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We show that nonclassical intensity correlations and quadrature entanglement can be generated by frequency
doubling in a resonator with two output ports. We predict twin-beam intensity correlations 6 dB below the
coherent-state limit, and that the product of the inference variances of the quadrature fluctuations gives an
Einstein-Podolsky-Rosen correlation coefficient of VEPR=0.64�1, using the criterion of Reid �Phys. Rev. A
40, 913 �1989��. Comparison with an entanglement source based on combining two frequency doublers with
a beam splitter shows that the dual-ported resonator provides stronger entanglement at lower levels of indi-
vidual beam squeezing. Calculations are performed using a self-consistent propagation method that does not
invoke a mean-field approximation. Results are given for physically realistic parameters that account for the
Gaussian shape of the intracavity beams, as well as intracavity losses.
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I. INTRODUCTION

Parametric down-conversion has been used widely to gen-
erate nonclassical optical fields at the level of single photons,
as well as many photon fields described by continuous vari-
ables �1�. At the microscopic level nonclassical correlations
and entanglement arise due to the possibility of converting a
single high-frequency photon into a pair of correlated lower-
frequency photons. The down-conversion process can be
used to generate so-called twin beams that have intensity
correlations that are stronger than would be obtained with
individual coherent states �2–8�. Twin beams have been suc-
cessfully applied to sub-shot-noise spectroscopy �9� and
quantum nondemolition measurements �10�. The generation
of entangled beams in parametric down-conversion was pre-
dicted by Reid and Drummond in the late 1980s �11–13�, and
is crucial for studies of quantum teleportation and network-
ing �14–18�.

The complementary process of second-harmonic genera-
tion �SHG�, where a fundamental field at �1 is frequency
doubled to create a harmonic field at frequency �2=2�1, can
also be used for creating nonclassical light. The possibility of
using frequency doubling may be convenient for reaching
spectral regions that are not readily accessible by down-
conversion. It is well known that quadrature squeezing of
both the fundamental and harmonic fields occurs in second-
harmonic generation �19–21�. The generation of multibeam
correlations in second-harmonic generation is less well stud-
ied than in the case of parametric down-conversion. Calcu-
lations have demonstrated the existence of correlations be-
tween the fundamental and harmonic fields �22–25�
including entanglement between the fundamental and har-
monic fields �26,27� and entanglement in type-II SHG in the
fundamental fields alone �28,29�. The possibility of nonclas-
sical spatial correlations in either the fundamental or har-
monic fields alone �30–32� and of entanglement in the fun-
damental field �33� has also been shown in models that
include diffraction.

In this work we investigate the production of two beams
at the harmonic frequency that exhibit nonclassical intensity
correlations and quadrature entanglement. The device we
analyze is the dual-ported resonator shown in Fig. 1. The
pump beam at �1 is resonant in the cavity, while the gener-
ated harmonic exits at both end mirrors. As we show below
the harmonic outputs exhibit strong quantum correlations.
This can be understood naively as follows. While traversing
the crystal to the right squeezing is generated in the funda-
mental and harmonic fields, as well as correlations between
the fundamental and harmonic. Even though all of the har-
monic leaves the cavity at the right-hand mirror, the intrac-
avity fundamental that generates a harmonic field on the
backward pass through the crystal is correlated with har-
monic output 1. The intracavity field transfers the correla-
tions to output 2, leading to a nonzero correlation between
outputs 1 and 2.

In order to describe this process theoretically we need to
go beyond the usual mean-field description of SHG squeez-
ing �21�, and account for variations in the fields at different
locations inside the cavity. To do so we combine the linear-
ized solutions for propagation of quantum fluctuations in
traveling-wave SHG �34,35� with a self-consistent applica-
tion of the cavity boundary conditions as was first done by
Maeda and Kikuchi �36�. It was shown in Ref. �36� that the
propagation model reproduces the mean-field results at low
coupling strength, but predicts larger quantum noise reduc-
tion at high coupling strength. Since the propagation model
relies on a linearized description of the quantum fluctuations
its validity may break down in the limit of very large squeez-
ing, where the fluctuations in the unsqueezed quadrature are
no longer small. The accuracy of the linearized model was
studied by comparison with numerical solutions of a quan-
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FIG. 1. �Color online� A dual-ported singly resonant cavity

which provides two harmonic outputs.
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tum phase-space model �25�. It was found that the linearized
model provides accurate predictions provided the normalized
interaction length � �34,35� does not exceed 2–3. In the re-
sults presented here, using realistic physical parameters and
Gaussian beams, we have ��1. We are therefore confident
that the linearized theory provides an accurate description of
the nonlinear resonator for the range of parameters consid-
ered here.

The structure of the paper is as follows. In Sec. II we
define notation and present the solutions for the quadrature
fluctuations and squeezing spectra of the harmonic outputs.
These results are used to calculate the intensity correlations
in Sec. III. Einstein-Podolsky-Rosen �EPR� correlations and
inseparability �37� of the outputs are demonstrated in Sec.
IV. We compare the EPR correlations created in the dual-
ported resonator with the alternative approach of combining
two separate SHG resonators at a beam splitter in Sec. V, and
give a discussion of the results obtained in Sec. VI.

II. PROPAGATION MODEL OF INTRACAVITY SHG

The dual-ported resonator of Fig. 1 is shown in more
detail in Fig. 2 where we have separated the forward and
backward passes to create an equivalent ring-resonator
model. Since the counterpropagating beams are strongly
phase mismatched in the crystal we can neglect any direct
interaction between them. The pump beam at frequency �1
enters through an input coupler described by transmission
and reflection matrices T1 and R1 �defined below�. The
second-harmonic outputs are allowed to escape through input
and output mirrors. The cavity is assumed to be resonant at
the frequency �1 of the external pump beam.

The coupled propagation of the slowly varying wave en-
velopes of the fundamental �frequency �1� and second har-
monic �frequency �2� in the crystal is described by the clas-
sical equations

�E1

�z
= i�1E1

*E2e−i�kz, �1a�

�E2

�z
= i�2E1

2ei�kz. �1b�

The intensities of each field are given by Ii= ��0 /2�nic�Ei�2, ni

is the refractive index at frequency �i, c is the speed of light
in vacuum, and the phase mismatch is �k=2k1−k2 where
ki=�ini /c. The coupling constants are given by �i
=�1d / �cni�, where d is the effective second-order suscepti-
bility of the crystal.

These equations are valid for plane waves whereas real
experiments are typically performed with Gaussian beams.
In order to obtain the correct value for the coupling constant
when using Gaussian beams we avail ourselves of the results
of the Boyd-Kleinman theory �38�. We assume that the fun-
damental field is a lowest-order Gaussian beam with waist
w �1/e2 intensity radius� that is symmetrically located in the
center of the crystal, and introduce scaled field amplitudes
Ai= i��ocni / �2��i�Ei. The characteristic field strength Ei

= �2Pi�icni�1/2 is chosen such that �Ai�2 gives the number of

photons per second at frequency �i carried by the Gaussian
beam with power Pi. The coupled equations for the scaled
amplitudes then take the form

�A1

�z
= − �*A1

*A2, �2a�

�A2

�z
=

�

2
A1

2, �2b�

where the complex coupling coefficient is

� = �2n1��1ENL

n2Lc
2 �1/2

eı�h �3a�

ENL =
2�1

2d2

�0c3n1
2n2

Lc
2

	w2 �h�2, �3b�

h = 	
−1/2

1/2

d

eı�kLc


1 + i�Lc/zR1�

, �3c�

where �h=arg�h� , Lc is the length of the crystal, and zR1

=	n1�1w2 / �2	c� is the Rayleigh length of the fundamental
beam. The single-pass conversion efficiency is determined
by ENL= P2�z=Lc� / P1

2�z=0�, where P1 and P2 are the powers
of the two fields. The Boyd-Kleinman solution assumes that
the harmonic is generated with a waist that gives equal Ray-
leigh lengths for both frequencies, and that the attenuation of
the fundamental field due to up-conversion is small. As
shown in Appendix A the fractional depletion of the intrac-
avity field due to a single pass through the crystal is always
small for the parameters considered here. For parameters
where this is not the case it would be necessary to use a more
cumbersome multimode theory that accounts for the cou-
pling of different spatial modes �39� which is outside the
scope of the present work.

To solve for the transformation of quantum fluctuations
we replace the classical fields in Eqs. �2� by annihilation

operators Âj. The propagation equations for Âj are the same
as the classical equations �2�. These nonlinear operator equa-

tions can be solved perturbatively by putting Âj�z , t�=Aj�z�

FIG. 2. �Color online� Propagation model of singly resonant
SHG cavity with dual output ports.
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+ âj�z , t� where Aj�z� are the �classical� mean fields and
âj�z , t� time- and space-dependent fluctuation operators that
satisfy the commutation relations �âi�z , t� , âj

†�z� , t���=�ij��z
−z����t− t��, �âi�z , t� , âj�z� , t���=0. We then linearize in the
fluctuation operators, and write the resulting operator equa-
tions as equations for classical fluctuations with the replace-
ments âj�z , t�→aj�z , t�, âj

†�z , t�→aj
*�z , t�. The semiclassical

theory �40� expresses the expectation values of symmetri-
cally ordered quantum operators in terms of the classical c
numbers aj ,aj

*.
The solutions to the linearized propagation equations are

known �34,35�. We can write the solutions in the form
x�� , t�=N���x�0, t� where x= �x1 ,x2 ,y1 ,y2�T and

xj�z,t� = aj�z,t� + aj
*�z,t� ,

yj�z,t� = − i�aj�z,t� − aj
*�z,t��

are the amplitude and phase quadrature fluctuations. When
A2�0�=0 the transformation matrix is given by

N =

N11 N12 0 0

N21 N22 0 0

0 0 N33 N34

0 0 N43 N44

� . �4�

Expressions for the matrix elements Nij��� are given in Ap-
pendix B. The normalized propagation length is given by

� =
1
�2

�A1�0�����Lc. �5�

Using Eqs. �3� we can express � in terms of experimentally
accessible parameters as

� = �n1P1�0�ENL

n2
�1/2

. �6�

At this point we note that the transformation matrix �4� is
only valid when � is real. In the more general case of com-
plex � propagation mixes the x and y quadratures. We will
limit our study to the case of real � for which the analytical
solutions can be expressed in terms of simple hyperbolic
functions �the more general case involves elliptic functions�.
We therefore wish to have � real which is the case when
�k=0. Unfortunately the maximum value of ENL and hence �
is obtained for �38� zR1=0.176Lc and �kLc=3.26, which im-
plies a complex value of �. For the analysis presented below
we choose �k=0 in order to make � real. For zero phase
mismatch the optimum value of the beam focusing corre-
sponds to zR1=0.325Lc, which gives a value of ENL that is
about 40% smaller than could be obtained with nonzero
phase mismatch. We will assume these focusing conditions
in all the subsequent analysis. Numerical results will be
given for a KNbO3 crystal, with fundamental wavelength of
�1=860 nm, Lc=1 cm, d=11 pm/V, n1=n2=2.2, and �k
=0, for which the optimum focusing is w=21.1 m which
gives ENL=0.015 W−1.

A self-consistent solution for the fluctuations in the cavity
of Fig. 2 is found by combining the transfer matrix for the
crystal propagation with the effects of mirror reflections and

transmissions as well as intracavity losses. We first transform
to frequency domain variables defined by

aj�z,�� =	 dt aj�z,t�eı�t, �7a�

aj
*�z,− �� � �aj�z,− ���* =	 dt aj

*�z,t�eı�t. �7b�

The corresponding frequency domain quadrature fluctuations
are

xj�z,�� = aj�z,�� + aj
*�z,− �� , �8a�

yj�z,�� = − i�aj�z,�� − aj
*�z,− ��� . �8b�

Note that in the frequency domain the quadrature amplitudes
x�z ,�� and y�z ,�� are complex variables.

We introduce the 4�4 matrices for transmiss-
ion and reflection with nonzero diagonal elements T j

=diag��T1j ,�T2j ,�T1j ,�T2j�, R j =diag��1−T1j ,�1−T2j ,
�1−T1j ,�1−T2j�, where Tij denotes the power transmittance
for frequency i at mirror j. Residual intracavity losses due to
crystal absorption, reflections at crystal surfaces, and mirror
losses are lumped into effective loss beam splitters indicated
by L3 and L4 in Fig. 2. These losses are described by coef-
ficients Lij for frequency �i at position j and corresponding
reflection and transmission matrices TLj

=diag��1−L1j ,
�1−L2j ,�1−L1j ,�1−L2j�, RLj

=diag��L1j ,�L2j ,�L1j ,�L2j�.
The phase shift acquired in one cavity round trip is rep-

resented by the matrix D=diag�eı�/�c1 ,eı�/�c2 ,eı�/�c1 ,eı�/�c2�,
where the cavity free spectral range is �ci=c / �2niLc+2La�,
and 2La is the round-trip length of air in the cavity. We have
assumed the cavity is on resonance, so that the phase shift is
an odd function of �. This ensures that D can be used with
the quadrature fluctuation vector x�z ,�� which contains
components at ±�. If the cavity were detuned it would mix
the x ,y quadratures and the round-trip phase would have to
be calculated separately for a�z ,�� and a*�z ,−��.

Vacuum noise sources enter the cavity at mirrors 1, 2 and
through the loss ports. We describe these by quadrature noise
vectors v j = (u1j��� ,u2j��� ,v1j��� ,v2j���)T, where uij���
and vij��� are frequency domain amplitude and phase
quadrature fluctuations of frequency �i at position j.

Using Eqs. �4�–�8� and the above definitions the self-
consistent solution for the intracavity fluctuations to the right
of beam splitter 1 is

x1 = �I − DR1TL4
N��2�R2TL3

N��1��−1D�T1v1

+ R1TL4
N��2�T2v2 − R1TL4

N��2�R2RL3
v3 − R1RL4

v4�

�9�

where I is the identity matrix. The result depends on the
propagation lengths �1 and �2 which in turn are functions of
the pump beam power and resonator parameters. Expressions
for the propagation lengths in terms of experimentally acces-
sible parameters are given in Appendix A. The vectors of
output quadrature fluctuations are defined as X j
= �X1j ,X2j ,Y1j ,Y2j�T, where j labels the spatial position. The
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outputs can be written in terms of the self-consistent intrac-
avity field as

X1 = T2TL3
N��1�x1 − R2v2 − T2RL3

v3, �10a�

X2 = T1TL4
N��2�R2TL3

N��1�x1 − R1v1 + T1TL4
N��2�T2v2

− T1TL4
N��2�R2RL3

v3 − T1RL4
v4. �10b�

Equations �10� are quite general and can be used to de-
scribe singly or doubly resonant cavities provided the non-
linear propagation is phase matched and the cavity is on
resonance at both frequencies. The general expressions for
the output quadratures that result from evaluation of these
equations are very cumbersome. We will restrict ourselves to
the case of a resonant fundamental, and complete transmis-
sion of the harmonic at mirrors 1,2, i.e., T21=T22=1. We will
assume that the intracavity losses L3 ,L4 affect only the fun-
damental fields so L23=L24=0. This last assumption is not a
loss of generality since harmonic losses can be accounted for
at the detectors external to the cavity. Finally, since we will
take L13�0 which accounts for fundamental loss between
the two passes through the crystal, we can put T12=0 without
loss of generality. With these assumptions the results for the
harmonic output quadrature fluctuations can be written as

X21 = f11u11 + f13u13 + f14u14 + f21u21 + f22u22, �11a�

Y21 = g11v11 + g13v13 + g14v14 + g21v21 + g22v22, �11b�

X22 = h11u11 + h13u13 + h14u14 + h21u21 + h22u22, �11c�

Y22 = j11v11 + j13v13 + j14v14 + j21v21 + j22v22. �11d�

The locations of the input fluctuations uij are vij are shown in
Fig. 2. Explicit expressions for the coefficients f , g, h, and j
are given in Appendix B. Except when needed for clarity we
will in what follows suppress the dependence on z and � for
brevity.

We can use the solutions �11� to calculate the normalized
squeezing spectra of the harmonic fields at output port j de-
fined by

SXj =
X2j���X2j

* ����
u21���u21

* ����
, �12a�

SYj =
Y2j���Y2j

* ����
v21���v21

* ����
. �12b�

The spectra SXj and SYj are normalized by the input noise so
that S�1 corresponds to a squeezed quadrature. To evaluate
the spectra we make the usual assumption that the input
noise fields at different locations and frequencies are uncor-
related so that

uij���ukl
* ����� = vij���vkl

* ����� = �ik� jl��� − ��� .

�13�

Using Eq. �13� we can write the output squeezing spectra of
the harmonic fields as

SX1 = �f11�2 + �f13�2 + �f14�2 + �f21�2 + �f22�2, �14a�

SY1 = �g11�2 + �g13�2 + �g14�2 + �g21�2 + �g22�2, �14b�

SX2 = �h11�2 + �h13�2 + �h14�2 + �h21�2 + �h22�2, �14c�

SY2 = �j11�2 + �j13�2 + �j14�2 + �j21�2 + �j22�2. �14d�

It can be readily verified using the expressions given in Ap-
pendix B that when �1=�2=0, which corresponds to a purely
linear resonator, all the squeezing spectra are identically
unity.

Representative results for the squeezing spectra are given
in Fig. 3. The results are shown as a function of the pump
beam power external to the cavity for parameters ENL1
=ENL2=0.015 W−1, T11=0.01, and L13=L14=0.005. The de-
pendence of �1 and �2 on pump power is shown in Appendix
A. The smaller squeezing effect on the second output beam
can be attributed to the fact that the mean-field value of the
intracavity power is reduced due to the SHG process after the
forward pass through the crystal. Since, as is shown in Ap-
pendix A, the normalized propagation lengths are less than
0.25 at the highest pump power used, we can expect the
linearized semiclassical results to be accurate �25�.

III. NONCLASSICAL INTENSITY CORRELATIONS

Given the squeezing spectra we can evaluate the quantum
correlation of the intensity difference or sum Id/s of the two
output beams. Using two detectors we combine the intensi-
ties of the harmonic outputs to form

Id/s = I1 − gI2

where g is an electronic gain factor. As the intensities of the
two harmonic outputs are not equal due to different propa-
gation lengths �1 ,�2 as well as the possibility of unequal
detector sensitivities, we introduce an electronic gain param-
eter g that can be adjusted to minimize the noise of the
intensity difference or sum. When g�0 we obtain the inten-
sity difference Id and when g�0 we get the intensity sum Is.
We can express the variance of the detected intensity fluc-
tuations in terms of the squeezing spectra calculated above as
follows. The spectral fluctuations of a beam with intensity I
are i���=�Ix���, where x��� is defined in Eq. �8a�. The
variance of the fluctuations is given by ���i�����2

= I�x����2�. We have normalized the fields such that for a
coherent state Sx

coh���= �xcoh����2� / �u����2�=1; thus the
normalized variance of the detected signal due to a coherent
state with average intensity I is just I.

FIG. 3. �Color online� Amplitude squeezing �left� and phase
antisqueezing �center� at �=0 for the parameters given in the text.
The right-hand plot shows the uncertainty product which is almost
identical for the two output ports.
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The corresponding formula for the fluctuations of the in-
tensity difference or sum of the output beams is

id/s = �I1X21 − g�I2X22.

The variance of the fluctuations is thus

���id/s��2 = �id/s�2� − �id/s��2

= I1�X21����2� + g2I2�X22����2� − g�I1I2C̃X,

where we have introduced the correlation coefficient C̃X
= X21���X22

*���+X21
*���X22����. Normalizing by the sum

of the shot-noise variance for coherent-state outputs with the
same total intensity �I1+g2I2���0� we obtain

���id/s��norm
2 =

I1SX1 + g2I2SX2

I1 + g2I2
− g

�I1I2CX

I1 + g2I2
, �15�

where CX= C̃X /��0�. When the second term is negative the
variance can be less than unity, which represents a nonclas-
sical twin-beam correlation.

The optimum value of g that minimizes the fluctuations is
found by putting ����id/s��norm

2 /�g=0 which gives

gopt =�I1

I2

SX1 − SX2 ± ��SX1 − SX2�2 + CX
2

CX
.

It follows from Appendix A, Eqs. �A1� and �A2�, that the
intensity ratio is given by I1 / I2=�1 /�2. For input powers up
to a few watts I1� I2 and Sx1�Sx2. Thus the optimum g
values are gopt� ±1.

The case of g�−1 corresponds to the sum of intensities Is
which has a noise variance below the level of uncorrelated
coherent-state beams. There is a simple physical explanation
of this effect. A positive amplitude fluctuation in the har-
monic output at port 1 corresponds to an increased depletion
of the fundamental beam. The weakened fundamental then
results in a smaller amplitude output of the harmonic at the
second port. Thus the correlation function CX is negative and
the sum of the output intensities has a reduced expectation
value. The opposite case of g�1 corresponds to Id the inten-
sity difference which we find has noise very close to the
coherent-state or shot-noise limit.

Using the optimum values gopt the normalized variance of
the fluctuations given by Eq. �15� can be written as

���id/s��norm
2 =

SX1 + SX2 ± ��SX1 − SX2�2 + CX
2

2
, �16�

where the minus sign corresponds to the case g�−1. The
normalized intensity noise is shown in Fig. 4 as a function of
pump power. The fluctuations of the intensity sum for g
=gopt are indistinguishable from the case g=−1 for the range
of pump powers shown. We see that the nonclassical inten-
sity correlation is stronger than the squeezing of each output
beam shown in Fig. 3.

IV. EPR CORRELATIONS AND ENTANGLEMENT

The presence of nonclassical twin-beam correlations mo-
tivates evaluating the presence of EPR correlations and en-

tanglement between the two output beams. Optical beams
with quadrature fluctuations that embody EPR correlations
were first demonstrated in 1992 �41�. The essence of the EPR
paradox is the ability to infer an observable of one system
from a measurement performed on a second system spatially
separated from the first. Hence a conditional variance is used
to quantify the degree of EPR correlation. As shown by Reid
�12� a linear estimate of the inference variance can be used
as a sufficient condition for the presence of the EPR paradox.
We define the normalized inference variances as

��X�inf
2 = �X21 − gXX22�2�/��0� ,

��Y�inf
2 = �Y21 − gYY22�2�/��0� . �17�

Here gX and gY are real gain parameters that are chosen to
minimize the inference variances. The condition for EPR
correlations is

VEPR � ��X�inf
2 ��Y�inf

2 � 1.

The variances are individually minimized with the choices

gX,opt =
CX

2SX2
, �18a�

gY,opt =
CY

2SY2
, �18b�

where CY = Y21���Y22
*���+Y21

*���Y22���� /��0�. The
minimum of the inference product is thus

VEPR =
�SX1SX2 −

1

4
CX

2��SY1SY2 −
1

4
CY

2�
SX2SY2

. �19�

We plot the inferred variance product in Fig. 5 as a function
of the fundamental pump power. The variance product is less
than 1, implying that the outputs are EPR correlated, for
pump power above about 30 mW.

The presence of EPR correlations is a sufficient but not a
necessary condition for entanglement of the two output

FIG. 4. �Color online� Normalized fluctuations of the difference
and sum intensities at �=0 using g= ±1. The inset shows gopt for
the intensity sum. The parameters used were the same as in Fig. 3.
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beams. An alternative sufficient condition for entanglement
of Gaussian states is the inseparability of the density matrix
describing the two output modes. This can be verified using
the criterion of Duan, Giedke, Cirac, and Zoller �DGCZ�
�37�. In our notation this criterion can be written as

min�����a�X21 +
1

a
X22��2

+ ����a�Y21 −
1

a
Y22��2� � 2��0�

��a2 +
1

a2� ,

where a is a real parameter. We have included the factor of
2��0� on the right-hand side to account for our normalization

of the commutators �X̂ij�t� , Ŷkl�t��=2i�ik� jl, which is different
from that used in Ref. �37�. For the dual-ported cavity the
minimum is obtained for a�1 so that the inseparability cri-
terion can be written as

VDGCZ =
1

4
�SX1 + SX2 + CX + SY1 + SY2 − CY� � 1. �20�

In order to facilitate comparison with VEPR defined in Eq.
�19� we have included a factor of 1 /4 in the definition of
VDGCZ. Thus entanglement is indicated for both criteria by
V�1. Figure 5 shows that VDGCZ�1 for all finite values of
the pump power, and that VDGCZ�VEPR. These results verify
that the harmonic fields at the two output ports are always
entangled, but strong EPR correlations are only present when
the pump power exceeds a threshold value.

V. EPR CORRELATIONS ON A BEAM SPLITTER

An alternative approach to creating EPR correlations is to
combine two individually squeezed beams on a beam splitter
�14�, as shown in Fig. 6. The two input beams are labeled
with subscripts 1,2 and the two output beams are labeled
a ,b. For notational convenience we drop the first subscript
labeling the harmonic frequency. We can choose the phase of
the incident beams such that the harmonic field fluctuations
transform as

aa =
a1 − ia2

�2
, �21a�

ab =
a1 + ia2

�2
. �21b�

The quadrature fluctuations of the output fields are

Xa =
1
�2

�X1 + Y2� , �22a�

Xb =
1
�2

�X1 − Y2� , �22b�

Ya =
1
�2

�Y1 − X2� , �22c�

Yb =
1
�2

�Y1 + X2� . �22d�

Following the same procedure as in the analysis of the
dual-ported cavity we define the normalized inference vari-
ances at frequency � as

��X�inf
2 =

�Xa��� − gXXb����2�
��0�

, �23a�

��Y�inf
2 =

�Ya��� − gYYb����2�
��0�

. �23b�

The optimum g factors that minimize the inferred variances
are given by Eqs. �18� to be

gX,opt =
Xa���Xb

*��� + Xa
*���Xb����

2��0�SXb
=

CXab

2SXb
,

FIG. 5. �Color online� Normalized inferred variance of the har-
monic outputs at �=0. The parameters used were the same as in
Fig. 3.

FIG. 6. �Color online� Method for generating EPR correlations
by mixing individually squeezed beams on a 50-50 beam splitter.
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gY,opt =
Ya���Yb

*��� + Ya
*���Yb����

2��0�SYb
=

CYab

2SYb
.

Hence, the inference product is

VEPR =
�SXaSXb −

1

4
CXab

2 ��SYaSYb −
1

4
CYab

2 �
SXbSYb

.

Using Eqs. �22� we find

SXa = SXb =
1

2
�SX1 + SY2� ,

SYa = SYb =
1

2
�SY1 + SX2� ,

CXab = SX1 − SY2,

CYab = SY1 − SX2.

When the input beams 1 and 2 are generated in equivalent
resonators we have SX1=SX2, SY1=SY2 and the EPR correla-
tion reduces to

VEPR =
4SX1

2 SY1
2

�SX1 + SY1�2 ,

where the condition for an EPR paradox is VEPR�1. As seen
in Fig. 3 second-harmonic generation results in nonideal
squeezed states with SX1SY1= p�1. We can then write VEPR
=4SX1

2 p2 / �SX1
2 + p�2.

The EPR correlation is shown in Fig. 7 for several values
of p. We see that for strong amplitude squeezing the EPR
correlation is quite insensitive to the degree of excess noise
in the phase quadrature. On the other hand, for moderate
levels of squeezing, less than about 4 dB, VEPR increases
significantly with p. Referring to Fig. 3 we see that Pin
=0.5 W gives SX=−2 dB and p=2.2. For these values the

EPR correlation obtained by mixing two individually
squeezed beams on a beam splitter is VEPR=1.1, so there is
no EPR paradox. On the other hand, for Pin=0.5 W the dual-
ported resonator gives VEPR=0.7. Thus the dual-ported reso-
nator is able to generate much stronger EPR correlations
even though the output beams have a lower level of squeez-
ing than is required using a beam splitter to mix two
squeezed sources.

When combining two equivalent squeezed sources on a
beam splitter the DGCZ criterion as given by Eq. �20� takes
on the simple form VDGCZ=SX, which is independent of the
parameter p. Thus, as seen in Fig. 7, nonseparable beams can
always be created by beam-splitter mixing, even using non-
ideal squeezed sources.

We can also compare the EPR correlation generated in the
dual-ported resonator directly with beam-splitter mixing as a
function of total pump power. As seen in Fig. 8 the value of
VEPR generated using two sources and a beam splitter de-
pends strongly on the characteristics of the source. The top
curve labeled “linear resonator” shows the results obtained
by using one of the outputs from a dual-ported resonator
with the parameters used in Figs. 3, 4, 5. This is clearly
suboptimal as only half of the generated harmonic light is
being used, and no EPR paradox is seen for moderate pump
powers in this case. The bottom curve labeled “ring resona-
tor” corresponds to an optimized ring resonator which has
the same parameters as for the dual-ported resonator except
ENL2=0. This corresponds to unidirectional propagation in a
ring resonator which generates stronger squeezing and also a
smaller VEPR than the dual-ported resonator. We defer until
the next section a discussion of the optimal approach to gen-
erating EPR correlations using SHG.

VI. DISCUSSION

We have shown that SHG in a resonator with two output
ports can be used to generate output beams that exhibit non-

FIG. 7. �Color online� EPR �solid lines� and inseparability
�dashed line� correlation coefficients for nonideal squeezed beams
combined on a beam splitter.

FIG. 8. �Color online� Correlation coefficient VEPR produced by
mixing outputs from dual- and single-port resonators. The correla-
tion is calculated as a function of the total input power, so that in
the case of two linear or ring resonators, each one is pumped by
Pin /2 as shown in Fig. 6.
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classical intensity correlations, as well as entanglement. The
use of SHG to create entangled beams, as opposed to the
more commonly employed method of parametric oscillation
or amplification, may be advantageous in that it provides
additional flexibility in the choice of spectral region for the
entangled beams. The analysis uses a propagation model for
the quantum fluctuations that goes beyond the usual mean-
field approximation. The propagation model is needed to cal-
culate correlations between fields at different spatial posi-
tions in the resonator. We have shown results for the zero-
frequency noise fluctuations. The nonclassical correlations
and entanglement will degrade as the frequency considered
is increased, with the frequency dependence following the
usual Lorentizan form for a nonlinear cavity �21�.

It is also possible to combine two individually squeezed
beams with a 50-50 beam splitter to create entanglement
�14�. The question therefore arises as to which method, the
dual-ported resonator or two separate resonators, is most ef-
ficient at creating usable entanglement. This question has
been considered for the case of degenerate vs nondegenerate
parametric oscillation in Ref. �42� where it was shown that a
single nondegenerate oscillator was generally preferred.

We have compared the entanglement created in the dual-
ported resonator with the approach of combining separate
squeezing sources on a beam splitter in Fig. 8. We see that
the EPR correlation strength for a given available pump
power obtainable with the dual-ported resonator lies in be-
tween the results obtained by combining the outputs of two
separate dual-ported or single-port ring resonators. The re-
sults presented were obtained for resonator parameters given
in the text. Although differences occur for different param-
eter choices we believe the results presented are representa-
tive of the current state of the art in nonlinear resonators.

Figure 8 suggests that, as far as EPR correlations are con-
cerned, it is most efficient to combine the outputs of two
separate resonators with a beam splitter. We nonetheless sug-
gest that this conclusion may not be warranted. The single-
output resonator which generates the strongest EPR correla-
tion in Fig. 8 does so by producing large amounts of
squeezing. For the parameters used in the text and Pin /2

=0.5 W the ring resonator is predicted to give about 6 dB of
amplitude squeezing into a single-harmonic output. On the
other hand the largest amount of amplitude squeezing ever
reported in a SHG experiment was, to the best of our knowl-
edge, measured to be 2.4 dB, with an inferred squeezing of
5.2 dB �43�. It may therefore not be possible to achieve the
level of squeezing predicted in the theoretical model. The
difficulties include parasitic effects such as blue-light-
induced infrared absorption that become prominent when
large amounts of the harmonic field are generated �44�. There
are also more fundamental limitations present in high-
conversion-efficiency SHG due to the excitation of compet-
ing parametric processes which have been shown to limit the
level of harmonic squeezing that is attainable �45�.

Given these considerations the use of a dual-ported reso-
nator which generates a strong EPR correlation even though
the squeezing level and the power of each beam are not large
may be advantageous compared to combining separate SHG
resonators on a beam splitter. As no experiments producing
entangled beams by SHG have yet been performed the ques-
tion of which method is experimentally preferable will re-
quire further study. Finally, we note that the dual-ported con-
figuration of Fig. 1 is also attractive in terms of experimental
simplicity, compared to a two resonator plus beam splitter
arrangement.
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APPENDIX A: EFFECTIVE INTERACTION STRENGTH

In order to use Eqs. �10� to calculate output spectra we
must first evaluate the interaction strength in each crystal.
Because the fundamental is partially converted to the second
harmonic in the first pass through the crystal the interaction
in the second pass will be slightly weaker.

The cavity geometry is shown in Fig. 2. After some
simple algebra we find for the conversion efficiency of crys-
tal 1

��1 =
4T11

�ENL1Pin

�2 − �1 − T11
�1 − T12�2 − L13 − L14 − ��1ENL1Pin − ��2ENL2Pin��2

. �A1�

We have introduced the conversion efficiencies �1= P21/ Pin,
�2= P22/ Pin, P21, P22 are the harmonic output powers after
the first and second crystal passes, Pin is the fundamental
pump power external to the cavity, and the other parameters
are defined in Sec. II. When ENL2=L14=T12=0 Eq. �A1� re-
duces to the known result �46� for a single-crystal ring cav-
ity.

In the two-crystal case the conversion efficiencies are re-
lated by

�2 =
ENL2

ENL1
�1 − T12�2�1 − L13�2�1�1 − ��1ENL1Pin�2.

�A2�

Using this result in �A1� we get a closed expression for �1
that can be solved numerically. The normalized propagation
lengths are then given by
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�1 =�n1

n2

��1ENL1Pin, �A3a�

�2 =�n1

n2

��2ENL2Pin. �A3b�

Numerical examples using the same parameters as in Sec.
II �ENL1=ENL2=0.015 W−1,n1=n2=2.2,T11=0.01,T12=0 ,
L13=L14=0.005� are shown in Fig. 9. The conversion effi-
ciencies, second-harmonic power, and propagation lengths
are shown in Fig. 9 as a function of the input pump power.
The parameters were chosen to give strong nonclassical cor-

relations, but are not optimal for power conversion since �1

and �2 peak at quite low power, and the cavity is under-
coupled at higher input powers. We see that the normalized
propagation lengths �1, �2�1 so the linearized analysis
used in the paper is reliable. In addition the fractional
pump depletion due to a single pass of the intracavity field
with power Pc through the crystal is given by
�Pc / Pc=��1ENL1Pin. For the parameters used the fractional
depletion is always less than 5%, so the Boyd-Kleinman
analysis, which is based on the assumption of an unaltered
spatial form for the fundamental field, is a good
approximation.

APPENDIX B: COEFFICIENTS OF OUTPUT QUADRATURES

The coefficients appearing in Eqs. �11� are

f11 =
eı�/�c1�T11N21��1�

F
,

f13 = −
eı�/�c1�1 − T11

�L13
�1 − L14N21��1�N11��2�
F

,

f14 = −
eı�/�c1�1 − T11

�L14N21��1�
F

,

f21 =
N22��1� − eı�/�c1�1 − T11

�1 − L13
�1 − L14N11��2��N11��1�N22��1� − N12��1�N21��1��

F
,

f22 =
eı�/�c1�1 − T11

�1 − L14N21��1�N12��2�
F

, �B1�

g11 =
eı�/�c1�T11N43��1�

G
,

g13 = −
eı�/�c1�1 − T11

�L13
�1 − L14N43��1�N33��2�
G

,

g14 = −
eı�/�c1�1 − T11

�L14N43��1�
G

,

FIG. 9. �Color online� Power conversion efficiency, second harmonic power and normalized propagation length, in the dual output
cavity.
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g21 =
N44��1� − eı�/�c1�1 − T11

�1 − L13
�1 − L14N33��2��N33��1�N44��1� − N34��1�N43��1��

G
,

g22 =
eı�/�c1�1 − T11

�1 − L14N43��1�N34��2�
G

, �B2�

h11 =
eı�/�c1�T11

�1 − L13N11��1�N21��2�
F

,

h13 = −
�L13N21��2�

F
,

h14 = −
eı�/�c1�1 − T11

�1 − L13
�L14N11��1�N21��2�

F
,

h21 =
�1 − L13�N12��1��N21��2�

F
,

h22 =
N22��2� − eı�/�c1�1 − T11

�1 − L13
�1 − L14N11��1��N11��2�N22��2� − N12��2�N21��2��

F
, �B3�

j11 =
eı�/�c1�T11

�1 − L13N33��1�N43��2�
G

,

j13 = −
�L11N43��2�

G
,

j14 = −
eı�/�c1�1 − T11

�1 − L13
�L14N33��1�N43��2�

G
,

j21 =
�1 − L13N34��1�N43��2�

G
,

j22 =
N44��2� − eı�/�c1�1 − T11

�1 − L13
�1 − L14N33��1��N33��2�N44��2� − N34��2�N43��2��

G
. �B4�

In the above expressions, we have introduced the definitions

F = 1 − eı�/�c1�1 − T11
�1 − L13

�1 − L14N11��1�N11��2� ,

G = 1 − eı�/�c1�1 − T11
�1 − L13

�1 − L14N33��1�N33��2� .

The propagation matrix elements are �34,35�

N11��� =
1 − � tanh �

cosh �
, N12��� = − �2

tanh �

cosh �
,

N21��� =
1
�2

�tanh � + � sech2 ��, N22��� = sech2 � ,

N33��� = sech �, N34��� = −
1
�2

�sinh � + � sech �� ,

N43��� = �2tanh �, N44��� = 1 − � tanh � .
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