
Self-driven nonlinear dynamics in magneto-optical traps

T. Pohl
ITAMP, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA

G. Labeyrie and R. Kaiser
Institut Non Linéaire de Nice, UMR 6618, 1361 route des Lucioles, F-06560 Valbonne, France

�Received 7 February 2006; published 23 August 2006�

We present a theoretical model describing recently observed collective effects in large magneto-optically
trapped atomic ensembles. Based on a kinetic description, we develop an efficient test particle method, which,
in addition to the single-atom light pressure, accounts for other relevant effects such as laser attenuation and
forces due to multiply scattered light with position-dependent absorption cross sections. Our calculations
confirm the existence of a dynamical instability and provide deeper insights into the observed system
dynamics.
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Since its first realization in 1987 �1�, the magneto-optical
trap �MOT� has become a standard technique for providing a
robust source of large numbers of cold atoms. While multiple
scattering of the absorbed laser light is known as a major
limitation for achieving Bose-Einstein condensation, it also
leads to interesting collective effects that have been studied
over recent years �2–7�, and a variety of static structures
have been observed and investigated by different theoretical
approaches �3,5,8–10�.

Only recently, experiments have revealed a so far unex-
plored dynamical instability in three-dimensional MOTs con-
nected with the appearance of self-excited radial oscillations
�11�, which constitutes a complex nonlinear dynamics phe-
nomenon. Understanding the observed effect turns out to be
of broader interest, as it shows close analogies to similar
plasma and astrophysical phenomena, such as, e.g., pulsating
stars �12�.

Here we develop a theoretical model, describing the ob-
served instability and providing a physical picture of the un-
derlying mechanism. As discussed in �7�, sub-Doppler cool-
ing mechanisms only affect a very small fraction of large
trapped atom clouds. Hence, the overall behavior of large
atomic ensembles is well described within a basic Doppler-
cooling picture, where the resulting trapping force along
each laser beam can be written as �13,14�

Ftrap
�i� �x,v� =

��

2
�s+�+�x,v� − s−�−�r,v�� , �1�

where

�± = �0�1 + 3�s+ + s−� + 4
�� � kv � �x�2

�2 �−1

�2�

is the absorption cross section for the two laser beams �in-
cluding a saturation by the three pairs of laser beams�, �0
=3� /2	 is the on-resonance absorption cross section, � is
the laser wavelength, � is the transition linewidth, � is the
detuning from resonance, �x determines the Zeeman shift of
the atomic transition due to the MOT magnetic field, and
s±= I± / Isat denotes the saturation parameter of the respective
laser beam of intensity I± with Isat being the saturation inten-

sity of the atomic transition. For the discussion below, it is
convenient to split the force according to Ftrap�x ,v�
=
��x � �x+���x � , �v � �v, with 
��x � �=Ftrap��x � ,0� / �x� and
���x � , �v � �= �Ftrap��x � , �v � �−Ftrap��x � ,0�� / �v�.

In order to simplify our theoretical considerations, we use
the following spherical symmetric generalization of Eq. �1�:

Ftrap = 
�r�r + ��r,v�v . �3�

While experimental confinement configurations generally do
not obey this symmetry, Eq. �3� describes the important fea-
tures of the resulting force in both the linear and nonlinear
trapping regions.

At higher densities, attenuation of the laser light inside the
cloud results in an additional effective confining force expe-
rienced by the atoms �15�. To account for this effect within
our spherical symmetry assumption, the spatial intensity pro-
file is obtained from

s+ = s0e−�r
��+�r��
�r��, s− = s0e−�0

��+�r��
�r��−�0
r�−�r��
�r��,

�4�

where s0 is the saturation parameter of the incident beam.
Moreover, multiple scattering of the absorbed laser light in-
side the cloud leads to an additional outward directed pres-
sure, caused by an effective interaction between the atoms
�2�. Neglecting higher-order scattering events, which are
known to screen the atom-atom interaction �16�, a photon
scattered off an atom at position r1 exerts an average force
on an absorbing atom at r2 according to �2,4�

Frsc =
3Isat

4	c
�s+�+�rsc

�+� + s−�−�rsc
�−��

r2 − r1

�r2 − r1�3
. �5�

The reabsorption cross section �rsc
�+/−� is obtained by convolv-

ing the absorption cross section of the emitted light with the
emission spectrum of the atom at r1 in the presence of either
left or right circularly polarized laser light. Note that �rsc
may depend on both coordinates via the space dependence of
the local laser intensities as well as of the respective detun-
ings. Previously �3,4,7–10�, such coordinate dependencies
have been neglected, which, according to Eq. �5�, results in a
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Coulomb-like interaction with effective charges, again un-
derlining the close analogy with plasma and gravitational
physics problems. In large clouds, however, we find the po-
sition dependence of the effective charges to be important for
the static and dynamics properties of the trapped atom cloud.

Starting from Eqs. �2�–�5�, the collective system dynam-
ics is described by the following kinetic equation:

� f

�t
+ v

� f

�r
+ M−1
�r�r

� f

�v
+ M−1Fmf�r�

� f

�v

+ M−1 �

�v
�v��r,v�f� = 0 �6�

for the atomic phase-space density f�r ,v , t�, where

Fmf�r� =	 Frsc�r�,r�f�r�,v�dvdr �7�

and M is the mass of the atoms. Heating by spontaneous
emission and photon exchange �16,17� has been neglected,
since for the densities considered in this work the corre-
sponding thermal pressure is much smaller than the pressure
resulting from the effective atomic repulsion.

Note that Eq. �7� goes beyond a local-density approxima-
tion �16�, retaining the complete position dependence of �rsc
and the density dependence of Frsc. In fact, this nonlocal
space dependence of all forces in Eq. �6� in addition to their
local dependence on the atom position render a direct nu-
merical solution of Eq. �6� very demanding. Alternatively,
we apply an efficient numerical procedure based on a test-
particle treatment, similar to particle-in-cell methods �18�,
frequently used for plasma physics problems. More specifi-
cally, we represent the atomic density by an ensemble of
Nt�106 test particles, whose number is typically chosen to
be less than the actual particle number to reduce the numeri-
cal effort. The respective absorption cross sections and
masses of the test particles are adjusted, such that the results
are independent of the number Nt of test particles. By propa-
gating every particle according to the forces Eqs. �3� and �7�,
we obtain the time-dependent density from which we calcu-
late the local intensities and the resulting forces to advance
the next time step.

To study its stationary properties, we evolve the atomic
cloud until it relaxes to the self-consistent, stationary solu-
tion of Eq. �6�, which we found to exist only below a critical
atom number Nc. Figure 1�a� shows the calculated stationary
density profile for N=1.15�109 rubidium atoms and typical
MOT parameters of I=1.0 mW/cm2, �=−1.5�, and
� /�=4.7 mm �corresponding to 9 G/cm� �11�. As can be
seen, the calculated density is well described by a truncated
Gaussian profile. As the atom number is decreased, the trun-
cation radius R decreases relative to the rms width of the
corresponding Gaussian, ultimately leading to a transition
into a uniform density profile. Similar changes in the density
profile have also been reported in MOTs, where the nonlin-
earity of the potential arises from sub-Doppler trapping
mechanisms �7,19�. In the present case, the observed transi-
tion results from the nonlinearity and the position depen-

dence of the reabsorption cross section and, hence, cannot be
found under the assumption of linear trapping forces and
pure Coulomb-like interactions �3,4,10�.

Let us now turn to the most striking result of our calcu-
lations. As we increase further the number N of atoms, the
cloud becomes unstable at a critical atom number Nc, corre-
sponding to a critical radius Rc. By varying the various MOT
parameters, we find that the critical radius is uniquely deter-
mined by the relation Rc=� /� �see Fig. 3�a��, confirming the
conclusion reached in �11�. This fact is illustrated in Figs.
1�b�–1�d�, where we show the radial dependence of the trap-
ping and interaction force as well as the damping constant
��r ,v=0�. The damping constant ��r ,0� reverses its sign at
Rc=� /�. Hence, any small velocity of atoms outside of Rc
will be enhanced. While inward-moving particles will be
damped again when entering the negative-� region, outward-
moving atoms around Rc are further accelerated away from
the trap center, since the single-atom light pressure force is
largely balanced by the interaction force around r=Rc. Their
motion around the fixed point �r=Rc, v=0� will become un-
stable and limited by the nonlinear terms of the force. At

FIG. 1. �a� Radial density profile �solid line� of trapped ru-
bidium atoms with �=−1.5�, I=1.0 mW/cm, and � /�=4.7 mm
together with a Gaussian fit �dashed line�. �b� Radial dependence of
Fmf �dashed line�, Ftrap �dotted line�, and Fmf+Ftrap �solid line�. �c�
Radial dependence of the damping constant ��r ,v=0�. �d� Radial
dependence of the total force on an outward moving atom with
velocity 0.85� /k. The gray shaded area marks the region of active
atomic motion.
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larger distances, however, the total force reverses its sign
again, since the interaction force decreases much more rap-
idly than the trapping, due to the radially increasing Zeeman
shift �see Fig. 1�b��. As shown in Fig. 1�d�, this leads to the
formation of a finite active region, similar to theoretical de-
scriptions of pulsating stars �12�, feeding the oscillatory dy-
namics of the MOT. Note that in previous models with
position-independent reabsorption cross sections, the active
region would extend to infinity and the atoms would be sim-
ply spilled out of the MOT region. Hence, if during the ex-
pansion the atoms do not acquire a velocity beyond the cap-
ture range of the MOT, a stable limit cycle will be reached.

In order to characterize the onset of the instability, we
analyze the cloud’s rms radius �=
�r2� /3 and study its sen-
sitivity against a small perturbation. More precisely, we start
from a stationary density corresponding to some detuning �0,
which is instantly increased to � �closer to resonance�, lead-
ing to damped oscillations of � toward its new equilibrium
value ��, as shown in Fig. 2�a�. From a fit to a damped
harmonic oscillation �=��e−t/�sin��t+��+��, we obtain
the damping time � and frequency � corresponding to the
real and imaginary part of the respective Lyapunov exponent
�=�−1+ i� �Fig. 3�b��. For increasing N and the parameters
of Fig. 2, the instability sets in at an atom number of
Nc=1.226�109 and with a critical exponent of 0.55. On the
other hand, the frequency of the cloud oscillation evolves
continuously through the instability threshold �see Fig. 2�,
indicating that the onset of the instability proceeds via a
supercritical Hopf bifurcation.

A reduction of the system properties to a single quantity
like the cloud’s rms radius is clearly helpful for understand-
ing the transition into the oscillating regime. On the other

hand, the fully resolved space-time evolution of the atomic
density such as shown in Fig. 4 reveals much more detailed
information about the complicated dynamics of the cloud.
Indeed, the complex density patterns at larger atom numbers
�see Fig. 4� show that the oscillation dynamics is much more
complex than a simple breathing mode, as suggested by the
simple size oscillations close to the instability threshold �see
Fig. 2�b��.

FIG. 2. Relaxation of the MOT’s rms radius after switching the
detuning from �0=−1.55� to �=−1.5� for two different particle
numbers of N=9�108 �a� and N=1.3�109 �b�. The remaining pa-
rameters are the same as in Fig. 1. The solid line in �a� shows a fit
of �� sin��t+��e−t/�+�� to the numerical data �circles�. The solid
line in �b� shows the numerical data in the oscillating regime of
N�Nc.

FIG. 3. �a� Calculated MOT size as a function of the atom
number �circles� fitted by a power-law dependence �solid line�. The
dotted line corresponds to the critical radius Rc=� /� and the
dashed line in both figures indicates the critical atom number Nc

beyond which the dynamical instability sets in. �b� Real part of the
MOT’s stability coefficient �circles� fitted by �� �N−Nc�� with
Nc=1.226�109 and �=0.55.

FIG. 4. �Color online� Spatio-temporal evolution of the atomic
density for N=1.7�109. The MOT parameters are the same as in
Fig. 1. The lines are discussed in the text.
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In fact, the oscillation is triggered by an outer fraction of
atoms, which gain energy as they move in and out of the
active region of r�Rc, which is indicated by the horizontal
white line in Fig. 4. When bouncing back on the low-
energetic atoms, the gained energy is deposited by exciting a
density wave just inside the region with ��r ,0��0. Subse-
quently, the formed nonlinear excitation propagates toward
the trap center along the diagonal blue line drawn in Fig. 4
thereby losing energy, mostly due to the damping by the
cooling lasers. As can be seen in Fig. 4, this not only leads to
a flattening and broadening of the density wave until it dis-
appears, but also to a deceleration as indicated by the devia-
tion of the moving maximum from the blue line at smaller
distances. At the same time, the edge region of the atomic
cloud starts to relax, causing some atoms to be again accel-
erated away from the center and the whole process repeats
itself. Although this scenario clearly provides the basic
mechanism for the observed oscillations, our calculations re-
veal a complex nonlinear dynamics with a number of finer
details �see Fig. 4�.

In conclusion, large clouds of magneto-optical confined
atoms have been found to exhibit a very complex nonlinear
dynamics. Our theoretical description has revealed the onset
of a deterministic instability connected with self-sustained
oscillations in agreement with recent experiments �11�. It has
been found that a number of different effects, such as the
attenuation of the trap lasers, rescattering of the absorbed

laser light, and, equally important, the position dependence
of the respective absorption cross sections are all necessary
to explain the observed phenomenon. A stability analysis of
the MOT size has shown that the transition proceeds via a
supercritical Hopf bifurcation. The obtained density evolu-
tion revealed the build-up of complex nonlinear excitations
driven by the combined action of the light-pressure force and
the effective atomic interaction, which results in an active
atomic motion at large distances. Similar types of active or
self-driven motion are currently being discussed in a broad
range of different applications, such as collective swarm dy-
namics �20�, propagation of waves �21� or dissipative soli-
tons �22� in reaction-diffusion systems, or grain motion in
dusty plasmas �23�. Hence, we believe that large clouds of
magneto-optical confined atoms provide an ideal laboratory
system for further exploration of the rich spectrum of self-
driven motion, including variable system geometries, effects
of external driving, and possibilities to control the system
dynamics.
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