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We investigate semiclassical dynamics and quantum properties of light beams generated in time-modulated
nondegenerate optical parametric oscillator �NOPO�. Having in view production of continuous-variable �CV�
entangled states of light beams we propose two experimentally feasible schemes of NOPO: �i� driven by
continuously modulated pump field; �ii� under action of a periodic sequence of identical laser pulses. It is
shown that the time modulation of pump field amplitude essentially improves the degree of CV entanglement
in NOPO. On the whole the level of integral two-mode squeezing, which characterizes the degree of CV
entanglement, goes below the standard limit established in an ordinary NOPO with monochromatic pumping.
We develop semiclassical and quantum theories of these devices for both below- and above-threshold regimes
of generation. Properties of CV entanglement for various operational regimes of the devices are discussed in
the time domain in application to time-resolved quantum information technologies. Our analytical results are in
well agreement with the results of numerical simulation and support a concept of CV entangled states of
time-modulated light beams.
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I. INTRODUCTION

Continuous-variable �CV� entangled states of light beams
provide excellent tools for testing the foundations of quan-
tum physics and arouse growing interest due to apparent use-
fulness as a promising technology in quantum information
and communication protocols �1,2�. The efficiency of quan-
tum information schemes significantly depends on the degree
of entanglement. On the other hand, in the majority of real
applications bright light beams are required. It is therefore
highly desirable to elaborate reliable sources of light beams
having the mentioned properties. The recent development of
CV quantum information is stipulated mainly by preparation
of EPR �Einstein-Podolsky-Rosen� entangled states, which
particularly can be generated by a nondegenerate parametric
amplifier �3,4�. A type-II optical parametric oscillator �OPO�
pumped above threshold has also been theoretically pre-
dicted to be a very efficient source of bright entangled
beams. EPR entanglement in NOPO above threshold was
proposed in Ref. �3� and its strong consideration has recently
been given in Ref. �5�. This means that, in addition to the
already demonstrated intensity quantum correlations above
threshold �6�, phase anticorrelations exist in the system. Nev-
ertheless, to our knowledge, up to now no direct evidence of
such phase anticorrelations has been observed, and the
above-threshold generation of bright light beams with high
degree of CV entanglement meets serious problems �7�.

In this direction, the ultrastable, phase-locked type-II NO-
POs operated above threshold have been recently described
and investigated experimentally in the area of quantum op-
tics �8–14�. The simplest scheme realized in the experiments
is the NOPO with additional intracavity quarter-wave plate
to provide polarization mixing between two orthogonally po-

larized modes of the subharmonics �8–10�. Recently, a full
quantum mechanical treatment of this system in application
to generation of CV entangled states of light beams under
mode phase-locked condition has been presented �11,12�
where the regimes below, near, and above threshold were
considered. Quantum optical effects have been also demon-
strated in the series of experiments �13�. The intensity-
difference squeezing in electronically phase-locked NOPO
above threshold as well as the Hong-Ou-Mandel interferom-
etry using twin beams have also been experimentally dem-
onstrated �14�.

In the CV regime, a wide variety of quantum communi-
cation applications has been demonstrated in different physi-
cal systems—either in the pulsed or cw regime. In this field,
the usual way to measure CV entanglement is by homodyne
detection in the spectral domain. Nevertheless, it seems, that
analysis of quantum communication protocols should be
very easy in terms of information transfers which can be
naturally performed for communication schemes operating
mainly in time-modulated or pulsed regimes. In these re-
gimes will be possible to manipulate individually each quan-
tum state involved in the information exchange. This state-
ment has emerged recently and efficient setups have been
proposed for generation and characterization of quadrature-
squeezed pulses �15� as well as quadrature-entangled pulses
�16� in time-domain in addition to many other experiments
performed in the frequency domain �17�. For this goal the
method of time-resolved homodyne measurement has been
developed following the pioneering experiment on quantum
tomography and quantum correlations �18� �see, also the pa-
pers �19� in this area�. Pulsed homodyne detection differs
from the usually used method of spectral analysis; in the
pulsed method a single measurement on the quadrature am-
plitude of the signal pulse is performed for each pulse. This
approach opens a possibility for homodyne measurement of
quadrature variance in the time domain that is important for*Electronic address: gkryuchk@server.physdep.r.am
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elaboration of time-resolved quantum information protocols.
Such protocols are now at the first stage of development
�see, for example, Ref. �20��. In spite of these developments,
an important issue for time-resolved communication proto-
cols is to investigate CV entanglement for various time-
modulated regimes of generation including pulsed regimes.

As a realization of this program, in this paper we propose
and investigate entangled states of time-modulated light field
generated in two schemes of type-II OPO: �i� driven by con-
tinuously modulated pump field; �ii� under action of a peri-
odic sequence of identical laser pulses. There are various
questions that emerge in the study of these problems. What is
the degree of CV entanglement in nonstationary time-
dependent regimes, particularly, in the different regimes of
amplitude modulation or pulsed regimes? Will CV entangle-
ment take place in the time-dependent regime of lasing or
how far can it be extended into the high intensity domain?
We stress that the schemes proposed here are experimentally
feasible, operate in both operational regimes �below and
above threshold� and, what is very remarkable, provide
highly effective mechanism for improvement of the degree
of CV entanglement, even in the presence of dissipation and
cavity induced feedback.

For systems with CV the number of available criteria for
analyzing entanglement is very limited even for two-mode
states �3,21–24�. For non-Gaussian states, such as light field
states generated in above-threshold NOPO, these criteria of-
ten provide only sufficient conditions for inseparability. In
particular, a well-established approach is to consider CV en-
tangling resources as two-mode squeezing through the vari-
ances of the quadrature amplitudes. In this case, quadrature
entanglement wave-function inseparability criterion is often
formulated as V�1 for the half-sum of the squeezed vari-
ances �21,22� �see below�. As is shown theoretically, in
NOPO under a continuous, monochromatic pump, the maxi-
mal level of integral intracavity two-mode squeezing, which
is only 50% relative to the level of vacuum fluctuations, is
realized if the pump field intensity is close to the generation
threshold �5,25,26�. However, most of the experiments rely-
ing on entangled quantum variables have been performed for
fields outside a cavity in the spectral domain. Moreover, the
spectral squeezing significantly lower than the integral intra-
cavity squeezing has been achieved at definite low-frequency
spectral ranges �7,13�. Thus, it is an established standard to
describe squeezing with the spectra of quantum fluctuations,
as has been done even for some pulsed squeezing experi-
ments �27�. Unlike that, we follow the ideology of the cited
papers �15,16,19,20� and analyze the time-dependent charac-
teristics of CV entanglement for time modulated light beams.

As we show below, application of pump laser fields with
periodically varying amplitudes allows to qualitatively im-
prove the situation, i.e., to go beyond the limit 50%. It indi-
cates a high degree of quadrature entanglement obeying the
condition of strong integral entanglement, V�0.5. A similar
conclusion holds for the output measured integral quadrature
variance Vout of output fields that are external to the cavity.

It seems intuitively clear that such achievement is due to
the control of quantum dissipative dynamics as well as dif-
fusion processes and cavity induced feedback through the
application of suitable tailored, time-dependent driving field.

Indeed, some interesting examples of suppression of quan-
tum decoherence by modulation of system parameters have
been considered in Ref. �28�. Improvement of both sub-
Poissonian statistics of an anharmonic oscillator and quadra-
ture squeezing in a resonance fluorescence by application of
amplitude-modulated pump fields have been demonstrated in
Refs. �29,30�. So, our analysis also offers insights into cross-
overs between two phenomena, generation of CV entangled
light beams, and the control of quantum dissipative dynam-
ics.

We develop quantum theories of these devices for below-
and above-threshold regimes concluding that such achieve-
ment takes place for both operational regimes of NOPO. The
paper is organized as follows. In Sec. II we formulate the
model of time-modulated NOPO, and we present a semiclas-
sical analysis of the system as well as analysis of quantum
stochastic equations of motion. In Sec. III we calculate time-
dependent quadrature variances of two-mode squeezing on
the basis of a perturbation theory. In Sec. IV we investigate
the CV entangling resources of NOPO driven by harmoni-
cally modulated pump field. In Sec. V we consider NOPO
under action of a periodic sequence of laser pulses. We sum-
marize our results in Sec. VI.

II. TIME-MODULATED NOPO IN THE STOCHASTIC
VARIABLES

We consider a type-II phase-matched NOPO with triply
resonant optical ring cavity under action of pump field with
periodically varying amplitude �see Fig. 1� �12�. Below we
provide two concrete examples �i� and �ii� mentioned above.
The interaction Hamiltonian describing both cases within the
framework of rotating wave approximation and in the inter-
action picture is

H = i�f�t��ei��L−�Lt�a3
† − e−i��L−�Lt�a3�

+ i�k�ei�ka3a1
†a2

† − e−i�ka3
†a1a2� , �1�

where ai are the boson operators for cavity modes at the
frequencies �i. The pump mode a3 is driven by an
amplitude-modulated external field at the frequency �L=�3
with time-periodic, real valued amplitude f�t+T�= f�t�. The
constant kei�k determines an efficiency of the down-
conversion process �L→ �L

2 �↑�+
�L

2 �→� in ��2� medium. We
take into account the cavity damping rates �i of the modes

FIG. 1. The principal scheme of NOPO in a cavity that supports
the pump mode at frequency �L and subharmonic modes of or-
thogonal polarizations at frequency �L /2.
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and consider the case of high cavity losses for the pump
mode ��3��, �1=�2=�� when the pump mode is eliminated
adiabatically �see Fig. 1�. However, in our analysis we allow
for the pump depletion effects.

Following the standard procedure we derive in the posi-
tive P repesentation the stochastic equations for complex
c-number variables �1,2 and 	1,2 corresponding to operators
a1,2 and a1,2

† for the case of zero detunings,

d�1

dt
= − �� + 
�2	2��1 + ��t�	2 + W�1

�t� , �2�

d	1

dt
= − �� + 
�2	2�	1 + ��t��2 + W	1

�t� . �3�

Here, ��t�= f�t�k /�3, 
=k2 /�3, equations for �2 ,	2 are ob-
tained from �2� and �3� by exchanging the subscripts
�1�� �2� and behavior of the pump mode is described as

�3�t� = �f�t� − k�1�2�/�3, �4�

	3�t� = �f�t� − k	1	2�/�3. �5�

Our derivation is based on the Ito stochastic calculus, and the
nonzero stochastic correlations are

�W�1
�t�W�2

�t��� = ���t� − 
�1�2���t − t�� , �6�

�W	1
�t�W	2

�t��� = ���t� − 
	1	2���t − t�� . �7�

Note, that while obtaining these equations we used the trans-
formed boson operators ai→ai exp�−i�i� with �i being �3

=�L, �1=�2= 1
2 ��L+�k�. This leads to cancellation of

phases at intermediate stages of calculation. The equations of
motion �2� and �3� are with time-dependent coefficients and
for the case of constant amplitude � coincide with well-
known equations of motion for an ordinary NOPO.

A. Semiclassical dynamics

First, we shall study in general the solution of stochastic
equations in semiclassical treatment, neglecting the noise
terms and assuming 	i=�i

*, for mean photon numbers nj and
phases  j of the modes �nj =� j	 j,  j =

1
2i ln�� j /	 j��. An

analysis shows that similar to the standard NOPO, the con-
sidered system also exhibits threshold behavior, which is eas-
ily described through the period-averaged pump field ampli-
tude f�t�= 1

T�0
Tf�t�dt. The below-threshold regime with a

stable trivial zero-amplitude solution is realized for f̄ � f th,

where f th=��3 /k is the threshold value. When f̄ � f th, the
stable nontrivial solution exists with the following proper-
ties. First, as for a usual NOPO, the phase difference is un-
defined due to the phase diffusion, while the sum of phases is
equal to 1+2=2�m. The mean photon numbers for sub-
harmonic modes ni= �ai

†ai�= ��i�2 are equal one to the other
�n1=n2=n� due to the symmetry of the system, �1=�2=�.

Let us explain these statements in details. We present now
steady state solution of Eqs. �2� and �3� in the semiclassical
approximation and carry out the standard linear stability
analysis.

The trivial zero-amplitude solution �1=�2=0 is stable in

the region f̄ � f th and describes the below-threshold regime
of both subharmonics. In this regime the solution for the
pump mode reads as �3�t�= f�t� /�3. To check the stability we
turn to the linearized on the small deviations ��i, ��i

* equa-
tions which we rewrite in the following form:

d

dt
�X± = �− � ± ��t���X±, �8�

d

dt
�Y± = �− � ± ��t���Y±, �9�

where the quadrature field variables are defined as ��±

= 1
	2

���1±��2� and ��±=�X±+ i�Y±. In these variables the
time evolution has the simple form

�X±�t� = exp�±

t0

t

��t��dt� − ��t − t0���X±�t0� , �10�

�Y±�t� = exp��

t0

t

��t��dt� − ��t − t0���Y±�t0� . �11�

Since the function ��t� is periodic on time, we see from
Eqs. �10� and �11� that the solution �i=0 is stable if the

following relation holds �̄�� and thus f̄ � f th. Note, that in
obtaining this result it is useful to use the following formula:



t1

t2

��t�dt = �t2 − t1��̄ + ��t2� − ��t1� , �12�

where �̄= 1
T�t0

T ��t�dt is the period-averaged amplitude and
��t� is a periodic function, ��t+T�=��t�.

Considering the above-threshold regime we transform the
semiclassical counterpart of Eqs. �2� and �3� to the photon
number and phase variables of the modes �i=	niexp�ii�.
This yields:

d

dt
n1c = 2��t��n1cn2c�1/2 cos�1 + 2� − 2
n1cn2c − 2�n1c,

�13�

d

dt
n2c = 2��t��n1cn2c�1/2 cos�1 + 2� − 2
n1cn2c − 2�n2c,

�14�

d

dt
1 = − �n2c/n1c�1/2��t�sin�1 + 2� , �15�

d

dt
2 = − �n2c/n1c�1/2��t�sin�1 + 2� . �16�

Combining �13� with �14�, we see that for an over transient
regime, t��−1, the mean photon numbers of subharmonics
are equal one to other, n1c�t�=n2c�t�=nc�t�, which is a con-
sequence of the symmetry, �1=�2=�. After simplification
the equations read as
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d

dt
nc�t� = 2nc�t����t�cos�1�t� + 2�t�� − �� − 2
nc

2�t� ,

�17�

d

dt
i = − ��t�sin�1�t� + 2�t��,�i = 1,2� . �18�

It can be immediately seen on Eq. �18� that

cos�1�t� + 2�t�� = tanh�2

t0

t

��t��dt� + c0� , �19�

where c0=tanh−1�cos�1�t0�+2�t0��� is an integration con-
stant. Then, in the limit t− t0��−1, we get 1+2=2�m
�m=0, ±1, ±2, . . . �. Thus, the Eq. �17� is reduced to the fol-
lowing form for Z=1/nc:

d

dt
Z = − 2���t� − ��Z + 2
 . �20�

The photon number is calculated in the following form:

nc
−1�t� = nh

−1�t� + 2


t0

t

exp�− 2

�

t

���t�� − ��dt��d� ,

�21�

where nh
−1�t�=nh

−1�t0�exp�−2�t0
t ���t��−��dt�� is the solution

of the homogeneous Eqs. �17�. In the asymptotic t− t0→�
and for �̄�� we have nh

−1→0 and hence we get the follow-
ing result for over transient regime:

nc
−1�t� = 2



−�

0

exp�2

0

�

���t� + t� − ��dt��d� . �22�

We conclude, that the mean photon number is a periodic
function of time. Indeed, using the formula �12� we get the
following result

nc
−1�t� = 2



−�

0

exp�2��̄ − ��� − 2��t� + 2��t + ���d�

�23�

which is obviously the periodic function due to periodicity of
the function ��t�. Using nc�t+T�=nc�t� we can transform Eq.
�23� to the analogous form which is more convenient in prac-
tical calculations

nc
−1�t� =

2


exp�2T��̄ − ��� − 1



0

T

exp�2��̄ − �����exp�− 2��t�

+ 2��t + ����d� . �24�

Particularly, in the near-threshold regime, if �̄−�th��, we
obtain the approximative result

nc�t�  n̄c
e2��t�

�e2��t��
, �25�

where e2��t�= 1
T�0

Te2����d� and n̄c= ��̄−�� /
 is period-
averaged photon number �see below�.

We see that the time-dependent photon number is zero at
the threshold, because n̄c=0 at �̄=�. Besides this, the ampli-
tude of oscillations of the photon number increases with �̄
linearly. It is not difficult to derive also the boundary condi-
tions for mean photon number. From Eq. �24� we get

�̄ − �



exp�− 2��� � nc�t� �

�̄ − �



exp�+ 2��� , �26�

where ��=�max−�min, or

nc exp�− 2��� � nc�t� � nc exp�+ 2��� . �27�

For the case of a monochromatic wave pump field, f�t�
= f =const, and hence ��t�=�= fk /�3, we obtain the well-
known result for the photon number of an ordinary NOPO in
steady state

nst =
� − �



=

f − f th

k
. �28�

It is interesting to consider period-averaged mean photon
number n̄c= 1

T�0
Tnc�t�dt. As we see from Eq. �22�, n̄ depends

from period-averaged amplitude f̄ and coincides on the form
with the analogous result �28� for nonmodulated NOPO,

n̄c = � f̄ − f th�/k . �29�

Thus, time-modulation leads to oscillations of the mean
photon number but the averaged photon number remains to
be the same as in an ordinary NOPO.

In the limit 
 /�=k2 /��3�1 of a weak nonlinearity the
mean photon number is proportional to 
−1 and hence infi-
nitely increases. However, in this limit the threshold of gen-
eration f th=��3 /k also increases and hence infinitely strong
pump fields are needed for realization of this regime.

B. Quantum dynamics

In this section we develop a systematic perturbation pro-
cedure to study quantum properties of time-modulated
NOPO in a fully quantum mechanical approach for both re-
gimes of generation. For this goal we introduce an approach
in addition to the standard ones proposed for quantum analy-
sis of nonlinear systems using P representation. One of the
advantages of this approach is the possibility to perform
analysis of quantum fluctuations, as well as calculations of
the physical quantities, in a general and very effective form.
In particular, following this approach, we are able to calcu-
late variances of quadrature amplitudes and field correlators
in the most general form when the results for the below-
threshold regime are obtained as a special case of the above-
threshold regime. Note, that in its previous form this ap-
proach is shortly described in Ref. �12� in application to
harmonically modulated NOPO.

Our intermediate goal is to formulate a closed system of
equations for four bilinear stochastic variables �1	1, �2	2,
�1�2, 	1	2. After averaging over P distribution these quan-
tities ��1	1�, ��2	2�, ��1�2�, �	1	2�, are elements of the so-
called covariance matrix, which for an ordinary NOPO be-
low threshold completely describes the quantum properties
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of the generated modes. The straightforward calculations us-
ing the Ito rules for changing variables lead to the following
stochastic equations:

d�1	1 = − 2��1	1�1 + �2	2�dt + ��t���1�2 + 	1	2�dt

+ dW�1
dW	1

+ �1dW	1
+ 	1dW�1

, �30�

d�2	2 = − 2��2	2�1 + �1	1�dt + ��t���1�2 + 	1	2�dt

+ dW�2
dW	2

+ �2dW	2
+ 	2dW�2

, �31�

d�1�2 = − ��1�2�2 + �1	1 + �2	2�dt + ��t���1	1 + �2	2�dt

+ dW�1
dW�2

+ �1dW�2
+ �2dW�1

, �32�

d	1	2 = − �	1	2�2 + �1	1 + �2	2�dt + ��t���1	1 + �2	2�dt

+ dW	1
dW	2

+ 	1dW	2
+ 	2dW	1

. �33�

These equations can be rewritten in the more compact form.
Introducing the denotations, n1=�1	1, n2=�2	2, z�=�1�2,
z	=	1	2, dWni

=�idW	i
+	idW�i

, dWz�
=�1dW�2

+�2dW�1
,

dWz	
=	1dW	2

+	2dW	1
, and also applying the relations �6�

and �7� and �dW�1
�t�dW	1

�t��= �dW�2
�t�dW	2

�t��=0, we ob-
tain

dn1 = − 2�n1dt − 2�n1n2dt + ��t��z� + z	�dt + dWn1
,

�34�

dn2 = − 2�n2dt − 2�n1n2dt + ��t��z� + z	�dt + dWn2
,

�35�

dz� = − �z��2 + n1 + n2�dt + ��t��n1 + n2�dt + ���t� − �z��dt

+ dWz�
, �36�

dz	 = − �z	�2 + n1 + n2�dt + ��t��n1 + n2�dt + ���t� − �z	�dt

+ dWz	
. �37�

We have introduced Gaussian noise terms with zero means
and the following correlators:

�dWni
�t�� = �dWz�

�t�� = �dWz	
�t�� = 0, �38�

�dWn1
�t�dWn1

�t�� = �dWn2
�t�dWn2

�t�� = �dWz�
�t�dWz	

�t�� = 0,

�39�

�dWn1
�t�dWn2

�t�� = ���t��z� + z	� − 2�n1n2�dt , �40�

�dWz�
�t�dWz�

�t�� = z��2��t� − 2�z��dt , �41�

�dWz	
�t�dWz	

�t�� = z	�2��t� − 2�z	�dt , �42�

�dWn1,2
�t�dWz�,	

�t�� = n1,2���t� − �z�,	�dt . �43�

Obtained, Eqs. �34�–�43� are sufficient for calculations of
the mean photon numbers and the variances. Nevertheless,

for reasons which will become clear below, we use the fol-
lowing combinations of the stochastic variables: n+=�1	1
+�2	2, n−

2 = ��1	1−�2	2�2, R= ��1−	2��	1−�2�. The equa-
tions for the stochastic variables can be obtained from Eqs.
�2� and �3� by using the Ito rules for changing variables,

dn+ = �2��t� − 2� − 
n+�n+dt − �2��t�R + 
n−
2�dt + dWn+

,

�44�

dR = − �2��t� + 2� + 
n+�Rdt − 
n−
2dt − dW�1

dW�2

− dW	1
dW	2

+ dWR, �45�

dn−
2 = − 4�n−

2dt + dWn−
dWn−

+ dWn−
2 . �46�

These equations also contain terms generated from the noise
correlations. This set of coupled stochastic equations is full
and has nontrivial noise terms satisfying the following corr-
elators:

�dWn+
�t�dWn+

�t�� = �2��t��n+ − R� − 
n+
2 + 
n−

2�dt , �47�

�dWn−
2�t�dWn−

2�t�� = n−
2�dWn−

�t�dWn−
�t�� =

− n−
2�dWn+

�t�dWn+
�t�� , �48�

�dWR�t�dWR�t�� = − 2R�2��t� − 
n+ + 
R�dt , �49�

�dWR�t�dWn+
�t�� = − R�2��t� + 
n+�dt , �50�

�dWR�t�dWn−
2�t�� = − n−

2�2��t� − 
n+ + 
R�dt . �51�

We complete this section by deriving equations for the
averaged quantities, namely �n+�= �a1

†a1�+ �a2
†a2�= ��1	1�

+ ��2	2�, �R�= �a1
†a1�+ �a2

†a2�− �a1a2�− �a1
†a2

†�= ���1−	2��	1

−�2��, �= ��a1
†a1−a2

†a2�2�= �n−
2�+ �n+�. The results are found

to be

d

dt
�n+� = �2��t� − 2� − 
��n+� − 
�n+

2� − 2��t��R� + 
� ,

�52�

d

dt
�R� = − �2��t� + 2� + 
��R� − 
�n+R� − 2��t� + 
� ,

�53�

d

dt
� = − 4�� + 2��n+� . �54�

From Eq. �54� the variance of photon-number difference
� can be expressed as a function of �n+�,

��t� = 2�

−�

t

e4��t�−t��n+�t���dt�. �55�

A significant point about this result is that the variance
�= ��a1

†a1−a2
†a2�2� is expressed in a simple enough form
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through the mean photon number and, that is essential, in the
framework of “exact” quantum theory without a linear treat-
ment of quantum fluctuations. Substituting this expression
into �52� and �53� we get the following equations which are
convenient for the perturbative analysis of quantum fluctua-
tions:

d

dt
�n+� = �2��t� − 2� − 
��n+� − 
�n+

2� − 2��t��R�

+ 2�


−�

t

e4���−t��n+����d� , �56�

d

dt
�R� = − �2��t� + 2� + 
��R� − 
�n+R� − 2��t�

+ 2�


−�

t

e4���−t��n+����d� . �57�

III. QUANTUM FLUCTUATIONS AND VARIANCES

We are now in the position to study quantum effects in
time-modulated NOPO and will state the main results of the
paper concerning CV entanglement.

To characterize CV entanglement we address both the in-
separability criterion �21,22� and the EPR paradox criterion
�3,23�. These criteria could be quantified by analyzing the
variances V−=V�X1−X2� and V+=V�Y1+Y2� in the terms of
the quadrature amplitudes of two modes Xk=Xk��k�
= 1

	2
�ak

†e−i�k +ake
i�k�, Yk=Xk��k− �

2
� �k=1,2�, where V�x�

= �x2�− �x�2 is a denotation of the variance. The inseparability
criterion, or weak entanglement criterion reads as V= 1

2 �V+

+V−��1, and due to the mentioned symmetries is reduced to
the following form V=V+=V−�1. This sum criterion can be
transformed into a product criterion V+V−=V2�1. The
strong CV entanglement criterion for the product of vari-
ances shows that when the inequality V+V−�1/4 is satisfied
and hence V�0.5, there arises an EPR-like paradox.

We consider here the time-dependent output variances,
which can be recorded by time-resolved homodyne detec-
tion. These quantities will be expressed through the stochas-
tic variables using the relationships between normally or-
dered operator averages and stochastic moments with respect
to the P function and then will be calculated in a linear
treatment of quantum fluctuations. Restoring the previous
phase structure of intracavity interaction, we obtain that V+
=V−=V and

V = 1 + ��1	1� + ��2	2� − ��1�2�ei� − �	1	2�e−i�, �58�

where �=�1+�2+�L+�k. As can be seen, the possible
minimal level of the variance, realized under appropriate se-
lection of the phases �1+�2=−�L−�k in the formula �58�,
is expressed as V�t�=1+ �R�t��.

Then the equations �56� and �57� should be solved within
a standard procedure of linearization over the small quantum
fluctuations for calculation of �R�t��. In our analysis we will
use the modified perturbative approach expanding measur-

able quantities in power series on the small parameter of the
theory.

In order to rewrite the above expressions for both intrac-
avity photon numbers and quadrature variance in terms of
output fields, which are external to the cavity, the standard
method of input-output relations �31� is used. We consider
the output behavior of NOPO assuming that all losses occur
through the output coupler, so that �3

out=�3 �see Fig. 1�. In
this case the output fields of subharmonics are �i

out�t�
=	2�ai�t� �i=1,2� while output field of the pump mode is
equal to �L

out�t�=	2�3a3�t�−�L
in�t�, where initial external

field is determined as ��L
in�t�� = f�t� /	2�3. Then, the out-

put measured time-dependent variances can be written
through the normally ordered moments of the output-
quadrature field variables as V+

out�� , t�= � :Xout�t�Xout�t� : �
−�Xout�t��2, V−

out�� , t�= � :Yout�t�Yout�t� : �−�Yout�t��2.
We have defined Xout=X1

out−X2
out, Yout=Y1

out−Y2
out, where

Xi
out=Xi

out���= 1
	2

��i
outei�+�i

oute−i��, Yi
out���=Xi

out��−� /2�
�i=1,2�. Thus, we express in the standard way the variance
Vout= 1

2 �V+
out+V−

out� through the intracavity variances in the
following form Vout=2��V−1�. We present below applica-
tions of these results to two concrete schemes of time-
modulated NOPO.

A. Above-threshold regime

First, we consider the above-threshold regime linearizing
quantum fluctuations around the stable semiclassical solu-
tions, �n+�=n1c+n2c+ ��n+�=2nc+ ��n+�, �R�=R0+ ��R�
= ��R�, �n+R�=2nc��R�, �n+

2�=4nc��n+�, where it is assumed
that n1c=n2c=nc�t�, 1+2=2�k, and hence R0=0. Note,
that in the current experiments the ratio of nonlinearity to
dumping is small, k /��1 �typically 10−4 or less�, and hence

 /�=k2 / ���3��1 is the small parameter of the theory.
Therefore, the zero order terms in the above expansion cor-
respond to a large classical field of the order � /
 in accor-
dance with Eq. �22�, while the next terms describing the
quantum fluctuations are of the order of 1. On the whole,
combining the procedure of linearization with 
 /��1 ap-
proximation we get a linear equation for the variance V�t�
=1+ ��R�,

d

dt
V�t� = − 2�� + ��t� + 
nc�t��V�t� + 2
nc�t� + 2�

+ 4�


−�

t

e4���−t�nc���d� , �59�

with the following periodic asymptotic solution in the over-
transient regime:

V�t� = 2

−�

t

exp�− 2

�

t

�� + ��t�� + 
nc�t���dt��
� �� + 
nc��� + 2�



−�

�

e4����−��nc����d���d� .

�60�
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Indeed, it may be verified that Eq. �60� can be rewritten in
the following form in which its periodic dependence be-
comes more evident:

V�t� = 2�

−�

0

exp�− 2

�

0

�� + ��t� + t� + �nc�t� + t��dt��
� �1 + nc�� + t� + 2�


−�

�

e4����−��nc��� + t�d���d� .

�61�

B. Below-threshold regime

The analysis of the below-threshold regime is more
simple and leads to formulas �59�–�61� with nc=0.

In this case, the variance is derived from Eq. �60� as

V�t� = 2�

−�

t

exp�− 2

�

t

�� + ��t���dt��d� . �62�

Let us turn to the mean photon number of the modes in
NOPO below threshold. Because nc=0, Eq. �52� is trans-
formed to

d

dt
��n+� = 2���t� − ����n+� − 2��t��V�t� − 1� . �63�

Finally, combining Eqs. �62� and �63� in over transient
regimes yields

��n1� = ��n2� = 

−�

t

exp�− 2��t − ���

�sinh�

�

t

��t��dt������d� . �64�

This result describes the mean photon number on the level
of quantum noise versus time-modulated amplitude of the
pump field.

Particularly, when f�t�= f =const and hence ��t�=�= fk
�3

,
Eqs. �60� and �62� take the following form:

V =
�

� + �
=

f th

f + f th
, � � �th, �65�

V =
3

4
−

�

4�
, � � �th, �66�

which coincide with analogous results for an ordinary NOPO
in below- and above-threshold correspondingly. For the gen-
eral case the integral in �62� cannot be handled but the lower
bound for V�t� can be obtained in the general form as

V�t� � �/�� + �max� . �67�

IV. EPR ENTANGLEMENT IN HARMONICALLY
MODULATED NOPO

In the preceding section we have derived the results for
the mean photon number �22� and �64� as well as for the

squeezed variance characterized CV entanglement �60� and
�62�. These equations take place for arbitrary periodically
modulated amplitude of pump field and for both below- and
above-threshold regimes. As an application of these results
we consider in this section NOPO with continuously modu-
lated pump field.

The corresponding scheme �Fig. 1� involves pump field
with the harmonically modulated amplitude f�t�= f0

+ f1 cos��t�, where � is the modulation frequency, ���L.
Such modulation may be realized electronically by using the
standard techniques, particularly, by an electro-optic ampli-
tude modulator. Besides, the corresponding scheme can be
implemented at least for NOPO driven by a polychromatic
pump field with central frequency �L and two satellites �L
+�, �L−�. In the last case the Hamiltonian of this system is
indeed given by �1� and f0 and f1 are the amplitudes of the
central component and the satellites of the pump field.

In above threshold, f̄ = f0� f th, the photon number �22�
reads as

nc
−1�t� = 2



−�

0

exp�2��� f̄

f th
− 1��

�exp�2�f1

�f th
�sin���t + ��� − sin��t���d� . �68�

This result is illustrated in Fig. 2�a� for the different levels

FIG. 2. Mean photon number �a� and the variance V�t� �b� ver-
sus dimensionless time for the parameters k /�=5�10−4, �3 /�

=25, � /�=2, f̄ =3f th: f1=0 �curve 1�, f1=0.4 f̄ �curve 2�, and f1

=1.2 f̄ �curve 3�. The dashed line in �b� corresponds to the stationary
limit V=1/2.
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of modulation and for f1=0 reaches to the standard result
nout=2�nc=2��f0− f th� /k.

Let us turn to the study of the entanglement based on the
formula �60�, which for f1=0 also coincides with an analo-
gous one for the ordinary NOPO. Typical results for the case
of harmonic modulation, ��t�= k

�3
�f0+ f1 cos��t��, are pre-

sented in Fig. 2�b� for the above-threshold regime. The vari-
ance is seen to show a time-dependent modulation with a
period 2� /�. The drastic difference between the degree of
two-mode squeezing and/or entanglement for modulated and
stationary dynamics is also clearly seen in Fig. 2�b�. The
stationary variance �curve 1� near the threshold having a lim-
iting squeezing of 0.5 is bounded by quantum inseparability
criterion V�1. This variance, however, is still above the
stationary limit of 1 /2 for the chosen parameters. It is clearly
seen �curve 3� that the variance for the case of modulated
dynamics obeys the EPR criterion V2�1/4 of strong CV
entanglement for the definite time intervals. To indicate this
effect the stationary limit V=1/2 is shown in Fig. 2�b� as a
dashed line. The minimum values of the variance Vmin
=V�tm� for both regimes of generation and corresponding
photon numbers nmin=nc�tm� for above-threshold regime at
fixed time intervals tm= t0+2�m /�, �m=0,1 ,2 , . . . � are
shown in Fig. 3. As it is expected, the degree of EPR en-

tanglement increases with ratio f1 / f̄ , i.e., with level of the
modulation.

Similar conclusions hold for the output measured integral
two-mode squeezing which is realized, if Vout=2��V−1�
�0 �32�. The lower bound for Vout is determined by the
stationary limit and reads as Vout /2��−1/2. The above re-
sults indicate that for time-modulated NOPO the normalized
output variance becomes less than −1/2, i.e., Vout /2��
−1/2 for the definite time intervals.

The case of a weak modulation: We now illustrate these
results analytically for the case of a weak level of modula-
tion, �1= k

�3
f1��. In order to this end, we consider below-

threshold regime rewriting Eq. �62� in the following form:

V�t� = 2�

−�

t

exp�− 2�� + �̄��t − ��

+
2�1

�
�sin��t� − sin������d� . �69�

Expanding in Eq. �69� the exponent in power series of the
ratio �1 /� we obtain for the variance up to the first order,

V�t� 
�

� + �̄�1 −
2�1

�

sin��t� + �2��̄ + ��
�

�cos��t�

1 + �2��̄ + ��
�

�2 � .

�70�

As we see, the maximal degree of two-mode squeezing in
this approximation reads as

Vmin =
�

� + �̄�1 −
2�1

�

1

	1 + �2��̄ + ��
�

�2� �71�

and is achieved for the following time intervals �t
=arctan �

2��+�̄� +2�k. We conclude that near to the threshold,

�̄�th=�, Vmin�1/2 and hence the EPR criterion V2�1/4
of strong entanglement is realized for the definite time inter-
vals. Using the formula �69� we obtain, in general, the lower
bound for the variance

V�t� �
�

� + �̄ + �1

. �72�

This value for any level of modulation is less than the mini-
mum degree of two-mode squeezing, V=1/2 for an ordinary
NOPO near to the threshold.

As the numerical analysis shows, the production of strong
entanglement occurs for the period of modulation compa-
rable with the characteristic time of dissipation, ��, and
dissapears for asymptotic cases of slow ����� and fast
����� modulations.

FIG. 3. The minimum level of the variance �a� and the mean
photon number at the points of minima of the variance �b� versus

f̄ / f th for three levels of modulation: f1=0 �curve 1�, f1=0.75 f̄

�curve 2�, and f1=2 f̄ �curve 3�. The parameters are k /�=5�10−4,
�3 /�=25, � /�=2. The dashed line in �a� corresponds to the station-
ary limit V=1/2.
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We note that analogous conclusion about improvement of
the degree of squeezing by harmonic time modulation has
been made also for one-mode squeezing states generated in
OPO �33�. Nevertheless the levels of squeezing of both de-
vices are different. Another essential difference relies on the
behavior of the corresponding variances in the above-
threshold regimes.

V. EPR ENTANGLEMENT INDUCED BY A SEQUENCE
OF LASER PULSES

It seems that such improvement of the degree of CV en-
tanglement in NOPO is realized due to the control of quan-
tum dissipative dynamics of subharmonic modes. In one of
the standard techniques �28�, control of the optical quantum
system is achieved through the application of suitable tai-
lored, time-dependent external fields including application of
synchronized laser pulses. Thus, in this section we want to
extend the pulses control strategy by considering a genera-
tion of EPR entangled states of light in a dissipative system.

We turn now to the scheme of Fig. 1 subjected by a peri-
odic sequence of identical laser pulses. We consider a rect-
angular form of the pulses of the duration T1 separated by the
time intervals with duration T2. The amplitude of pump field
is periodic on the time interval T=T1+T2 and can be de-
scribed as

f�t� = fL�
n=0

�

��t − t0 − nT���t0 + nT + T1 − t� , �73�

where � is the usual step function, t0 is the initial time in-
terval, and fL is the amplitude of the laser pulses. This am-
plitude describes a periodic chain of square pulses of dura-
tion T1 separated by the time interval T2. Period averaged
pump field amplitude is equal to

f̄ =
1

T



t0+nT

t0+�n+1�T

f�t�dt =
fLT1

T1 + T2
, �74�

and hence the above-threshold regime is realized if fLT1

�
��3

k �T1+T2�. The above approach can be easily applied to
the pulsed regime. The mean photon numbers and the vari-
ance V�t� are calculated based on formulas �22� and �60�.
The predictions of the numerical calculations are shown in
Fig. 4 for one of the preferable regimes �for typical �
=106 s−1, T1=10−8 s and the repetition rate T2

−1=1 MHz� as-
suming that T1 is much less than T2. It is clearly evident from
Fig. 4�a� that the mean photon number increases during laser
pulses and decays during the interval T2 between pulses due
to dissipation in the cavity. One can conclude from Fig. 4�b�
that the weak entanglement criterion V�1, is fulfilled for
any time intervals. However, we have also found remarkable
result that the variance goes below the inseparability level of
0.5 in the ranges of maximal photon numbers, for appropri-
ate chosen parameters. We have illustrated this effect for the
nonstationary regime, if T1 is sufficiently shorter than the
relaxation time and hence the dissipative effects in modes
dynamics for time intervals tn� t� tn+T1 are still unessen-
tial. However, it can be seen that the improvement of the

degree of entanglement is realized for wide ranges of the
parameters including �T1�1. We demonstrate this point by
an analytical calculation of the minimum values Vmin as well
as nmax for the definite time-intervals.

At first, we consider the equation �20� for the chain of
square pulses where the time-dependent parameter ��t� is
chosen as

��t� = ��L, if tn � t � tn + T1,

0, if tn + T1 � t � tn+1.
� �75�

Here tn= t0+nT and �L= fLk /�3. It is immediately seen
that in the presence of pulses, for the time intervals within
the range tn� t� tn+T1, evolution of the photon number
nc�t�=ZL

−1 is given by the following equation:

dZL

dt
= 2
 − 2��L − ��ZL. �76�

Thus, we get

ZL�t� =



�L − �
+ �ZL�tn� −




�L − �
�e−2��L−���t−tn�. �77�

The solution of Eq. �20� in the absence of pulses for the time
intervals tn+T1� tn+1 can be written as

FIG. 4. Mean photon numbers �a� and the variance �b� versus
dimensionless time for the parameters k /�=5�10−4, �3 /�=25,

T1=0.01�−1, T2=�−1, f̄ =1.1f th. The dashed line in �b� indicates the
stationary limit.
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Z0�t� = −



�
+ �Z0�tn + T1� +




�
�e2��t−tn−T1�. �78�

It is clear that these solutions should satisfy the following
boundary conditions:

ZL�tn� = Z0�tn�, ZL�tn + T1� = Z0�tn + T1� . �79�

At the same time it is easy to understand that for over tran-
sient regime the conditions of the periodicity should also be
satisfied,

Z0�tn� = Z0�tn+1�, ZL�tn� = ZL�tn+1� . �80�

Now, by considering Eqs. �77� and �78� and the conditions
�79� and �80� it is immediate to get the following simple
relations between ZL�tn� and ZL�tn+T1�:

ZL�tn� = −



�
+ �ZL�tn + T1� +




�
�e2�T2, �81�

ZL�tn + T1� =



�L − �
+ �ZL�tn� −




�L − �
�e−2��L−��T1.

�82�

These formulas allow us to determine the maximal nmax
=ZL

−1�tn+T1� and minimal nmin=ZL
−1�tn� values of the photon

number. In this way the results are obtained in the following
form:

nmax =
1 − e−2��̄−��T




�L − �
�1 − e−2��̄−��Te−2�T2� +




�
e−2��̄−��T�1 − e−2�T2�

,

�83�

nmin =
1 − e−2��̄−��T




�
�e2�T2 − 1� +




�L − �
�e2�T2 − e−2��̄−��T�

. �84�

In obtaining these formulas we have used the equality �LT1
= �̄T. Thus, we have obtained the extremal values of the pho-
ton number for the above-threshold regime in the simple
analytical form.

Similar formulas can be derived for the quadrature
squeezed variance. We shall obtain these results considering
for simplicity NOPO below the threshold. In this operational
regime, because nc=0, Eq. �60� is transformed to

d

dt
V�t� = − 2�� + ��t��V�t� + 2� . �85�

Since Eqs. �60� and �85� have similar forms, the further cal-
culations of the minimal values of the variance Vmin are
analogous to the previous calculation performed for the pho-
ton number. As shows analysis �see also numerical results in
Fig. 4�, the minimal values Vmin are reached at the time in-
tervals t= tn+T1 corresponding to the maximal values of the
photon number. On the whole, using Eqs. �75� and �85� we
get

Vmin =

�

�L + �
�1 − e−2��L+��T1� + e−2��L+��T1�1 − e−2�T2�

1 − e−2�T2e−2��L+��T1

�86�

and in the limit T1�T2 of short duration of pulses,

Vmin =
e−2�LT1�1 − e−2�T2�
1 − e−2�T2e−2�LT1

. �87�

The calculations can again be carried out for the maximal
values Vmax of the quadrature variance at t= tn, and by using
Eqs. �75� and �85� as previously, one obtains in the limit
T1�T2,

Vmin � e−2�LT1Vmax. �88�

For the ranges close to the generation threshold, since �LT1
��T2, the variance can be written as

Vmin
1

e2�LT1 + 1
. �89�

These formulas are in accordance with the data of Fig.
4�b�. As we see the degree of EPR entanglement increases
with �LT1.

The minimum values of the variance of output fields at
the time intervals t= tn+T1 are obtained as

Vmin
out /2� = −

1 − e−2�LT1

1 − e−2�T2e−2�LT1
�90�

in the limit of short duration of pulses. In the near-threshold
domain �LT1��T2 the result above yields the following
simple expression:

Vmin
out /2� = −

1

1 + e−2�LT1
. �91�

One can conclude from Eqs. �90� and �91� that the output
variance goes below the stationary limit Vmin

out /2�=− 1
2 in the

pulsed regime too. The perfect CV entanglement Vmin
out /2�=

−1 is realized in the range �LT1�1.
Note, that considering the pulsed regime we do not take

into account any incoming pulse distribution. This topic is
currently being explored and will be the subject of forthcom-
ing work.

Comparison of the analytical and numerical results: It is
well known that the linearized theory is applicable only out-
side the critical region, although the variance �60� is surpris-
ingly well defined also at the threshold. As our analysis
shows, the condition of the validity of linear results for the

near-threshold regimes reads as � f̄ / f th−1�
� �
 /��exp�2�f1 / f th��� /��� for NOPO driven by harmoni-
cally modulated pump field, while for NOPO under sequence
of square laser pulses the condition takes the more simple

form � f̄ / f th−1�� �
 /��. For typical 
 /��1, both conditions
are fairly easy to satisfy even for narrow critical ranges.
Note, that the accuracy of our analytical calculations has
been verified by the numerical simulations based on the
quantum state diffusion method.
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VI. CONCLUSION

In conclusion, we point out that, indeed, the class of cur-
rently proposed schemes generating intensive light beams
with high degree of entanglement may be significantly ex-
tended if instead of monochromatic pumping we consider
pump fields with periodically varying amplitudes. In this di-
rection, we have presented and studied theoretically two
schemes of time-modulated NOPO. More importantly, we
have seen that both schemes operate under nonstationary
conditions that has a significant impact on formation of high-
degree CV entanglement even in the presence of dissipation
and cavity induced feedback. It is known that the sum of
intracavity two-mode squeezing quadratures of an ordinary
NOPO is not perfectly squeezed, leading to a limiting CV
entanglement of 0.5. We have demonstrated that time modu-
lation of twin beams generated in NOPO essentially im-
proves the degree of CV entanglement by going beyond the
standard limit established in an ordinary NOPO. The proper-
ties of periodically pulsed entanglement can be widely con-

trolled via the modulation parameters. The important point is
that this improvement relates to the integral or total squeez-
ing of intracavity modes as well as output photon fields of
subharmonic rather than the spectral squeezing. Thus, CV
entanglement has been analyzed in the time domain in addi-
tion to many analogous investigations of squeezed variances
performed in the spectral domain. We believe that time-
dependent output variances could be observed by means of
time-resolved homodyne measurements. We hope that the
results obtained may be also applicable to a general class of
quantum dissipative systems and can serve as a guide for
further studies of entanglement physics in application to
time-resolved quantum information protocols.
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