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We develop a time-dependent Hartree-Fock approximation that is appropriate for Bose-condensed systems.
Defining a depletion Green’s function allows the construction of condensate and depletion particle densities
from eigenstates of a single time-dependent �oscillating� Hamiltonian, guaranteeing that our approach is a
number-conserving approximation. The poles of this Green’s function yield the energies of number-changing
excitations for which the condensate particle number is held fixed, which we show has a gapped spectrum in
the superfluid state. The linearized time-dependent version of this has poles at the collective frequencies of the
system, yielding the expected zero sound mode for a uniform infinite system. We show how the approximations
may be expressed in a general linear response formalism.
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I. INTRODUCTION

The time-dependent Hartree-Fock approximation
�TDHFA� is a powerful method for determining the proper-
ties of many-body systems �1�. It allows the computation of
the density response functions, conductivities, and other lin-
ear response functions. The poles of such functions deter-
mine the collective modes of a system, and within the
TDHFA the effects of thermally generated single particle ex-
citations on these modes are included. The TDHFA has thus
become a standard tool in condensed matter, nuclear, and
atomic physics.

Surprisingly, the TDHFA has not enjoyed such success in
the area of Bose-condensed systems �2�. In part this is be-
cause there are other powerful methods for computing col-
lective modes, based on the Bogoliubov approximation in
which there is coherence among states with different particle
numbers; i.e., where gauge symmetry is spontaneously bro-
ken. Field theoretic techniques that incorporate this were de-
veloped long ago �3�, but in light of the significant progress
on atomic gases in the last decade �4�, there is much renewed
effort to improve upon these methods �5�. Among these are
generalizations of various mean-field schemes to properly
include the effects of symmetry breaking �6�, and a “dielec-
tric approach” that carefully treats Green’s functions and re-
sponse functions in a consistent way �7,8�. The challenge in
these studies has been to treat the dynamics of the conden-
sate and of the thermally excited �i.e., depleted� particles in a
fully consistent manner. The resulting schemes are consider-
ably more involved than the original Bogoliubov approach.
�For a review, see Ref. �5�.�

As we show below, one way to avoid the difficulties of
disentangling the single-particle and collective excitations is
to work with an ensemble in which the gauge symmetry is
not broken �9�. In situations for which the particle number is
relatively small, this may actually be preferable to broken
symmetry approaches for which the associated fluctuations
in the particle number can become problematic. Our chosen
approach is the TDHFA. Its principle advantage is that the
condensate wave function and the single-particle excitations
appear as states of a single time-dependent, nonlocal Hamil-

tonian, so that they may be treated on an equal footing with
exchange effects fully included. The connection through a
single Hamiltonian guarantees that conservation laws will be
respected �10�, and we will demonstrate that the method cor-
rectly produces the gapless superfluid mode for a homog-
enous system.

Our principal conclusions are as follows. �i� We find that
in order to properly deal with exchange, one must adopt a
constrained grand-canonical ensemble for the density matrix
first introduced by Huse and Siggia �11�, in which the num-
ber of particles in the condensate is fixed while the occupa-
tion probability for other single particle states is given by the
standard grand-canonical ensemble. Within this ensemble,
one finds a gap in the single-particle spectrum between the
condensate and the other single-particle states �11,12�, the
latter of which we call depletion states �13�. This exchange
gap is analogous to the single-particle gap that arises in su-
perconducting systems and only arises when the system is
Bose condensed, and thus may be viewed as a superfluid
order parameter. The gap should be observable in a tunneling
experiment between a normal Bose gas and a Bose conden-

sate. �ii� We define a depletion Green’s function G̃�q ,��,
whose poles occur at the single-particle energies of the
depletion states in the Hartree-Fock �HF� approximation,
which by construction does not have a pole at the collective
mode frequency, as is expected for the full Green’s function.
The response of this Green’s function to a weak, time-
dependent perturbation, coupled with the equation of motion
for the condensate wave function—which is a finite tempera-
ture generalization of the Gross-Pitaevskii �GP� equation—
allows us to generate equations of motion for the condensate
and depletion states governed by the same effective Hamil-
tonian, and to define response functions whose poles occur at
the collective excitations of the system. This naturally cap-
tures the interplay between the condensate and depletion
states. �iii� We solve these coupled equations for the simplest
case of an infinite uniform Bose gas, and demonstrate that
whenever there is Bose condensation, there is a gapless col-
lective �zero sound� mode. This is usually identified as the
superfluid mode in approaches where the gauge symmetry is
broken; in our approach we find the mode even though the
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symmetry is kept intact. We demonstrate that the density
response function contains structure that could not arise in
simple Bogoliubov approaches where only the collective
mode is retained.

This paper is organized as follows: In Sec. II, we derive
the static and time-dependent HF equations at finite tempera-
ture by using a constrained grand-canonical ensemble. We
then show how this can be used to define the depletion
Green’s function which captures the energetics of particles
outside the condensate. In Sec. III, we demonstrate how the
depletion Green’s function may be used to generate an ap-
proximate form for response functions. We also show that
the same result may be obtained directly from wave func-
tions, firmly establishing the connection with the TDFHA. In
Sec. IV, we apply the general results in previous sections to a
homogenous system with a contact two-body interaction.
Discussions and conclusions are presented in the final sec-
tion. Further details are presented in the Appendixes.

II. STATIC AND TIME-DEPENDENT HARTREE-FOCK
EQUATIONS AT FINITE TEMPERATURE

We begin with Bose particles in an external potential U�r��
that is time independent. The Hamiltonian is

Ĥ =� dr��̂†�r��H0�̂�r�� +
1

2
� dr�1dr�2�̂†�r�1��̂†�r�2�

�V�r�1 − r�2��̂�r�2��̂�r�1� , �1�

where H0=− �2�2

2m +U�r�� is the noninteracting Hamiltonian
and V�r�1−r�2� the two-body potential. For a neutral Bose gas,
V is usually short range and can be taken to have a contact
form V�r��=g��r�� if the gas is dilute. We wish first to find the

eigenstates of Ĥ in the Hartree-Fock approximation �HFA� at
finite temperature �11,12�.

We begin with the standard HFA, which we shall see is
fine for high temperatures, but becomes a poor approxima-
tion when the system is Bose condensed. We seek a single-
particle Hamiltonian

ĤHF = �
��

���a�
†a�, �2�

where the indices � label states of a single-particle basis,
which minimizes the free energy. In terms of these states the
Hamiltonian Eq. �1� can be written

H = �
��

���
0 a�

†a� +
1

2 �
���	

V���	a�
†a�

†a�a	, �3�

where

���
0 =� dr���

*�r���−
�2�2

2m
+ U�r������r�� �4�

is the matrix element of the noninteracting Hamiltonian, with
�� the single particle states, and

V���	 =� dr�1� dr�2��
*�r�1���

*�r�2�V�r�1 − r�2����r�2��	�r�1�

�5�

is the matrix element of the two-body potential.
At finite temperature kBT=1/� where kB is the Boltzmann

constant, the expectation value of an operator Ô is

	Ô
 = Tr D̂Ô , �6�

where D̂ is the exact density matrix operator. In the grand-
canonical ensemble this is

D̂ =
e−��Ĥ−
N̂�

Tr e−��Ĥ−
N̂�
=

1

Z
e−��Ĥ−
N̂�, �7�

where Z is the corresponding partition function

Z = Tr e−��Ĥ−
N̂�. �8�

The Hartree-Fock approximation is based on the variational

principle �1� that for any trial density matrix D̂r, one always
has for the free energy

��D̂r� � ��D̂� . �9�

In practice one chooses a form for D̂r that minimizes the free
energy while allowing calculations with it to be tractable. In
the Hartree-Fock approximation we choose trial density ma-
trix

D̂var =
1

Zvar
e−��ĤHF−
N̂� �10�

with

Zvar = Tr e−��ĤHF−
N̂�. �11�

The parameters ��� and �� are determined by minimizing
the trial free energy �1�

�var = −
1

�
ln Zvar − Tr D̂varĤHF + Tr D̂varĤ . �12�

Defining the single-particle density matrix �� as

�� = Tr Dvara�
†a�, �13�

one has

Tr D̂varĤHF = Tr � . �14�

The variation of �var yields

��var =
1

Zvar
Tr e−�ĤHF�ĤHF − Tr �� − Tr �� + �	Ĥ


= − Tr �� + �	Ĥ
 = Tr��	Ĥ

�

− ��� , �15�

with
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	Ĥ
 = �
��

���
0 �� +

1

2 �
���	

V��	���	�� + ���	� . �16�

By requiring ��var=0, one arrives at

��� =
�	Ĥ

���

= ���
0 + �

	�

V̄�	���	, �17�

where V̄�	��=V�	��+V�	��. This is the Hartree-Fock equa-
tion in an arbitrary single-particle basis.

A. Constrained grand-canonical ensemble

The above derivation is valid for all temperatures, and the
condensate plays no special role. However, the result has
significant problems for a Bose-condensed system: �i� It pre-
dicts macroscopically large fluctuations in the total particle
number of the system below the critical temperature, which
is unphysical. In the diagonal basis where n�=��

= �e����−
��−1, the source of this problem may be traced to the
parameter ��=0−
 associated with the condensate wave
function, which becomes arbitrarily small in the thermody-
namic limit �14�. �ii� With a contact interaction, the grand-
canonical ensemble produces the same mean-field potential
for all particles, and does not yield the expected appearance
of an exchange energy only when particles are in different
states, not when they are in the same state. This is not a
serious problem when the system is above the critical tem-
perature since each level is microscopically occupied. How-
ever, this is a poor approximation when the system is Bose
condensed.

To correct these problems, one may introduce a con-
strained trial grand canonical ensemble �11�

Dvar� =
1

Zvar�
Tr e−������−
�a�

†a��a0
†a0,N0

. �18�

with Zvar� chosen as usual to normalize the distribution. In

this expression we have expressed ĤHF in a diagonal basis.
As we shall see below, the wave functions associated with
the operators are determined by minimizing the free energy
within this trial ensemble. The resulting condensate wave
function created by a0

† turns out to have the lowest eigen-
value of an effective Hamiltonian, and so becomes the eigen-
state of the single-body density operator with the largest ei-
genvalue �9�.

This ensemble essentially excludes the dangerous con-
densed mode from statistical averaging �15�, since this is
what causes the problem in standard HF. As we will see, this
removes the spurious exchange energy among particles oc-
cupying the condensate mode, while keeping it among par-
ticles occupying different levels. Consistent treatment of ex-
change in a Bose condensed system turns out to be essential
for obtaining the expected gapless superfluid mode of an
infinite uniform system.

Using Eq. �18�, one gets the variational free energy

�var = − 
N0 + �
��0

�kBT ln�n� + 1� − ��n�� + 	Ĥ
 , �19�

where 	Ĥ
 is

	Ĥ
 = �
�

���
0 n� +

1

2�
��

V̄����n�n� −
1

2
V0000N0

2 �20�

and

n� = N0��,0 +
1

e−����−
� − 1
���0. �21�

When �var is minimized with respect to N0 and n� ���0�,
which is equivalent to variation with respect to ��, one finds

0 = − 
 +
�	Ĥ

�N0

, � = 0, �22�

0 =
� ln�n� + 1�

�n�

− �� − n�

���

�n�

+
�	Ĥ

�n�

, � � 0. �23�

These equations are straightforwardly solved by setting

�� = ���
0 + �

�

�V���� + V�����n� − V0000N0��,0

= ���
0 + ���, for all � �24�

and


 = �0, �25�

where

��� = �
�

�V���� + V�����n� − V0000N0��,0 �26�

is the diagonal matrix element of the Hartree-Fock self-
energy.

The problem is not fully solved because we do not have
expressions for the wave functions that determine the matrix
elements V��	�. To find these, we minimize the free energy
with respect to the single-particle wave functions, keeping in
mind that they must form a complete orthonormal set �11�.
This constraint may be enforced if we write the variation in
the form

��� = �
	

��	�	, or �a�
† = �

	

��	a	
† , �27�

where ���=−���
* . The resulting variation of the free energy

�var may be written

��var = �

��

��
	�H,a

† a��
 . �28�

The proof of this result is given in Appendix A, and is valid
whether or not the system is Bose condensed. The expecta-
tion value is calculated with respect to the constrained en-
semble. Now substituting Eq. �3� into Eq. �28�, one gets
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��var = �

��

��
���

0 + �

	

V̄�		
n	 − V���
n���,0�n�

+ �

��

�
�
* ���


0 + �
	

V̄�		
n	 − V�


n
�
,0�n
.

�29�

The free energy should be stationary with respect to varia-
tions in �,

��var

���


=
��var

��
�
* = 0, �30�

which results in the equation

��

0 + �

	

V̄�		
n	 − N0�V�


�
,0 + V���
��,0� = 0. �31�

Equation �31� suggests that the self-energy matrix should be
defined as follows �11�:

��
 = �
	

V̄�		
n	 − N0�V�


�
,0 + V���
��,0�

+ N0V0000��,0�
,0, �32�

which we note is consistent with our earlier definition of the
diagonal self-energy matrix elements. In real space this may
be written

��r�1,r�2� = �
�


��
���r�1��

* �r�2�

= ��r�1 − r�2� � dr�3V�r�2 − r�3��r�3,r�3�

+ V�r�1 − r�2��r�1,r�2�

− N0� dr�3W0�r�3,r�3��V�r�1 − r�3�

+ V�r�2 − r�3��W0�r�1,r�2� + N0V0000W0�r�1,r�2�
�33�

where �r�1 ,r�2� is

�r�1,r�2� = �
�

n����r�1���
*�r�2� , �34�

and W��r�1 ,r�2� is defined

W��r�1,r�2� = ���r�1���
*�r�2� . �35�

With these definitions, and using the completeness of the
basis, Eq. �31� is equivalent to the Hartree-Fock equation

�−
�2

2m
+ U�r������r�� +� dr����r�,r������r��� = �����r��

�36�

with

�� = ���
0 + �

�

V̄����n� − N0V0000��,0. �37�

The form of the self-energy in Eq. �33�, as most clearly
expressed in Eq. �32�, has an interesting consequence: the

self-energy for the bosons in the condensate is different than
that of higher energy states. For the case of a uniform, infi-
nite system this means there is a gap between the single-
particle energy of the condensate and those of the excited
states. This property of Bose condensates is well-known
�16�, and finding an appropriate way to deal with it is one of
the major challenges in developing approximations for the
excitation spectrum of a Bose-Einstein condensate �BEC�
�5�. For the case of a uniform infinite system, this gap is
present in the single-particle spectrum in spite of the ex-
pected gapless collective mode spectrum. In order to deal
with this, it is helpful to develop different Green’s functions
which capture one or the other portion of the excitation spec-
trum, as we now proceed to do.

B. Depletion Green’s function and the TDHFA

In formulating a TDHFA, it is useful to define Green’s
functions in imaginary time and consider self-consistent ap-
proximations to their equations of motion �10�. In the fer-
mion case, poles of the Green’s function in the absence of a
time-dependent potential gives the spectrum of number-
changing excitations, while the response of these Green’s
functions to time-dependent potentials give collective excita-
tions. This allows one to conveniently separate out these sec-
tors of the energy spectrum. In a Bose condensed state, these
sectors become entangled in the standard Green’s function
because one may add a particle to the condensate and then
excite a collective mode, yielding poles at collective mode
frequencies. Disentangling the single-particle spectrum from
the collective mode spectrum in the Green’s function then
becomes quite challenging.

As we now demonstrate, the TDHFA for Bose conden-
sates can be developed in a way that is analogous to what
works so well for fermion systems. To this we define a deple-
tion Green’s function, incorporating all the information about
the single-particle states other than that of the condensate.
Within the static Hartree-Fock approximation this has the
form

G̃�r�1,r�2;i�n� = �
��0

���r�1���
*�r�2�

i�n − �� + 

. �38�

Writing this Green’s function in imaginary time,

G̃�r1�1 ,r2�2�= 1
��ne−i�n��1−�2�G̃�r1 ,r2 ; i�n� one may easily

show that it satisfies the equation of motion

�−
�

��1
− H0�r�1��G̃�r�1�1,r�2�2� −� dr���r�1,r��G̃�r��1,r�2�2�

= ���1 − �2����r�1 − r�2� − �0�r�1��0
*�r�2�� . �39�

By excluding the condensate state from the depletion
Green’s function, we avoid the process that leads to poles at
the collective mode frequencies. The lowest energy poles
then reflect the single-particle spectrum.

To compute collective modes of the system, it is con-
venient to look at Green’s functions in the presence of a
time-dependent potential �10�. The natural generalization of
Eq. �39� to this situation is

C.-H. ZHANG AND H. A. FERTIG PHYSICAL REVIEW A 74, 023613 �2006�

023613-4



�−
�

��1
− H0�r�1� − �U�r�1,�1��G̃�r�1�1,r�2�2� −� dr�� d���r�1�1,r���G̃�r��,r�2�2� = ���1 − �2����r�1 − r�2� − �0�r�1,�1��0

*�r�2,�2�� ,

�40�

where �U is a time-dependent potential which we will ultimately treat perturbatively. Note that in writing down this equation,
the self-energy Eq. �33� now has time dependence, and is explicitly given by

��r�1�1,r�2�2;�U� = ���1 − �2����r�1 − r�2� � dr�3V�r�2 − r�3��r�3�1,r�3�1;�U� + V�r�1 − r�2��r�1�1,r�2�1;�U��
− ���1 − �2�N0� dr�3�V�r�1 − r�3� + V�r�2 − r�3��W0�r�3�1,r�3�1;�U� − V0000�W0�r�1�1,r�2�1;�U� . �41�

The time dependence enters through the wave functions in
the quantities  and W� �Eqs. �34� and �35��, and we have
noted that these quantities are now functionals of �U which
is ultimately responsible for the time dependence.

It is useful to note at this point that we have made a
crucial assumption, which can be understood as the essential
underlying approximation of the TDHFA: we allow only the
wave functions to change with time, while the occupations
n� remain stationary and equal to their values for �U=0.
This can be shown �1� to be equivalent to an assumption that
the entropy of the system remains unchanged in the presence
of �U. We note, however, that this is not equivalent to the
statement that the system does not absorb energy from a
time-dependent potential, because the �time-averaged� ener-
gies of the single-particle states are generally increased by
the perturbation.

Noting that Eq. �34� may be recast in the form

�r�1�1,r�2�2� = �G̃�r�2,�1
+,r�1,�1� + N0W0�r�1�1,r�2�1�����1 − �2� ,

�42�

with W0�r�1�1 ,r�2�1�=�0�r�1�1��0
*�r�2�2�, we see that Eqs. �33�,

�40�, and �42� nearly form a closed set of equations. We have
left to determine the time dependence of �0. An important
aspect of the problem is to assure that our TDHFA obeys
particle conservation, a feature that is often difficult to build
into collective mode calculations for Bose condensates �5�.
This is due to the fact that the condensate and depletion
particles must be treated in different ways, so that often the
total density and total current do not obey the continuity
equation in their response to a time-dependent potential. In
the present case, by contrast, we are guaranteed that the con-
tinuity equation will be obeyed because the condensate wave
function is controlled by the same effective Hamiltonian as
the excited states, via Eq. �40�. Thus we take

�−
�

��1
− H0�r�1� − �U�r�1,�1���0�r�1�1�

−� dr�� d���r�1�1,r����0�r��� = 0. �43�

With this equation for �0, it is easy to verify that the overlaps

�dr�0
*�r��G̃�r� ,r���� and �dr�G̃�r� ,r�����0�r���� vanish, so

that the depletion Green’s function involves no change in the
number of condensate particles even in the presence of the
time-dependent potential. It is the possibility of changing this
and simultaneously creating a collective excitation that al-
lows the collective mode spectrum to appear in the standard
Green’s function. Thus by working with the depletion
Green’s function we avoid the entangling of particle-
conserving excitations and single-particle excited states that
characterize the approaches based on broken gauge symme-
try.

In principle these equations may be solved self-
consistently to develop a mean-field approximation for this
many-body system in a time-dependent potential. In practice
this is a formidable task, so one instead focuses on the linear

response of G̃ and �0 to small perturbations �U. These may
be used to construct, for example, the density response func-
tion, whose poles give the collective modes of the system
�10�.

III. LINEAR RESPONSE

A. General formulation

We begin by expanding Eq. �40� for small �U, retaining
only terms that are linear in this quantity. This leads to the
equation

�U�r�1�1�W̄0�r�1,r�2����1 − �2�

= � �

��2
− ĤHF�r�2�����1 − �2��W0�r�1,r�2;�1�

+ �−
�

��1
− ĤHF�r�1��� �

��2
− ĤHF�r�2���G̃�r�1,�1;r�2,�2�

−� dr�3���r�1�1;r�2�2�W̄0�r�3,r�2����1 − �2� , �44�

where W̄0�r�1 ,r�2�=��r�1−r�2�−W0�r�1 ,r�2�, and �W0�r�1 ,r�2 ;��
=��0�r�1 ,���0

*�r�2�+�0�r�1���0
*�r�2 ,��. The operator ĤHF�r�� has

the meaning, for example,
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ĤHF�r�2��W0�r�1,r�2;�1� = H0�r�2��W0�r�1,r�2;�1�

+� dr���r�2,r���W0�r�1,r�;�1�

with � given by Eq. �33�. The variation of the self-energy,
��, comes from the fact that the wave functions �� are func-
tionals of �U; we will provide an explicit expression for the
specific case of a contact potential below. Before proceeding
with this, we demonstrate that the ideas developed above
may be used to compute an important quantity, the density
response function.

B. Density response function

An alternative procedure for avoiding the singularity in
the standard imaginary time Green’s function is to work di-
rectly with the wave functions and the density matrix

�r�1,r�2,�;�U� = �
�

n����r�1,����
*�r�2,�� ,

which is a generalization of Eq. �34�. In this context it is
convenient to work with real rather than imaginary time. The
equation of motion for a real time density matrix
�r�1 ,r�2 , t ;�U� can be easily obtained from the time-
dependent Hartree-Fock equations for the wave functions,

i
�

�t1
���r�1t1� = �−

�1
2

2m
+ U�r�1� + �U�r�1t1�����r�1t1�

+� dr�2dt2��r�1t1,r�2t2;�U����r�2t2� , �45�

with the result

0 = �i
�

�t
+ � �1

2

2m
−

�2
2

2m
� − U�r�1t� + U�r�2t���r�1,r�2,t;�U�

−� dr�3���r�1t,r�3t;�U��r�3,r�2,t;�U�

− �r�1,r�3,t;�U���r�3t,r�2t;�U�� . �46�

In writing this equation we have analytically continued the

self-energy to real time, which in practice simply involves
replacing �→ t in all the arguments of Eq. �41�.

Expanding �r�1 ,r�2 , t ;�U�, ��r�1t ,r�2t ;�U�, and
W0�r�1t ,r�2t ;�U� around their static HF values and retaining
only terms that are first order in �U�r�t�, one obtains a linear-
ized equation for �,

��U�r�1t� − �U�r�2t���r�1,r�2�

= �i
�

�t
− ĤHF�r�1� + ĤHF�r�2����r�1t,r�2t+;U�

−� dr�3����r�1t,r�3t;�U��r�3,r�2�

− �r�1,r�3����r�3t,r�2t;�U�� . �47�

A density matrix response function �10� may be defined as
follows:

�R�r�1r�3,r�2r�3,t − t3� = ��t − t3�� ��r�1,r�2,t;�U�
�U�r�3t3�

�
�U=0

,

�48�

with the more standard density-density response function
then given by �R�r�1r�3 ,r�1r�3 , t− t3�. One can rewrite Eq. �47�
as follows:

�i
�

�t
− ĤHF�r�1� + ĤHF�r�2���R�r�1r�4,r�2r�4,t − t4�

= ���r�1 − r�4� − ��r�2 − r�4����t − t4��r�1,r�2�

+� dr�3��R�r�1r�4,r�3r�4,t − t4��r�3,r�2�

− �r�1,r�3��R�r�3r�4,r�2,r�4,t − t4�� , �49�

where

�R�r�1r�4,r�2r�4,t − t4� = ��t − t4�� ���r�1t,r�2t,�U�
�U�r�4t4�

�
�U=0

= ��r�1 − r�2� � dr�3V�r�2 − r�3��R�r�3r�4,r�3r�4,t − t4� + V�r�1 − r�2��R�r�1r�4,r�2r�4,t − t4�

− N0� dr�3�V�r�1 − r�3� + V�r�2 − r�3��� �W0�r�3t,r�3t;�U�
�U�r�4t4�

�
�U=0

W0�r�1,r�2�

− N0� dr�3�V�r�1 − r�3� + V�r�2 − r�3��W0�r�3,r�3� − V0000�� �W0�r�1t,r�2t;�U�
�U�r�4t4�

�
�U=0

+ 2N0� dr�3� dr�5V�r�3 − r�5�� �W0�r�3t,r�3t;�U�
�U�r�4t4�

�
�U=0

W0�r�5,r�5�W0�r�1,r�2� . �50�
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The functional derivative of W0 with respect to �U�r�t� re-
quires one to work directly with the wave functions. This is
discussed in detail in Appendix B, with the result �Eq. �B10��

� �W0�r�1t1,r�1�t1;�U�
�U�r�2t2�

�
�U=0

= − �
��


� d�

2�

e−i��t1−t2�

� + �� − �0
��0���
 + �0�,�


R ����

���
*�r�2��
�r�2��0�r�1���

*�r�1��

+ �
��


� d�

2�

e−i��t1−t2�

� + �0 − ��

��0
��� + ��0,�

R ����

���
*�r�2��
�r�2����r�1��0

*�r�1�� . �51�

To make further progress, it is convenient to expand the
functions �R and �R in terms of the static HF eigenstates ��

as follows:

�R�r�1r�3,r�2r�3,t − t3�

= �
��
�


�
−�

� d�

2�
���,�
���e−i��t−t3���

*�r�2����r�1��

* �r�3����r�3� ,

�R�r�1r�3;r�2r�3,t1 − t3�

= �
��
�


�
−�

� d�

2�
��

*�r�2����r�1���
*�r�3��
�r�3����,�


R ���e−i��t1−t3�.

�52�

Substituting these expansions into Eqs. �49�–�51�, one ob-
tains

�� + �
 − �����
,��
R ��� = �n
 − n�������
� + ��
,��

R ���� ,

�53�

and

��
,����� = �
�1
1

�V�
1�1
 + V�
1
�1
���1
1,��

R ��� − �
�1
1

��10�V�
1
�1
��1
 + V�
1�1
��1����1
1,��

R ��� − �
�1
1

�
10�V�
1�1
�
1


+ V�
1
�1
�
1����1
1,��

R ��� − �
�1
1

���10 + �
10����1�V
100
 + �
1
V�00�1
���1
1,��

R ��� + V0000���0 − �
0���
,��
R ��� .

�54�

Using Eq. �54� in Eq. �53� to eliminate �, one ultimately may write what amounts to a matrix equation for ��
,��
R ���,

�� + �
 − �����
,��
R ��� = �n
 − n�������
 + �n
 − n�� �

�1
1

�V�
1�1
 + V�
1
�1
���1
1,��

R ���

− �n
 − n�� �
�1
1

�V�
1�1
���1,0��,�1
+ �
1,0�
,
1� + V�
1
�1

���,0 + �
,0����1,� + �
1,
����1
1,��
R ��� .

�55�

Interestingly, the first line of this equation has the same form
as what is obtained from the TDHFA using the standard
grand-canonical ensemble, although the energies and occu-
pations are different because of the nonlocal terms in the
self-energy that arise from using the constrained grand-
canonical ensemble. The terms in the second line also come
from these nonlocal terms. This equation for the density re-
sponse function provides a natural way to describe the cou-
pling between the condensate and normal components
through the matrix indices, which may refer to the conden-
sate state or to the depletion states. We will illustrate this
explicitly when we solve Eq. �55� for a homogenous system
below.

Finally, it is useful to note that Eq. �55� can written in the
form of a Bethe-Salpeter equation

��
,����� = ��
,��
0 ��� + �

���

��
,�
0 ���K�,��������,����� ,

�56�

where ��
,��
0 ��� is defined

��
,��
0 ��� =

n
 − n�

� + i� + �
 − ��

�����
, �57�

and the kernel K,

K�,����� = V����1 − ��0�� − ��0���� + V���

��1 − ��0 + ��0���� + ����� �58�

which is independent of the frequency.
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Equation �55� is valid for a dilute Bose gas with any
shape of static external potential U�r�� and a general two-
body interaction potential V�r�1−r�2�. In general it must be
solved numerically. In the next section, we will show that it
can be solved analytically for a uniform, homogeneous sys-
tem of bosons interacting via a contact two-body interaction.

IV. APPLICATION TO A HOMOGENOUS SYSTEM

In this section, we apply the above results to discuss the
single-particle and collective excitations of a homogeneous
system with a contact two-body interaction, V�r�1−r�2�
=g��r�1−r�2�. This is a common and quantitatively accurate
approximation for dilute Bose gases in many situations. We
begin by reviewing the solutions of the static Hartree-Fock
equations for this case �4�.

A. Static Hartree-Fock for a Bose-Einstein condensate

For a uniform homogeneous system �U�r��=0�, the
Hartree-Fock Hamiltonian is diagonalized by plane waves,
�k��r��= 1

��
eik�·r�, with � the volume of the system, and the

single-particle energies are easily shown to be

�k� = = �k�
0 + 2g − g0�k�,0 �59�

where �k�
0= �2k�2

2m , =N /�, and 0=N0 /�. Below the critical
temperature, the chemical potential is given by the lowest
eigenvalue


 = �0 = g�2 − 0� . �60�

Note that there is a gap in the single-particle spectrum �
=g0 with respect to the chemical potential for a Bose-
condensed system. As discussed in the Introduction, if the
grand-canonical ensemble is used, there is no such gap and
the corresponding single-particle energy is �k� =�k�

0+2g.
However, the absence of the gap is an artifact of strong num-
ber fluctuations in the condensed state, which are more prop-
erly controlled by the constrained grand-canonical ensemble.

The gapped structure of the single-particle spectrum may
be probed in principle via a tunneling experiment. One inter-
esting possible approach involves a “single-atom pipette”
that has recently been proposed �17�, in which bosons are
loaded into a strongly localized potential. Because of the
potential well, there can be a considerable gap for excitations
within the pipette, and at low temperatures all the atoms will
be at the same energy. By bringing the pipette sufficiently
close to the bulk BEC for a fixed time, atoms may tunnel out
of the pipette into the bulk BEC, and a measurement of the
number of atoms remaining in the pipette after this process
allows one to infer the tunneling rate. For a relatively deep
pipette potential, one expects the atoms to tunnel only into
the condensate state of the BEC. As the energy is raised,
however, there should be a sharp threshold energy, set by the
gap, above which atoms may also tunnel into the excited
states. This will show up as a nonanalytic contribution to the
tunneling rate reflecting the density of depletion states in the
BEC. For a bulk, three-dimensional BEC, this would be pro-
portional to �E−Eth�1/2, with E the energy of the bosons in

the pipette, and Eth set by the gap energy. We note that the
exponent might be renormalized by shakeup effects �18�, but
we expect the nonanalytic behavior to be robust and to re-
flect the gap in the single-article spectrum.

The critical temperature Tc is determined by taking the
limit 0→0, so that the number of particles depleted from
the condensate tends to the total number of particles N. This
leads to the condition

N =
V

�2��3 � d3k�
1

e�c�
k�
0

− 1
, �61�

which gives �4�

kBTc =
4�

2m
2/3� 1

g3/2�1��
2/3

, �62�

where

g	�x� = �
n=1

�
xn

n	 . �63�

The condensate density 0 below Tc is found by requiring
depletion of the condensate to be equal to the thermal occu-
pation of the excited states �4�,

1 −
0


=

1

�2��3
� dk�

1

e���
k�
0
+g0� − 1

=
1

�T�
3g3/2�z� , �64�

where z=e−�g0, and

�T� = �2��2�

m
�1/2

1/3 = �T1/3 �65�

is the product of the thermal wavelength and the inverse
average distance between particles. We note that although the
Hartree-Fock approximation yields precisely the same Tc as
for a noninteracting system, the phase transition into the con-
densed state is first order rather than continuous. This can be
seen in the behavior of the condensation fraction as a func-
tion of the temperature, as illustrated in Fig. 1.

From Eq. �64� and Fig. 1, we can see that in the HFA, the
repulsive interaction enhances the condensation relative to
the noninteracting case �16�.

FIG. 1. �Color online� Condensation fraction as a function of the
temperature at three dilute parameters.
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B. Collective modes from the depletion Green’s function

We would like to solve Eq. �44� for the case at hand; in
order to do this we need to specify ��. For contact interac-
tions in the homogeneous system, this is easily evaluated,
with the result

���r�1,�1;r�2,�2� = 2g��̃�r�1,�1� + �0�r�1,�1����r�1 − r�2�

+ g��w�r�1,r�2;�1�0�r�1,r�2�

−
1

�
�0�r�1,r�2;�1������1 − �2� . �66�

In this equation, �̃�r�1 ,�1�=�G̃�r�1�1 ,r�1�1
+� is the variation of

the depleted particle density, �̃0�r�1 ,�1�=N0�W0�r�1 ,r�1 ,�1� is
the variation of the condensate density, and �w�r�1 ,r�2 ;�1�=
−���0�r�1�+��0

*�r�1�+�0�r�2�+��0
*�r�2�� /��. As in the case of

the density response function, we can make progress by ex-
panding the various quantities in terms of the unperturbed

single particle states. Thus we define �G̃k�1k�2
�i�1 , i�2� via

�G̃�r�1�1,r�2�2�

=
1

�2 �
i�1,i�2

e−i�1�1+i�2�2
1

�
�

k�1,k�2

eik�1·r�1−ik�2·r�2�G̃k�1,k�2
�i�1,i�2� .

�67�

It is useful to notice that the Fourier transform of the deple-
tion density, �̃�k� , i�n�=�0

�d��dr�eik�·r�+i�n��̃�r� ,��, satisfies

�̃�k�,i�n� =
1

��
�

i�n�,k��

�G̃k�+k��,k���i�n + i�n�,i�n�� . �68�

Using Eq. �67�, Eq. �44� may be recast in a particularly
simple form. For k�1 ,k�2�0, we find

��k�1
− i�1���k�2

− i�2��G̃k�1,k�2
�i�1,i�2�

+
2g

��
�

k��,i��

�G̃k��+�k�,k���i�� + i��,i��� + 2g�0��k�,i���

= − �U��k�,i��� , �69�

where ��=�1−�2, �k� =k�1−k�2, and

�0��k�,i��n� =
1

�
�

0

�

d�� dr�ei�k�·r�+i��n�

����0�r�,�� + ��0
*�r�,���

�U��k�,i��n� =
1

�
�

0

�

d�� dr�ei�k�·r�+i��n��U�r�,�� .

It is clear that in Eq. �69� we would like to write k�1=k�2

+�k�, �1=��+�2, divide by the equation by ��k�1
− i�1���k�2

− i�2� and sum with respect to k�1 and �1. However, there is
a caveat: in doing this our indices run over k1=0 and k2=0,
which introduces further terms in Eq. �69�. It is not difficult

to show that these terms vanish in the thermodynamic limit
��→ � �, which is the case of interest to us. Performing the
above steps, Eq. �69� becomes a simple linear equation,

� 1

P̃��k�,i���
− 2g��̃��k�,i��� − 2g�0��k�,i���

= �U��k�,i��� , �70�

where P̃�q� , i�n�= 1
��k�

��nB��̃k�+q��−nB��̃k��� / �i�n+ �̃k�+q� − �̃k��, �̃k�

=�k� −
, nB���=1/ �e��−1� is the Bose occupation factor, and
the prime on the sum indicates that k�, k� +q� =0 should not be
included.

Since the problem involves two density disturbances, the
depletion density �̃ and the condensate density �0, we
need a second equation. This can be obtained directly from
the ground-state wave function disturbance, as described in
Appendix B, since �0�r� ,��=

N0
��

���0�r� ,��+��0
*�r� ,���. Using

the method of Appendix B, one may easily show for imagi-
nary time,

��0�r�,i�n� =
1

�3/2�
k�

���U�k�,i�n� + ���k�,i�n�
i�n − �̃k�

�eik�·r�, �71�

where the prime on the sum indicates k� =0 should not be
included, and

���k�,i�n� =� dr�1dr�2� d�1d�2ei�n�1+ik�·r�1���r�1�1,r�2�2� . �72�

Substituting Eq. �66� into Eq. �71�, one obtains

��0�k�,i�n� =
1

i�n − �̃k�
� 1

��
�U�k�,i�n� +

2g
��

�̃�k�,i�n�

+ g0��0
*�k�,i�n�� , �73�

where ��0�k� , i�n�=�dr��d�eik�·r���0�r� ,�� and ��0
*�k� , i�n�

=�dr��d�eik�·r���0
*�r� ,��. Similarly, one finds

��0
*�k�,i�n� =

1

− i�n − �̃k�
� 1

��
�U�k�,i�n� +

2g
��

�̃�k�,i�n�

+ g0��0�k�,i�n�� . �74�

Equations �73� and �74� may be substituted into the defini-
tion of �0 to obtain

� �i�n�2

�̃k� − g0

− �̃k� − g0��0�k�,i�n� − 4g0�̃�k�,i�n�

= 2g0�U�k�,i�n� , �75�

providing the second equation needed to compute the density
disturbance.

Equations �70� and �75� may be combined into a single
matrix equation,
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�
1

P̃�q� ,i�n�
− 2g − 2g

− 2g
1

20
� �i�n�2

�̃q� − g0

− ��̃q + g0�� �
�� �̃�q� ,i�n�

�0�q� ,i�n�
� = �1

1
��U�q� ,i�n� . �76�

Collective modes of the system propagate when �̃, �0�0
even if �U=0. This is only possible if the matrix on the left
hand side of Eq. �76� has vanishing determinant,

� 1

P̃�q� ,i�n�
− 2g�� �i�n�2

�̃q� − g0

− ��̃q� + g0�� − 8g20 = 0. �77�

Upon analytic continuation �i�n→�+ i��, Eq. �77� supports
a linearly dispersing gapless mode �zero sound� for any 0
�0, as expected for an infinite uniform superfluid. This is a
nontrivial check that our formalism obtains physically sen-
sible results. Before analyzing this in further detail, we dem-
onstrate that the same result may be obtained directly from
the linear response formalism. While somewhat more com-
plex to carry through, this latter approach allows us to look
at very general response functions, and so yields more infor-
mation than the density responses above.

C. Density-density response function and collective excitations

Our starting point for this analysis is Eq. �55�. For a ho-
mogenous system, �R vanishes unless the indices are such
that momentum conservation is respected. Thus we may set
�=k�1−q� /2, 
=k�1+q� /2, �=k�2−q� /2, and �=k�2+q� /2. Denot-
ing

�k�1k�2

R �q� ;�� = �k�1−�q�/2�k�1+q�/2,k�2−�q�/2�k�2+q�/2
R ��� , �78�

one obtains

�� + �k�1+q�/2 − �k�1−q�/2��k�1k�2

R �q� ;��

= �nk�1+q�/2 − nk�1−q�/2��k�1k�2
+ �nk�1+q�/2 − nk�1−1/2q��

�
2g

�
�
k�3

�k�3k�2

R �q� ;�� − g0��k�1,−�q�/2� − �k�1,�q�/2��

����q�/2�k�2

R �q� ;�� + �−�q�/2�k�2

R �q� ;���

− g0��k�1,−q�/2 − �k�1,q�/2��k�1k�2

R �q� ;�� . �79�

Bringing the last term to the left side of the equation has the
interesting effect of canceling the gap in the single-particle
spectrum, since

�k�1+q�/2 − �k�1− q�
2

+ g0��k�1,−q�/2 − �k�1,q�/2� = �k�1+�q�/2�
0 − �k�1−�q�/2�

0 ,

�80�

where �k�
0= �2k�2

2m is the free single-particle energy. This cancel-
lation is only possible because our linear response equation
was generated in a way that is consistent with the self-energy
used in the static Hartree-Fock analysis �10�.

Using Eq. �79�, one can obtain

���q�/2�k�2

R �q� ;�� + �−�q�/2�k�2

R �q� ;���

=
�2 − ��q�

0�2

�2 − ��q�
0�2 + 2g0�q�

0�N0 − nq�

� − �q�
0 �k�2,−q�/2 −

N0 − nq�

� + �q�
0 �k�2,q�/2�

+
2�N0 − nq���q�

0

�2 − ��q�
0�2 + 2g0�q�

0

2g

�
�
k�3

�k�3k�2

R �q� ;�� . �81�

Substituting this result back into Eq. �79� leads to

�k�1k�2

R �q� ;�� =
nk�1+q�/2 − nk�1−q�/2

� + �k�1+q�/2
0 − �k�1−q�/2

0 �k�1k�2
−

g

�

N0�k�1,−q�/2 − N0�k�1,q�/2

� + �k�1+q�/2
0 − �k�1−q�/2

0

�2 − ��q�
0�2

�2 − ��q�
0�2 + 2g0�q�

0�N0 − nq�

� − �q�
0 �k�2,−q�/2 −

N0 − nq�

� + �q�
0 �k�2,q�/2�

+ � nk�1+q�/2 − nk�1−q�/2

� + �k�1+q�/2
0 − �k�1−q�/2

0 −
g

�

N0�k�1,−q�/2 − N0�k�1,q�/2

� + �k�1+q�/2
0 − �k�1−q�/2

0

2�N0 − nq���q�
0

�2 − ��q�
0�2 + 2g0�q�

0� 2g

�
�
k�3

�k�3k�2

R �q� ;�� . �82�

Now summing over k�1 and k�2, one gets

�nn
R �q� ;�� = P̃�q� ;�� +

20�q�
0

�2 − ��q�
0�2 + 2g0�q�

0 + 2g�P̃�q� ;��

+
20�q�

0

�2 − ��q�
0�2 + 2g0�q�

0��nn
R �q� ;�� . �83�

One finally may express �nn
R �q� ;�� in a symmetric form,

�nn
R �q� ;�� =

P̃�q� ;�� + Pc�q� ;��

1 − 2g�P̃�q� ;�� + Pc�q� ;���
, �84�

where we have denoted
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Pc�q� ;i�� =
20�q�

0

�2 − ��q�
0�2 + 2g0�q�

0 , �85�

which can be interpreted as the polarization function for the
condensate. The poles of �nn determine the collective modes,
and are given by solutions to

1 = 2g�P̃�q� ;�� + Pc�q� ;i��� . �86�

It is not difficult to show that this is identical to Eq. �77�.

D. Discussion

Several comments about the linear response results as ob-
tained from our TDHFA approach are in order. Firstly, at T

=0, P̃�q� ;��=0, and the density-density response function
becomes

�nn�q� ;�,T = 0� =
Pc�q� ;��

1 − 2gPc�q� ;��
, �87�

with the pole given by

�2�q� ,T = 0� = 2g�q�
0 + ��q�

0�2. �88�

This is exactly the same as that obtained by linearizing the
time-dependent GP equation.

This result, as in the Bogoliubov spectrum, evolves from
a soundlike �linear in q� form to a particlelike ��q2� with
increasing q. Nevertheless, this mode does not involve a
change in particle number for any value of q. The particlelike
spectrum arises at large q because of the admixture of a finite
momentum component into the condensate wave function,
whose energy is dominated by the kinetic rather than inter-
action energy at large q. In addition to the collective mode
spectrum, we expect a separate branch of single-particle ex-
citations which involve changing the total particle number of
the system, and also has a q2 dispersion at high momentum.

Secondly, we note that Eq. �86� yields a propagating gap-
less mode for any 0�0. This means our approach correctly
captures the superfluid mode of the system whenever it is
Bose-condensed. Thus in retaining the correct �gapped�
structure for the single-particle excitations, we see that the
gapless superfluid mode is not sacrificed. At T�Tc,

Pc�q� ;��=0, and writing P̃= P, the density-density response
function is

�nn�q� ;�� =
P�q� ;��

1 − 2gP�q� ;��
, �89�

with poles determined by

1 = 2gP�q� ;�� , �90�

which is the known result for the normal Bose gas �19�.
Thirdly, because of the structure of Eqs. �76� and �86�,

one might expect to find two collective modes, one in which
the condensate and depleted particle densities oscillate in
phase, and the other in which they are out of phase. These
would correspond to zero and second sound, respectively.
We find, however, that for attainable values of 
�T� and

0�T� within the HFA, the two solutions of Eq. �86� occur
with one at positive �2 and the other at a negative value; the
second sound mode is thus overdamped. This is similar to
the weak coupling limit �7�. However, unlike the weak cou-
pling limit, here the second sound is overdamped because of
the gap in the single-particle spectrum, which makes the
depletion particle density too small to support a propagating
second sound mode. The gap has another interesting effect
on the interaction between the condensate and depleted par-
ticles. This is illustrated in Fig. 2, which depicts the imagi-
nary part of the density response function, �nn�q ,�+ i�� for
fixed q as a function of �. Two features are prominently
visible: a peak �which becomes a delta function in the limit
q→0� representing the superfluid mode, and a zero in the
response that appears for q2 /2m�2��2g0. The width of
the superfluid mode arises because of the interaction of the
condensate with the depletion particles, and vanishes at low
temperature as e−�/kBT. Note we can obtain this temperature
dependence only because our choice of self-energy creates a
gap between the condensate and excited states, even though
we use a single Hamiltonian to describe them. The zero
arises when �2= � q2

2m
�� q2

2m −2��, and represents a frequency at
which �̃ in Eq. �76� vanishes. In this situation the conden-
sate precisely screens the perturbing potential �U for the
depletion particles. Since the depleted particles are unper-
turbed and the condensate cannot absorb energy away from
the superfluid frequency, no energy can be absorbed by the
system, leading to the zero. It is interesting to note that an
observation of this effect would allow one to measure the
energy gap of the system.

Finally, for small depletions ̃, the velocity of the zero
sound mode found from Eq. �86� may be shifted either up-
ward or downward, depending on the numerical value of the
gas parameter. This is most easily demonstrated by expand-

ing the equation for small ̃ and small P̃. The correction to
the sound velocity can then be shown to have the form �c0

= 1
4mc0

�g�0+8g2P̃0�, where c0 is the zero sound velocity at
zero temperature, �0 the change in the condensate from its

zero temperature value, and P̃0=limq→0P̃q��=c0q�. For

small values of , P̃0�0, and the mode velocity decreases
with temperature, as is commonly found in the Bogoliubov

approximation. By contrast, we find for larger values P̃0
�0, and for large enough , its value is sufficiently large to

FIG. 2. �Color online� Imaginary part of the density response for
different values of q as a function of � for a Bose condensate at
inverse temperature � �in units of the inverse critical temperature
�c� with density  and scattering length a�m /4��2g.
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render �c0�0. This means relatively dense superfluids may
have increasing zero sound velocity with temperature, as is
found in the random phase approximation and appears to be
consistent with data for 4He �20�. That the TDHFA can cap-
ture both these limiting behaviors demonstrates the utility of
the method.

V. CONCLUSION

In this work, we demonstrated that the TDHFA may be
developed in a way that does not break the gauge symmetry
of the Hamiltonian, thus allowing us to correctly obtain a
gapped single-particle spectrum, and yet correctly produces a
gapless superfluid mode in the collective response of an in-
finite uniform system. By developing both the depletion
Green’s function and response functions, we can examine the
single-particle and collective mode spectra separately. The
key to obtaining these features in a consistent way was to
retain the nonlocal terms in the self-energy �see Eqs. �33�
and �41��, which were required by the orthogonality of the
single-particle wave functions, and ultimately lead to a pre-
cise cancellation of the gap in the single-particle energies
when we calculate the density response function �Eq. �80��.

Finally, we point out that our equations for the infinite
uniform system �Eq. �76�� are formally similar to equations
for the density response obtained using ensembles in which
the gauge symmetry is broken �6�. This formal similarity
however does not generally occur; for example if we had
studied a uniform but finite size system �particles in a box�,
we would find further terms that vanish in the thermody-
namic limit, which do not appear in other approaches. Gen-
erally speaking, in computing collective modes of a Bose
condensate, the challenge is to find how the condensate den-
sity couples to the depleted particles in a way that is con-
serving �10�, and preserves the gapless mode expected for an
infinite system �5�. As discussed above, the TDHFA is guar-
anteed to be conserving as it is controlled by a single Hamil-
tonian �in contrast to many other methods�, and we have
demonstrated that it correctly produces the expected super-
fluid mode. Beyond the case we studied in detail in present-
ing our method here, the TDHFA can be used to study inho-
mogeneous and/or finite size systems, and may be very
naturally generalized to handle multicomponent Bose sys-
tems, rotating systems, and even boson-fermion mixtures.
Future studies will focus on these applications.
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APPENID A: PROOF OF EQ. (28)

The off diagonal matrix elements of � can be found by
varying the orthogonal basis ��. We assume that ��
 is a
Hartree-Fock permanent constructed from orthonormal
single-particle states ��, which can be expressed

��
 = �
j

�a�j

† �n� j

�n�j
!

�0
 , �A1�

where �0
 is a vacuum state. The variation of the single-
particle states may be written

��� = �
	

��	�	, or �a�
† = �

	

��	a	
† , �A2�

with the orthonormality of the basis �� implying that �11�

��� + ���
* = 0. �A3�

We can prove that the change of the permanent �A1� due to
the basis change �A2� can be generally expressed as follows:

���
 = �
��

���a�
†a���
 . �A4�

This can be shown by substituting Eq. �A2� into Eq. �A1�,

���
 = �
i,�

��i� �
j�i,�

�a�j

† �n� j

�n�j
!

�a�i

† �n�i
−1

n�i

�n�i
!
a�

† �0
 . �A5�

Now moving a�
† to the left side and noticing

n�i

�n�i
!
�a�i

† �n�i
−1 �0
=�n�i

�n�i
−1
=a�i

�n�i

, one obtains Eq.

�A4�.
The change of the free energy due to the basis change is

�� =
�i

� e−��Ei−
N��	��i�H��i
 + 	�i�H���
�

�i
� e−��Ei−
N�

, �A6�

where Ei is the unperturbed Hartree-Fock energy correspond-
ing to the �i. Now substituting Eq. �A4� into the above, one
obtains

�� = �

��

��


�i
e−��Ei−
N�	�i��H,a


† a����i


�i
e−��Ei−
�

= �

��

��
	�H,a

† a��
 , �A7�

which is the result of Eq. �28�.

APPENDIX B: PERTURBATION THEORY FOR WAVE
FUNCTIONS

In this appendix, we seek a formal perturbation solution
of the TDHF equation since we need a relation of the func-
tional derivative of W� with respect to �U.

If the time-dependent external field �U�r�t� is weak, we
can solve the time-dependent single-particle wave functions
���r�t� using time-dependent perturbation theory. In order to
do this, we expand the time-dependent single-particle wave
function ���r�t� in terms of the static HF basis ���r�� for times
t� t0→−� as follows:
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���r�t;�U� = �
�

C���t�e−i��t���r�� . �B1�

We seek a solution for C���t� up to the first order of �U�t�. Substituting this into Eq. �45�, after expanding the self-energy �
to first order of �U�r�t� and using Eq. �36�, one has

�
�

i
dC���t1�

dt1
e−i��t1���r�1� = �U�r�1t1��

�

C���t1�e−i��t1���r�1�

+ �
�

C���t1�e−i��t1� dr�2dt2dr�3�
−�

t1

dt3� ���r�1t1,r�2t2,�U�
�U�r�3t3�

�
�U=0

�U�r�3t3����r�2� . �B2�

We can rewrite Eq. �B2� as follows:

�
�

i
dC���t1�

dt1
e−i��t1���r�1� = �U�r�1t1��

�

C���t1�e−i��t1���r�1�

+ �
�

C���t1�e−i��t1� dr�2dr�3�
−�

�

dt3�R�r�1r�3,r�2r�3,t1 − t3��U�r�3t3����r�2� . �B3�

Multiplying both sides of Eq. �B3� by �	
*�r�1�, integrating

over r�1, and using the Fourier expansion

�U�r�t� =� d�

2�
�U�r�;��e−i�t, �B4�

one gets

i
dC���t1�

dt1
= �

	
� d�

2�
C�	�t1�e−i��+�	−���t1�	���U����	


+ �
�


��	,�

R ���	���U����

� . �B5�

Writing

C���t� = ��� + C��
�1��t� + O��U2� , �B6�

one finds to first order

i
dC��

�1��t1�
dt1

=� d�

2�
e−i��+��−���t1�	���U�����
 + �

�


���,�

R ���

�	���U����

� . �B7�

Integrating this equation and using the boundary condition

C��
�1��t → − � � = 0 �B8�

one gets

C��
�1��t� =� d�

2�

e−i��+��−���t

� + �� − ��
�	���U�����
 + �

�


���,�

R ���

�	���U����

� . �B9�

We finally arrive at the time-dependent Hartree-Fock single-
particle wave functions up to the first order of �U,

���r�t;�U� = e−i��t���r�� + �
�
� d�

2�

e−i�t

� + �� − ��
�	���U�����
 + �

�


���,�

R ���	���U����

����r��� ,

��
*�r�t;�U� = ei��t��

*�r�� + �
�
� d�

2�

ei�t

� + �� − ��
�	���U�����
* + �

�


���,�

R* ���	���U����

*���

*�r��� . �B10�

The second terms of these equations are respectively the variations ����r� , t� and ���
*�r� , t�.
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