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By means of analytical and numerical methods, we study how the residual three dimensionality affects
dynamics of solitons in an attractive Bose-Einstein condensate loaded into a cigar-shaped trap. Based on an
effective one-dimensional �1D� Gross-Pitaevskii equation that includes an additional quintic self-focusing
term, generated by the tight transverse confinement, we find a family of exact one-soliton solutions and
demonstrate stability of the entire family, despite the possibility of collapse in the 1D equation with the quintic
self-focusing nonlinearity. Simulating collisions between two solitons in the same setting, we find a critical
velocity, Vc, below which merger of identical in-phase solitons is observed. Dependence of Vc on the strength
of the transverse confinement and number of atoms in the solitons is predicted by means of the perturbation
theory and investigated in direct simulations. The simulations also demonstrate symmetry breaking in colli-
sions of identical solitons with a nonzero phase difference. This effect is qualitatively explained by means of
an analytical approximation.
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I. INTRODUCTION

It is well known that a trapped atomic Bose-Einstein con-
densate �BEC� with attractive interactions is stable if the
number of atoms in it is below a critical value, above which
collapse occurs �1�. Beneath the collapse threshold, the BEC
can form stable wave packets in a one-dimensional �1D�
“cigar-shaped” trap, which is tightly confined in two �trans-
verse� directions, and is unbound along the longitudinal axis.
In that case, the stability of bright solitons is provided by the
balance between the quantum pressure, alias matter-wave
�MW� dispersion, and mean-field attraction. A single MW
soliton �2� and trains of interacting solitons �3� have been
created in the cigar-shaped optical traps. However, while the
trapping geometry was nearly one-dimensional, the solitons
themselves were far from being 1D objects. In particular, in
Ref. �2�, a stable soliton was only possible if its longitudinal
size exceeded the transverse size by no more than 20% �note
that the situation was affected by an expulsive axial poten-
tial, unavoidable in the specific experimental setup�. Re-
cently, it was shown that the proximity of the soliton to being
a 3D object strongly affects its properties, such as the char-
acter of its motion �4� and interactions �5,6�. In particular, it
was demonstrated that a moving soliton immersed in a cloud
of thermal atoms is subjected to a temperature-dependent
friction force �4�. A collision between two solitons, which are
by themselves stable, in a confined geometry may readily
lead to collapse, if the total number of atoms in the soliton
pair exceeds the above-mentioned critical value, and the
phase difference between the solitons is �close to� zero �6�.
The significance of the effective dimensionality of MW soli-
tary pulses is further emphasized by the recent observation of
formation of a set of nearly-3D mutually repulsive MW soli-
tons �with a phase shift of � between them� as a result of
incomplete collapse in an attractive BEC with the number of
atoms several times larger than the critical value �5,7�.

In addition to being a profoundly important object of fun-
damental studies, MW solitary waves are also natural candi-
dates for applications, such as high-precision atom interfer-
ometry and quantum-information processing. Thus, a
thorough understanding of deviations of their behavior from
that of ideal 1D solitons is important in this respect too.

In this paper, we report results of theoretical investigation
of the shape of stationary MW solitons and binary collisions
between them in the quasi-1D regime, with the aim to iden-
tify manifestations of nonsolitonic behavior due to the re-
sidual multidimensionality. The effect of the tightly confined
transverse dimensions is taken into account through a pertur-
bative self-focusing quintic term added to the corresponding
one-dimensional Gross-Pitaevskii equation �GPE�, as per
Refs. �8,4�. In Sec. II, we introduce this extended GPE, find
a family of its exact one-soliton solutions, and demonstrate
stability of the entire family, despite the fact that collapse
occurs in the 1D equation with the quintic self-focusing
term. In Sec. III, we investigate soliton collisions within the
framework of this equation. Contrary to completely elastic
collisions between solitons in the cubic GPE �alias cubic
nonlinear Schrödinger equation, NLSE�, in the presence of
the quintic term colliding solitons with zero phase difference,
��=0, merge into a single pulse if their relative velocity is
smaller than a critical value, 2Vc. We find the dependence of
Vc on the strength of the transverse confinement and number
of atoms in the solitons. For moderate quintic nonlinearity,
good agreement with an analytic prediction derived from the
perturbation theory is found. With a stronger quintic term,
the numerical results deviate from the perturbation theory,
although not dramatically. Finally, we demonstrate dynami-
cal symmetry breaking between identical solitons colliding
with ���0 �in that case, the merger does not occur�, as a
function of the relative velocity. An explanation to the latter
effect is proposed. It is based on estimation of a symmetry-
breaking parameter, which is a mismatch between the ampli-
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tude center and phase center of the soliton pair with ��
�0 �exact definitions are given below�. Reasonably good
agreement between numerical results and the analytical ap-
proximation is observed. The paper is concluded by Sec. IV.

II. AN EFFECTIVE ONE-DIMENSIONAL
GROSS-PITAEVSKII EQUATION

AND EXACT SOLITON SOLUTIONS

A. Basic equations

We start with the standard GPE for a condensate tightly
confined in the transverse plane, with the radial coordinate r,
and unconfined in the axial direction, x,

i�
��

�t
= −

�2

2m
���

2 +
�2

�x2�� +
1

2
m�2r2� +

4��2a

m
���2� ,

�1�

where operator ��
2 acts in the transverse plane, � is the

frequency of the trapping potential in this plane, m is the
atomic mass, and a�0 is the scattering length. Transition to
the quasi-1D description is possible if the change of the
chemical potential due to the mean-field interaction is much
smaller than the level spacing in the transverse trapping po-
tential. We briefly recapitulate the corresponding derivation,
following, chiefly, Ref. �4�. In the quasi-1D limit, the factor-
ized ansatz, ��r ,x , t�=��x , t�	�r ,x , t� �9�, is used to adiabati-
cally separate fast transverse and slow longitudinal dynam-
ics, by neglecting derivatives of 	 with respect to the slow
variables, x and t. By substituting the ansatz into Eq. �1�, two
decoupled equations are obtained, within the framework of
the tight-transverse-confinement approximation,

i�
��

�t
= −

�2

2m

�2�

�x2 + 
̃� , �2�


̃	 = −
�2

2m
��

2 	 +
1

2
m�2r2	 +

4��2a

m
n�	�2	 , �3�

where the transverse chemical potential, 
̃, has to be found
from the ground-state solution of Eq. �3� as a function of the
1D density, n�x , t�����x , t��2. Physical solutions of Eq. �3�
exist only if −an�0.47 �10�, otherwise transverse collapse
occurs �11�. In the quasi-1D limit, corresponding to −an
�0.47, the transverse wave function, 	, is close to the
ground state of the 2D harmonic potential, and can be ex-
panded over the set of transverse eigenmodes, �m�r�:
	�r ,x�=�0�r�+�mCm�x��m�r�. Coefficients Cm are small and
can be calculated perturbatively. Accordingly, the transverse
chemical potential 
̃ can be expanded over powers of the
density by means of the perturbative theory, 
̃=��+g1Dn
−g2n2+ . . ., where

g1D = 2��a, g2 = 24�ln
4

3
���a2, �4�

as shown in Ref. �8� �the subscript “1D” implies that the
corresponding coefficient appertains to the standard 1D
model�. Substituting the expansion for 
̃ in Eq. �2�, one ar-

rives at an effective equation describing the soliton dynamics
in the quasi-1D limit,

i�
��

�t
= −

�2

2m

�2�

�x2 + g1D���2� − g2���4� , �5�

which is NLSE with the cubic-quintic �CQ� nonlinearity.
Other approaches to the derivation of the effective 1D

GPE were also proposed �12,14�. In particular, a more com-
plex equation with nonpolynomial �algebraic� nonlinearity
was derived performing the separation of the axial and trans-
verse wave functions by means of the variational approach in
Ref. �12�. Expanding the corresponding algebraic nonlinear-
ity up to the quintic term, one arrives at an equation similar
to Eq. �5�, but with a different numerical coefficient.

NLSEs with the CQ nonlinearity are well known as model
equations in nonlinear optics, starting with pioneer works
�16�. GPEs with the CQ nonlinearity were also used in order
to take into account three-body collisions in the BEC �17�.
However, in the previously considered settings, these equa-
tions were always considered with a combination of self-
focusing cubic and self-defocusing quintic terms. A drastic
difference in the present case is that the quintic term is self-
focusing �as seen from Eq. �4�, this conclusion does not de-
pend on the sign of scattering length a, i.e., on the self-
focusing or defocusing character of the cubic term; the same
conclusion follows from the expansion of the above-
mentioned nonpolynomial NLSE derived in Ref. �12��. The
use of the GPE with the “double-self-focusing” CQ nonlin-
earity, which is the case here, was tacitly assumed impos-
sible, as in this case the equation gives rise to collapse. Nev-
ertheless, we will show below that this equation generates
meaningful stable solutions. In fact, if the cubic nonlinearity
is self-focusing, i.e., the scattering length is negative �the
case considered throughout the present work�, the presence
of the collapse is a relevant qualitative feature of the effec-
tive GPE, as collapse takes place too in the full 3D equation,
from which Eq. �5� was derived �even if the weak collapse in
the full 3D GPE and strong collapse in the 1D CQ equation
bear essential differences�. As shown in Refs. �9,13,15�, the
collapse in the 3D equation may be avoided under the con-
straint of N�a� /a��0.627, where N is the number of atoms
in the condensate, and a�=	� / �m�� is the harmonic-
oscillator length corresponding to the transverse confine-
ment.

B. Soliton solutions

Below, we use Eq. �5� in the normalized form,

i
��

�t
= −

1

2

�2�

�x2 + g1D���2� − g2���4� , �6�

where g1D�0 and g2
0 are dimensionless interaction con-
stants. In fact, the absolute values of both of them may be
additionally scaled to be 1, but we find it more convenient to
keep these coefficients as free parameters.

A family of exact soliton solutions to Eq. �6� can be found
as an analytical continuation of the well-known solution of
the equation with the self-defocusing quintic term �16�. The
result is
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��x,t� = 2� 3

4g2
�1/4

e−i
t	 − 


	g2 − 4
 cosh�2	− 2
x� + g
,

�7�

g � −
1

2
	 3

g2
g1D, �8�

where 
 is the soliton’s chemical potential that may take any
value from 0�−
��. The squared amplitude of this soli-
ton, i.e., the maximum atomic density at its center, is

A2 =
1

2
	 3

g2
�	g2 − 4
 − g� , �9�

and the norm of the soliton, which measures the total number
of atoms, is

Nsol � 

−�

+�

���x��2dx =	 6

g2
tan−1� 2	− 


	g2 − 4
 + g
� .

�10�

The soliton’s norm and squared amplitude are shown, as
functions of the chemical potential, in Fig. 1.

It is worthwhile to note a drastic difference of this soliton
family from its counterpart in the model with the self-
defocusing quintic term, i.e., g2�0: in that case, the norm
takes all values, 0�Nsol��, while the chemical potential is
limited to a finite interval, 0�−
� �
�max�3g1D

2 / �16�g2��.
On the contrary, for the present solution family, Eq. �10�
demonstrates that the norm is limited to a finite interval,

0 � Nsol � Nmax =	 3

8g2
� , �11�

while −
 is not limited from above �as said above�. In fact,
Nmax in Eq. �11� is a collapse border of the soliton family.
Further, in the usual CQ model, with g2�0, the amplitude is

limited by a finite value, A2�3g1D/ �4g2�, while the width of
the soliton diverges �ln���
�max− �
��−1� at �
 � → �
�max. In
contrast to this, Eqs. �7� and �9� show that the amplitude of
the present soliton family diverges, A2�	−�3/g2�
, at 

→−�, and the width of the soliton shrinks in the same limit,
as 1 /	−
. This asymptotic behavior of the soliton solution
clearly suggests a transition to a collapsing solution at Nsol
→Nmax, see Eq. �11�.

Equation �10� shows that condition dN /d
�0 holds for
the entire soliton family �see also the upper panel in Fig. 1�,
hence the solitons satisfy the known Vakhitov-Kolokolov
�VK� stability criterion �18�. As this criterion is only a nec-
essary one, but not sufficient, the stability of the solitons was
tested in systematic direct simulations of Eq. �6�. Results
clearly suggest that all the solitons are indeed stable against
small perturbations �of course, a large perturbation may pro-
voke onset of the collapse�.

It is relevant to mention that the 1D GPE with the full
algebraic nonlinearity introduced in Ref. �12� gives rise to
two branches of �implicit� soliton solutions, one stable and
one unstable; the branches meet and disappear at the point of
transition to collapsing solutions. Equation �6� does not give
rise to the second branch, as the combination of the cubic
and quintic terms may be regarded as a truncated expansion
of the full algebraic nonlinearity from the above-mentioned
equation, and this truncation does not pick up the unstable
branch.

It may also be relevant to note that, starting the derivation
of the effective 1D equation from the 3D GPE with the posi-
tive scattering length �corresponding to self-repulsive BEC�,
one will arrive at Eq. �6� with g1D
0 �and again with g2

0�. The corresponding equation, featuring competition be-
tween the cubic self-defocusing and quintic self-focusing
terms, has a family of exact soliton solutions given by the
same expressions �7�–�10�, in which g is negative, as per Eq.
�8�. Despite the formal similarity, the latter soliton family is
completely different from the one presented above. In par-
ticular, in the limit of 
→0 the solution is not a usual broad
small-amplitude soliton, but rather an algebraic one,

�
=0�x� = � 3

g2
�1/4	 − g

1 + 2g2x2 . �12�

The most drastic difference of the soliton family with g1D

0 and g2
0 from the above one is that it features
dN /d

0, hence this entire family is unstable, according to
the VK criterion �algebraic solitons, such as one in Eq. �12�,
are known to be unstable for a different reason �19��. Besides
the fact that all the solitons in the model with the positive
scattering length are unstable, their physical meaning is
doubtful also because the quintic term, which appears as a
perturbative correction to the cubic one �8�, actually domi-
nates over it in these solutions.

III. SOLITON COLLISIONS

A. Merger of colliding solitons with ��=0

It is commonly known that collisions between solitons in
the one-dimensional NLSE, which is an integrable equation,

FIG. 1. The upper and lower panels display, respectively, the
family of exact soliton solutions �7�, with g1D=−1 and g2=3/4
�hence, g=1, see Eq. �8��, in terms of the dependences of the norm
and squared amplitude vs the chemical potential, as per Eqs. �10�
and �9�.
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are completely elastic. The force of interaction between the
solitons depends on the relative phase between them: with
��=0 and ��=�, they attract and repel each other, respec-
tively �20,21�. The quintic term breaks the integrability of
the equation, and is expected to make collisions inelastic. For
��=0, simulations reveal a critical collision velocity, below
which two identical solitons merge into a single one.

1. Analytical considerations

The merger may be explained by the fact that radiation
loss due to the inelastic collision becomes greater than the
initial kinetic energy of the soliton pair �21�. This explana-
tion can be implemented in an explicit form if the quintic
term is treated as a small perturbation. To this end, defining
��	�g1D��, we rewrite Eq. �6� in the following form:

i
��

�t
= −

1

2

�2�

�x2 − ���2� − ����4� , �13�

where ��g2 /g1D
2 . In the zero-order approximation ��=0�,

the traveling-soliton solution to Eq. �13� is

��x,t� = A sech�A�x − Vt��e−i�
t−Vx�, �14�

where A and V are its amplitude and velocity, and the fre-
quency �=V2 /2+
 is a sum of the kinetic energy and bind-
ing �potential� energy, 
=−A2 /2, per particle.

The use of the perturbation theory makes it possible to
obtain the following analytical result for the collision be-
tween solitons with equal amplitudes A, velocities ±V, and a
phase shift ��0 between them �21�: if the solitons are fast,
V2�A2, the energy loss generated by the emission of radia-
tion during the collision is

��E�rad = �2A2
�A5 + V5e−�V/A��1 cos���� + �2 sin������ ,

�15�

where ��1381,�1�2401, and �2�347. Note that the
phase-dependent terms are exponentially small. In the same
approximation, the collision-induced loss of the number of
atoms is

��N�rad = �2/V2���E�rad. �16�

To estimate a merger condition �threshold�, we assume
that the velocities ±V, which determine the collision-induced
losses as per Eqs. �15� and �16�, are actually acquired by
originally quiescent �or slowly moving� solitons due to their
mutual attraction �if �� is close to zero�. To this purpose, we
note that the effective potential of the interaction between far
separated identical solitons is, in the case of �=0,

Uint�X,��0� = − 8A3e−AX cos���0� �17�

�20�, and the effective mass of the soliton is Meff=2A. In this
approximation, the attraction accelerates the two in-phase
solitons to self-acquired velocities, ±Vself, that can be found
from the energy-balance equation, 2�MeffVself

2 /2�=8A3,
hence Vself=2A. Substituting this velocity in Eq. �15� shows
that the phase-dependent part is less than 10% of the phase-
independent one, and therefore we neglect it. Thus, the
collision-induced loss of the energy and number of atoms

�for both solitons� are predicted by the perturbation theory to
be

��E�rad = ��2A7, ��N�rad = ��/2��2A5, �18�

where � is the same numerical coefficient as in Eq. �15�.
The energy of a free soliton and its norm �number of

atoms�, in the �=0 limit, are

Esol = −
1

3
A3 +

1

2
MeffV

2, Nsol = 2A �19�

�the negative term in Esol is the binding energy�. First,
the norm loss, �N, taken from Eq. �18�, gives rise to
the collision-induced change of the soliton’s amplitude: �A
=−��N�rad /2=−�� /4��2A5. The corresponding change in the
binding �potential� energy of both solitons is positive,

�Ebind � ��− 2
3A3� = − 2A2�A =

�

2
�2A7. �20�

Finally, the energy balance predicts a change in the total
kinetic energy,

�Ekin = − ��E�rad − �Ebind = − �3�/2��2A7. �21�

The merger condition states that the loss of the kinetic
energy is equal to or exceeds the initial kinetic energy �21�.
With regard to the expression for the total kinetic energy of
both solitons which follows from Eq. �19�, Ekin=2AV2, this
condition means that the merger is expected if the initial
velocity of each soliton falls below a critical value,

V2 � Vc
2 =

3

4
��2A6 �

3�

256
�2Nsol

6 . �22�

The derivation of the merger threshold implies that the criti-
cal velocity is much smaller than the above-mentioned self-
acquired velocity, Vself=2A �then, the initial velocities of the
solitons may be disregarded in the above energy-balance
analysis, in comparison with Vself, as it was actually done�.
Expression �22� indeed satisfies condition Vc�Vself, as � is a
small parameter.

2. Numerical results

For simulations of soliton collisions in Eq. �6�, we chose
parameter values close to those in the real experiment �2�,
where 7Li atoms were used: a very small scattering length,
a=−0.06 nm, transverse oscillation frequency �=2�
�710 Hz, and the number of atoms Nsol=4000. However,
we did not include any external longitudinal potential, in
contrast to the expulsive potential that was present in the
experiment. Recall that the expulsive potential made the soli-
ton stability region very small �2�, and actually caused the
soliton to be very close to the 3D limit. The present simula-
tions do not include the external potential because we are
interested not in effects produced by such a potential, but
rather in small deviations from the one dimensionality. In
fact, a modification of the above-mentioned experimental
setup, with the aim to make the central segment of the cigar-
shaped trap free of any tangible axial potential, is quite
possible.
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To compare the analytical prediction for the critical veloc-
ity, given by Eq. �22�, to numerical results, it is necessary to
express perturbative parameter � in terms of the transverse
trapping frequency �. Undoing the above renormalizations,
one arrives at a conclusion that Eq. �22� implies a quadratic
dependence, Vc��2, within the framework of the perturba-
tion theory. This dependence is indeed observed in simula-
tions at relatively small �, as seen in Fig. 2. However, at
larger �, i.e., for stronger transverse confinement, the nu-
merical results feature a greater power in the Vc��� depen-
dence. In particular, the best fit to the last four numerical
points in Fig. 2 yields Vc��2.29±0.07, which demonstrates a
small but tangible deviation from the power law correspond-
ing to the perturbation limit.

We now turn to the dependence of the critical velocity on
the number of atoms, N. The analytical prediction, Eq. �22�,
clearly implies Vc�N3. In Fig. 3, this dependence is indeed
observed at smaller values of N �i.e., for weaker nonlinear-
ity�, where the perturbation limit should naturally be valid.
Perusal of numerical data shows that, in this range, the actual
collision-induced radiation loss is very small, and, as a re-
sult, the merger does not lead to complete fusion of the col-
liding solitons into a single pulse, but rather to formation of
a bound state of two solitons �“weak merger”�, as can be
seen in Fig. 4. Namely, after the first collision, the solitons
reemerge as two distinct wave packets which then collide
again many times. A similar nearly radiationless inelastic
collision, leading to the formation of a two-soliton loosely
bound state, was recently observed in simulations of a
weakly discrete cubic NLSE �22�.

A definite deviation from the Vc�Nsol
3 dependence is ob-

served in Fig. 3 for Nsol
4000, which shows a limitation of

the perturbative predictions. In this regime of strong nonlin-
earity, a smooth transition in the collision process occurs,
from the formation of the above-mentioned long-lived bound
state to direct �“strong”� merger of two solitons into a single
pulse, which is accompanied by a burst of radiation. The
conspicuous loss of matter with the radiation prevents the
emerging single pulse from having the number of atoms
above the collapse threshold, therefore the pulse does not
blow up. The transition is expressed in reduction of the life
time of the loosely bound state before the complete merger.
In Fig. 5, which represents the strongest nonlinearity in-
cluded in the present framework, the bound state features
only two oscillations.

For even stronger nonlinearities �which were also consid-
ered�, the power-law dependence of Vc on the number of

FIG. 2. The critical velocity for the merger of colliding solitons,
vc /v0 �as an experimentally relevant reference value, we take v0

=0.21 mm/s�, as a function of the strength of the transverse con-
finement, � /�0 �with �0=2��710 Hz, as in Ref. �2��. For rela-
tively weak confinement �smaller ��, dependence Vc��2 is ob-
served, as predicted by the perturbation theory �the solid line shows
the �2 power law as a guide to the eye�. The dashed line is the
power-law fit to the last four points of the numerical results, yield-
ing Vc��2.29±0.07.

FIG. 3. The critical velocity for the merger of two solitons as a
function of the number of atoms in each of the colliding solitons,
Nsol. At smaller Nsol, i.e., for weaker nonlinearity, the Vc�Nsol

3 de-
pendence is observed, as predicted by the perturbation theory, see
Eq. �22�. To say more accurately, the solid curve, which is the fit to
the first four numerical points, features a power law Vc�Nsol

2.9±0.2.
The dashed curve is the power-law fit to the last four points, show-
ing a different power dependence, Vc�Nsol

3.62±0.05.

FIG. 4. Density profiles as a function of time in a regime of
“weak” merger �Nsol=3500, v /v0=2�. After the first collision, the
two solitons reappear as two distinct wave pulses which then collide
again many times.
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atoms and transverse trapping frequency is observed in the
form of Nsol

4 and �3, respectively. However, in such an ex-
treme regime, the relevance of the quasi-1D model is ques-
tionable. In any case, these results convey a clear caveat to
soliton experiments, in which relative variations in the atom
number may be as large as �2: the strong power-law depen-
dence of the critical velocity on the number of atoms should
be taken into account, to avoid occasional merger of solitons.

B. Symmetry breaking in soliton collisions with ��Å0

We proceed to inelastic collisions of identical solitons
with the phase difference of 0����� /2. Numerical simu-
lations of Eq. �6� show a salient effect of symmetry breaking
in this case: while the solitons separate after the collision,
they emerge as two pulses with different amplitudes �then,
the velocities are also different, to comply with the momen-
tum conservation�, as shown in Fig. 6. It should be men-
tioned that a similar effect was observed in simulations of
collisions between identical solitons in some other noninte-
grable 1D models, chiefly in those describing transmission of
nonlinear optical pulses, within the framework of the
coupled-mode theory, in waveguides equipped with Bragg
gratings. In that context, the collision-induced symmetry
breaking was reported in basic single-core models �23�, and
in more sophisticated dual-core ones �24�. A similar effect

was also observed in collisions between moving solitons in
the discrete NLSE �25�.

In order to achieve qualitative understanding of the sym-
metry breaking, we resort to consideration of an ansatz based
on a formal linear superposition of two completely overlap-
ping identical solitons �7�, at some moment of time t= t0,
with velocities ±V and phases ±�1/2���. The ansatz yields
the following expression:

�ansatz�x,t� = 2ei��
�−�1/2�V2�t0

�	 �
�
	g2 + 4�
� cosh�2	2�
�x� + g

�cos�Vx + ��� . �23�

An essential peculiarity of this expression is that the central
points of the two last multipliers do not coincide: one is
found at x=0, while the other one at x=−�� /V. This simple
observation suggests a concept of the mismatch between the
amplitude center and phase center of the pair of colliding
identical solitons. The mismatch was considered as a cause
of breaking the symmetry between colliding solitons in the
above-mentioned model based on the discrete NLSE �25�.

To characterize the asymmetry of ansatz �23� qualita-
tively, we introduce its center-of-mass coordinate,

���� �



−�

+�

x��ansatz�x��2dx



−�

+�

��ansatz�x��2dx

=
sin�2���

	2�
�
� cosh����sinh���� − � sinh����cosh����

sinh������ sinh���� + � cos�2���sinh�����
,

�24�

with ��V /	2�
� and �� tan−1�2	�
� /g�. For the qualitative
understanding of the situation, we adopt a natural conjecture
that the strongest possible symmetry breaking is attained at a
value of the velocity �=�max, which corresponds to a maxi-
mum of ��� for given ��. For the weak quintic nonlinearity
��
��g2�, one has ��2	�
� /g, and Eq. �24� simplifies,

��V� �
sin�2���

	2�
�
sinh���� − �� cosh����

sinh�����sinh���� + �� cos�2����
.

�25�

Asymmetry parameter � is shown, as a function of V, in
Fig. 7 by the solid line for ��=� /10. It characterizes the
degree of the collision-induced symmetry breaking, and pre-
dicts a maximum at some nonzero velocity. Quite a similar
dependence is indeed produced by numerical simulations of
Eq. �6� for the same value of ��, as shown by dots in Fig. 7.
The dots display values of the amplitude ratio of the output
soliton pair, as found from the simulations. Actually, the
pulses emerging from the inelastic collisions are breathers
with time-dependent amplitudes. Therefore, we averaged the
amplitudes over long propagation distances after the
collision.

FIG. 5. The same as in Fig. 4, but in the regime of “strong
merger” �for Nsol=5000, v /v0=8�. A short-lived bound state
quickly merges into a single breatherlike pulse.

FIG. 6. Density profiles of solitons featuring the symmetry
breaking in the collision, for ��=� /10.
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Generally, the numerical data in Fig. 7 follow the pre-
dicted symmetry-breaking parameter. However, two notable
deviations are observed: a nonsmooth shape of the numerical
curve �local modulations near the maximum, which tend to
give rise to two extra local maxima, definitely exceed an
error of the numerical simulations�, and a weakly decaying
tail, which implies that the asymmetry generated by colli-
sions between fast solitons is essentially larger than predicted
by the above model. Note that the analytical model does not
include radiation loss. The latter may enhance the asymme-
try, as the loss itself is, plausibly, asymmetric too.

We note that Ref. �5�, in which collisions of nearly 3D
solitary waves were considered through simulations of the
full 3D GPE, showed very little symmetry breaking �“popu-
lation transfer”� between colliding solitons with the initial
phase difference of ��=� /10, less than 1%. However, our
results predict that the matter transfer �symmetry breaking�
would be conspicuous at specific values of the collision ve-
locities, which might not be included in the analysis reported
in Ref. �5�

For very small ��, we observed chaotic behavior in the
output of the collision, similar to what was reported in a
weakly discrete NLSE �22� �see also Ref. �26��. Very re-
cently, chaotic behavior was predicted for collisions of more

than two MW solitons, in the presence of a longitudinal para-
bolic trapping potential �27�. In our model, the collision be-
tween two solitons is sufficient to observe chaotic behavior,
which will be reported elsewhere.

IV. CONCLUSIONS

This work aims to understand how the tight confinement
in transverse directions affects the longitudinal dynamics of
matter-wave solitons in the quasi-1D setting. Within the
framework of the known model, which reduces the multidi-
mensional character of the full Gross-Pitaevskii equation to
the appendage of an additional self-focusing quintic term to
the effective 1D equation, we have investigated deviations
from the ideal soliton behavior.

A family of exact stationary solutions for the solitons has
been constructed, and it was demonstrated that the entire
family is stable, despite the possibility of collapse in the
modified 1D equation �with the negative scattering length�.
We have found inelastic effects in soliton collisions, which
are impossible with ideal solitons. Two identical in-phase
solitons merge into a single pulse, if the collision velocity is
smaller than a critical value. In fact, two different types of
the merger were observed, “strong” and “weak” ones, the
former leading to the formation of a loosely bound state of
two solitons that feature repeated collisions, with very weak
radiation loss, while the latter means direct fusion into a
single pulse, which is accompanied by a burst of radiation
�in that case, the radiation loss helps the emerging pulse to
drop the number of atoms below the collapse threshold, and
thus avoid the blowup�. Both the analytical approximation,
based on the perturbation theory, and numerical results high-
light the strong dependence of the critical velocity on the
strength of the transverse confinement and the number of
atoms in the solitons. Symmetry breaking in collision be-
tween identical solitons with nonzero phase difference was
also found, and partially explain by means of the calculation
of a phenomenologically defined symmetry-breaking param-
eter, which measures the mismatch between amplitude and
phase centers of the colliding solitons.
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