecise
adjustments to the coherent oscillator fields affect the
conclusions drawn from the measurement.

We consider here the effects of an inexact execution of
only adjustment �i� in the field amplitude of CO0. This choice
leads to the greatest number of complications in the measure-
ment. These complications essentially encompass those cre-
ated by inexact executions of adjustments �ii� and �iii�.
Though the following analysis is carried out for the specific
experiment outlined in Sec. II, it can be shown that the quali-
tative results �such as the order of magnitude of error
terms introduced� are relevant to any similar experiment that
measures the normalized quadrature correlation function in a
conditional homodyne detection experiment and requires
precise adjustments to the amplitudes or intensities of
coherent oscillator fields �6,7�.

To model a potential error in the execution of adjustment
�i�, we suppose that ��0�, the magnitude of the CO0 field
amplitude, is adjusted to

�0 = �âs�errore
i� = �1 − ���âs�ei�. �27�

This error may arise from a faulty measurement of �âs� or
from a misadjustment of �0 itself. In general, � can be com-
plex, accounting for misadjustment of both amplitude and
phase of �0. For simplicity of the discussion, we assume the
error parameter � to be real. Complex � does not lead to
qualitatively new results.

We assume that no additional sources of error are present;
following the faulty adjustment of ��0�, the experiment is
carried out precisely as prescribed in Sec. II. In particular,
adjustment �ii� is executed by setting ��1�2= �n̂0�, and adjust-
ment �iii� by matching the phases of �1 and �2, as in Eq.

-4

-3

-2

-1

0

1

2

3

4

2 4 6f (
)

FIG. 2. Normalized conditional homodyne measurement f�� ,��
as a function of 2� for the ISHG with system parameters
no=106 and n̄=0.2 and phases �=0 �solid line�, �=11� /8 �dotted
line�, �=� /4 �dashed-dotted line�, and �=� /2 �dashed line�.
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�16�. We assume that no errors concerning phases have been
introduced, so that the relative phases of � for �0 and � for
�1 and �2 are unambiguous. However, the mean photon
number �n̂0� depends on the new �0, and thus, ��1�2 will no
longer be given by Eq. �15� but by

��1�2 = �n̂0� = 1
2 ��2��âs��2 + ��âs

†�âs�� , �28�

which follows from Eqs. �6� and �27�. Note that, while a
proper tuning of CO0 would leave �n̂0� depending only on
the source field fluctuation intensity ��âs

†�âs�, the improper
tuning adds an extra term proportional to the square of the
error parameter.

We again assume a source field for which third-order mo-
ments in �âs and �âs

† are zero and, thus, omit the last term in
Eq. �12�. Following the prescription of Sec. II, normalized
function f��� ,� ,�� is found to be

f���,�,�� 	
F���,�,��
F��	 ,�,��

= 1 −
1

2�n̂1��1 −
���âs�� cos �

�2�n̂0�
−1

� ��:�X̂��0��X̂����:��

+

���âs���:�X̂0�0��X̂����:�
�2�n̂0�

� , �29�

where the function resulting from the conditional homodyne
measurement under the effects of the adjustments, which we
label F��� ,� ,��, is obtained by substituting Eqs. �27�, �28�,
and �16� into Eq. �12�. Here, �n̂0� is given by Eq. �28� and
�n̂1� is given by

�n̂1� = �n̂0� + ���âs����n̂0�
2

cos � . �30�

Comparing the expression for f��� ,� ,�� with Eq. �19�,
we can see that the error in the definition of ��0� substantially
changes the functional form of f��� ,� ,�� from that of
f�� ,��, adding both �- and �-dependent terms. Each of these
terms contains at least one factor of �, so that Eq. �29� re-
duces to Eq. �19� when �=0. However, if �âs�error is different
from �âs�, � will be nonzero, and using the function
f��� ,� ,�� in Eq.�29� and the classical inequalities �20� and
�21� to characterize quadrature squeezing may lead to invalid
conclusions.

To demonstrate these effects, we again consider the fun-
damental mode produced by ISHG. The explicit form of the
function f��� ,� ,�� for the ISHG field is too lengthy to dis-
play here, but it can be found by substituting the following
four equations—which were derived by taking the positive-P
averages of �s and �s* in Eqs. �22� and �23�—into Eqs.
�28�–�30� while referencing Eqs. �24� and �25�

�âs� = �non̄ , �31�

��âs
†�âs� = no��u2

2� − �u1
2�� , �32�

�:�X̂��0��X̂����:� = �u2
2�e−�2�sin2 � − �u1

2�e−�1�cos2 � , �33�

�:�X̂0�0��X̂����:� = − nocos ��u1
2�e−�1�. �34�

Figure 3 shows plots of the function f��� ,11� /48,�� re-
sulting from a measurement of the ISHG system, with the
same system parameters used in Sec. II. The figure displays
both the error-free measurement f��� ,11� /48,0�
= f�� ,11� /48� and multiple measurements f��� ,11� /48,��
with a few small positive and negative values of the error
parameter �. As noted above, the function f�� ,11� /48� vio-
lates inequality �21� but not inequality �20�, indicating that

the quadrature X̂11�/48 exhibits nonclassical temporal correla-

tions while neither X̂11�/48 nor its conjugate is squeezed. Yet,
all four of the functions f��� ,11� /48,�� in Fig. 3 would

lead to qualitatively different conclusions about X̂11�/48, in-
dicating that it is squeezed ��=4�10−5 , 2�10−4�, that its
conjugate is squeezed ��=−2�10−4�, or that it is entirely
classical in nature ��=−5�10−5�.

This analysis demonstrates that small errors in the adjust-
ment of the CO0 field amplitude can make the behavior of
f��� ,� ,�� vastly different from that of f�� ,��. We can gain
an understanding of the sources of these large variations by
considering the dependence of f��� ,� ,�� on the error pa-
rameter �. We note that the measurement is twice normalized
by quantities that depend on the mean photon number
�n̂0�—once by �n̂1� in Eq. �11� and again by F��	 ,� ,�� in
Eq. �29�. A portion of the dependence of �n̂1� on �n̂0� arises
straightforwardly from Eq. �13�, but the other portion and
the dependence of F��	 ,� ,�� on �n̂0� arise from the
adjustment of the CO1 field amplitude in Eq. �28�. Then,
a comparison of Eqs. �15� and �28� shows that the sensitivity
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FIG. 3. Conditional homodyne measurement f��� ,11� /48,��
as a function of 2� for the ISHG with system parameters
no=106 and n̄=0.2 and error parameters �=−2�10−4 �dotted
lines�, �=−5�10−5 �dashed lines�, �=4�10−5 �long-dashed lines�,
�=2�10−4 �dotted-dashed lines�. The error-free measurement
f�� ,11� /48�= f��� ,11� /48,0� �solid� is also shown for
comparison.

CONDITIONAL HOMODYNE DETECTION OF LIGHT¼ PHYSICAL REVIEW A 74, 023817 �2006�

023817-5



of �n̂0� to changes in � depends on the relative magnitudes
of the fluctuation intensity ��âs

†�âs� and the square of the
mean amplitude �âs�, which, in an error-free execution of
the experiment, is intended to be completely removed from
�n̂0� by interference with a properly tuned CO0 field. We find
that, if ��âs��2� ��âs

†�âs�, then even small values of �
can produce significant variations in �n̂0� and thus potentially
large variations in f��� ,� ,��. For ISHG, it is true that
��âs��2� ��âs

†�âs�, as Eqs. �31� and �32� show that
��âs��2 / ��âs

†�âs��2�107. Thus, we see that the large am-
plifications of initially tiny errors demonstrated above are
results of the experiment’s reliance on the exact cancellation,
by interference with a coherent oscillator field of precisely
tuned amplitude, of a field amplitude that is commonly much
larger than the fluctuations the experiment is designed to
measure. We also see that this reliance is compounded by a
required adjustment of the intensity of a second coherent
oscillator field.

IV. CONDITIONAL MEASUREMENT OF QUADRATURE
FLUCTUATIONS FOR NON-GAUSSIAN FIELDS

The results of Sec. III suggest that it might be advanta-
geous to devise a method for observing the time evolution of
field quadrature fluctuations that does not require precision
adjustments to the amplitudes or intensities of coherent os-
cillator fields. Another desirable feature in such a method
would be the ability to deal with source fields for which
third-order moments in the source field fluctuations �âs and
�âs

† are not intrinsically equal to zero. In this section, we
propose a modification of the measurement scheme of Sec. II
that achieves these goals.

The setup for the modified experiment is shown in Fig. 4,
which is identical to Fig. 1 except for the absence of the
beam splitter BS0, the coherent oscillator CO0, and the field
mode â0. We have left the indices on the remaining compo-
nents of the setup unchanged to maintain a parallel between
this experiment and the Sec. II experiment. The coherent
oscillators CO1 and CO2 still emit fields with definite

complex amplitudes �1= ��1 �ei�1 and �2= ��2 �ei�2, and the
beam splitters BS1, and BS2 are still lossless and antisym-
metric and have coefficients of reflection and transmission
R=T=1/2. The field modes numbered 1 and 2, are modified,
and are given by

â1 = 1
�2

��1 + âs� , �35�

â2 = 1
�2

��1 − âs� . �36�

As shown in Fig. 4, the light in modes â1, â3, and â4 is sent
to the photodetectors D1, D3, and D4.

As in Sec. II, the configuration Fig. 4 allows for a bal-
anced homodyne measurement of mode â2 conditioned on a
photodetection of mode â1. This results in a function that we
now label G�� ,�1 ,�2�

G��,�1,�2� =
�: n̂1�0��n̂3��� − n̂4����:�

�n̂1�
. �37�

Using Eqs. �35�, �36�, �9�, and �10�, we find

G��,�1,�2� = �2��2����1� cos��1 − �2� − ��âs�� cos �2�

−
��2�

�2�n̂1��1��
�2��1��:�X̂�1

�0��X̂�2
���:�

+ 2��âs���:�X̂0�0��X̂�2
���:�

+ �:�âs
†�0��X̂�2

����âs�0�:�� , �38�

where the mean photon number �n̂1�, which is a function of
�1, is given by

�n̂1��1�� = 1
2 ���1�2 + ��âs��2 + ��âs

†�âs� + 2��1���âs�� cos �1� .

�39�

To isolate information about the source field quadrature
fluctuations in this scheme, the measurement G�� ,�1 ,�2�
is taken twice for every quadrature amplitude X̂� to be
observed. First, the experimenter must measure the function
G�� ,� ,��, simply matching the phases of the two coherent
oscillators. Second, the experimenter must measure
G�� ,�+� ,��, leaving the phase of the CO2 field unchanged
but shifting the phase of the CO1 field by one half period.
Additionally, the steady-state mean photon numbers �n̂1����
and �n̂1��+��� must be measured along with each pair of
conditional measurements. This can be done at the photode-
tector D1 without disturbing the setup. The field amplitudes
��1� and ��2� can both be arbitrarily chosen and held fixed
throughout the entire series of measurements, as long as their

values are known. Noting from Eq. �1� that X̂�+� is simply

equal to −X̂�, we can see from Eqs. �38� and �39� that a
measurement of the source field quadrature fluctuations can
be constructed from the four measurements G�� ,� ,��,
G�� ,�+� ,��, �n̂1����, and �n̂1��+��� and the values of ��1�
and ��2� via the following equation:

CO1

D1

1

aŝ

a2̂

1

Source

_

D3

D4

CO22
a4̂

a3̂

2

BS1

BS2

a1̂

FIG. 4. �Color online� An outline of the setup for modified
conditional measurement of quadrature fluctuations of a source âs.
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H��,�� 	 �:�X̂��0��X̂����:� =
1

�8��1���2�
��n̂1����

��G�	 ,�,�� − G��,�,��� − �n̂1�� + ���

��G�	 ,� + �,�� − G��,� + �,���� , �40�

where we have labeled the quadrature correlation function
H�� ,�� for compactness. The experimentally measurable
quantity G�	 ,�1 ,�2� in Eq. �40� is simply G�� ,�1 ,�2� with
the time-correlated fluctuation terms set equal to zero

G�	 ,�1,�2� = �2��2����1� cos��1 − �2� − ��âs�� cos �2� .

�41�

Written in terms of H�� ,��, the classical inequalities �4�
and �5� are

H�0,�� � 0, �42�

H��,�� � H�0,�� . �43�

The inequalities for function H�� ,�� are similar to the in-
equalities for the function f�� ,�� given in Eqs. �20� and �21�,
except that H�� ,�� does not have an upper bound. However,
advantage of the inequalities for H�� ,�� is that they can be
applied to any field source. Figure 5 shows plots of H�� ,��
versus 2� with �=0, 11� /48, � /4, and � /2 for the same
ISHG parameters used in Sec. II. Through the classical in-
equalities �42� and �43�, these plots highlight the nonclassical
behaviors of the ISHG.

V. SUMMARY

The analyses of Sec. II show clear deviations of the ISHG
system from the expectations of a classical optical field, in-
dicating the presence of uniquely quantum phenomena, such
as quadrature squeezing and nonclassical temporal correla-

tions. We have shown in Sec. III, however, that these phe-
nomena can sometimes be very easily obscured by only mi-
nuscule experimental errors in the adjustment of coherent
oscillator intensities in the standard scheme for detecting op-
tical quadrature fluctuations. The measurement scheme pro-
posed in Sec. IV could help to eliminate such sources of
error while revealing the same nonclassical behaviors, since
it is not sensitive to the intensities of auxiliary coherent
fields. Though there are still potential sources of experimen-
tal error in this scheme, such as in the adjustments to the
phases of coherent field sources, it presents an improvement
in detecting quadrature squeezing and other nonclassical
effects in optical systems that are non-Gaussian in character.
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FIG. 5. Conditional homodyne measurement H�� ,�� as a func-
tion of 2� for the ISHG with system parameters no=106 and
n̄=0.2 and phases �=0 �solid lines�, �=11� /8 �dotted lines�,
�=� /4 �dashed lines�, and �=� /2 �dotted-dashed lines�.

CONDITIONAL HOMODYNE DETECTION OF LIGHT¼ PHYSICAL REVIEW A 74, 023817 �2006�

023817-7


