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We have performed calculations of the size of the frequency shift induced by a static electric field on the
clock transition frequencies of the hyperfine splitting in Yb+, Rb, Cs, Ba+, and Hg+. The calculations are
used to find the frequency shifts due to blackbody radiation which are needed for accurate frequency
measurements and improvements of the limits on variation of the fine-structure constant �. Our result for
Cs ��� /E2=−2.26�2��10−10Hz/ �V/m�2� is in good agreement with early measurements and ab initio
calculations. We present arguments against recent claims that the actual value might be smaller. The difference
��10% � is due to the contribution of the continuum spectrum in the sum over intermediate states.
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I. INTRODUCTION

Atomic clocks are now important for both practical appli-
cations and fundamental physics. The hyperfine structure
�hfs� transition of the ground state of 133Cs serves as a pri-
mary frequency standard providing the definition of a metric
second. Many similar hfs transitions in other atoms and ions
are used or under consideration for use as secondary micro-
wave frequency standards. Most frequency standards �atomic
clocks� operate at room temperature. However, the exact
definition of a metric second corresponds to the frequency of
the transition measured at zero temperature. This means that
readings from atomic clocks should be corrected to account
for the effect of blackbody radiation �see, e.g., Ref. �1��. The
value of this effect can be found from measurements or cal-
culations. There are many experimental �2–7� and theoretical
�1,8–13� works studying the effects of blackbody radiation
on microwave frequency standards. However, the situation is
far from being satisfactory. There is disagreement among the
different works for cesium which will be discussed in more
detail below. On the other hand, the data for other atoms and
ions is very poor or absent.

In the present work we perform accurate calculations of
the shift due to blackbody radiation in the hyperfine transi-
tions in Yb+, Rb, Cs, Ba+, and Hg+. These transitions play
key roles in microwave frequency standards. They are also of
interest to physicists considering experiments to measure �
variation in the laboratory �see, e.g., Ref. �14–17��. An ex-
periment is currently planned utilizing Yb+ �18�. No accurate
calculations or measurements of the radiation shift for this
ion have been performed previously. However, calculations
or measurements are available for other atoms and ions
�1–13�. We compare our results with these values.

Due to the importance of cesium as a primary frequency
standard we have performed a more detailed study of this
atom. This was the subject of a separate short paper �19�. In
the present paper we give more details of the calculations
while also discussing other atoms and ions.

There is some disagreement on the actual value of the
radiation frequency shift for cesium. Early measurements
�2,3,5� and ab initio calculations �9,10� support a value
which is close to −2.2�10−10 Hz/ �V/m�2 while more recent
measurements �6,7� and semiempirical calculations �8,11,12�

claim that the actual number might be about 10% smaller.
While we cannot comment on the experimental results, the
source of disagreement between theoretical values seems to
be in the continuum spectrum. Ab initio calculations �includ-
ing the present work� include the contribution of the con-
tinuum spectrum into the summation over the complete set of
states while semiempirical calculations do not. We demon-
strate that adding the contribution of the continuum spectrum
to where it was missed brings all theoretical results into good
agreement with each other and with early measurements.

II. THEORY

Blackbody radiation creates a temperature-dependent
electric field, described by the Planck radiation law

E2��� =
8�

�

�3d�

exp��/kBT� − 1
. �1�

This leads to the following expression for the average elec-
tric field radiated by a blackbody at temperature T:

�E2� = �831.9 V/m�2�T�K�/300�4. �2�

This electric field causes a temperature-dependent frequency
shift of the atomic microwave clock transitions. It can be
presented in the form �see, e.g., Ref. �1��

��/�0 = ��T/T0�4�1 + 	�T/T0�2� . �3�

Here T0 is usually assumed to be room temperature �T0

=300 K�. The frequency shift in a static electric field is

�� = kE2. �4�

The coefficients k and � are related by

� =
k

�0
�831.9 V/m�2, �5�

	 is a small correction due to frequency distribution �1�. In
the present work we consider both terms in Eq. �3� by cal-
culating coefficients k, �, and 	.

It is convenient to start from calculation of k by consid-
ering an atom in static electric field. In the case when there is
no other external electric field which sets preferred direction
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the radiation shift can be expressed in terms of the scalar
hyperfine polarizability of the atom. This corresponds to av-
eraging over all possible directions of the electric field. The
hyperfine polarizability is the difference of the atomic polar-
izabilities between different hyperfine structure states of the
atom. The lowest-order effect is linear in the hyperfine inter-
action and quadratic in the electric field. Therefore, its value
can be calculated using third-order perturbation theory
�see, e.g., Ref. �20��

�	a = �
n,m

�a	V̂	n��n	V̂	m��m	V̂	a�
�	a − 	n��	a − 	m�

− �a	V̂	a��
n

�a	V̂	n�2

�	a − 	n�2 .

�6�

In our case the perturbation operator V̂ is the sum of the
hyperfine structure operator and the electric dipole operator

V̂ = Ĥhfs − eE · r .

The operator of the hyperfine interaction Ĥhfs is given by

Ĥhfs =
	e	
c

� ·
r � �

r

3 , r
 = max�r,rN� , �7�

where � is the Dirac matrix, � is the magnetic moment of
the nucleus, and rN is the nuclear radius.

To get the effect of the electric field on the frequency of
the hyperfine transition one needs to go through the follow-
ing steps:

�i� Substitute the perturbation operator V̂ into Eq. �6�.
�ii� Keep only terms linear in Ĥhfs and quadratic in the

electric field.
�iii� Apply Eq. �6� to both components of the hyperfine

structure doublet.
�iv� Take the difference.

The resulting expression for the frequency shift consists of
three terms. The first two of them originate from the first

term of Eq. �6�. In one of them the Ĥhfs operator is either on
the left or right side of the expression �these two terms are

equal and can be combined�, and in the other the Ĥhfs opera-
tor is in the middle. The last term is due to change of the
normalization of the wave function �second term of Eq. �6��.
It is proportional to the hyperfine structure of the ground
state.

After angular reduction these three terms become

��1�as� = e2�E2�
2I + 1

6 �
n,m,j

Aas,ns�ns
r
mpj��mpj
r
as�
�	as − 	ns��	as − 	mpj

�
,

�8�

��2�as� =
e2�E2�

6 �
j

�CI+1/2 − CI−1/2�

� �
n,m

�as
r
npj�Anpj,mpj�mpj
r
as�
�	as − 	npj��	as − 	mpj

�
, �9�

and

��norm�as� = − e2�E2�
2I + 1

12
Aas�

m,j

	�as
r
mpj�	2

�	as − 	mpj
�2 . �10�

Here

CF = �
F�

�2F� + 1��F��F� + 1� − I�I + 1� − j�j + 1��

� �1/2 F I

F� j 1
�2

, F� = 	I − J	,I + J ,

Ans is the hfs constant of the ns state, Am,n is the off-diagonal
hfs matrix element, I is the nuclear spin, F=I+J, J is the
total electron momentum of the atom in the ground state
�J=1/2 for atoms considered in present work�, and j is total
momentum of virtual p-states �j=1/2 ,3 /2�. Summation
goes over a complete set of ns, mp1/2, and mp3/2 states.

Expression �8� does not include the s-d hfs matrix ele-
ments while expression �9� does not include the p1/2-p3/2 hfs
matrix elements. Test calculations show that the total contri-
bution of the off-diagonal �in total momentum j� hfs matrix
elements is of the order of 0.1% of the final answer and
therefore can be neglected in present calculations.

Expressions �8�–�10�, correspond to the static limit when
the energy of the thermal photon is zero. To take into account
distribution �1� one needs to make the following substitu-
tions in terms �8� and �9�:

�mpj
r
as�
�	sp

→
1

2
 �mpj
r
as�

�	sp + �
+

�mpj
r
as�
�	sp − �

� , �11�

and in term �10�

1

�	sp
2 →

1

2
 1

��	sp + ��2 +
1

��	sp − ��2� , �12�

where � is the frequency of the thermal photon. Integrating
resulting expression with �1� and keeping only terms up to
�2 �since ���	sp� leads to the expression of the form �3� in
which the first term is given by Eqs. �8�–�10�, and parameter
	 in the second term is given by

	 =
A

k �
i

ki
�1�

�	spi
2 + �

i

ki
�2�

�	spi
2 + 3�

i

ki
�3�

�	spi
2 � . �13�

Here index i replaces all indexes of summation in Eqs.
�8�–�10�, ki

�1� corresponds to terms in Eq. �8�, ki
�2� corre-

sponds to Eq. �9�, ki
�3� corresponds to �10�, and k=k�1�+k�2�

+k�3�. �	spi is the energy of the s− p transition number i. If
energies �	spi are in atomic units then A=1.697�10−5 �the
atomic unit of energy is 27.211 eV=315 773 K�. The lowest
s-p transitions �e.g., 6s-6p1/2 and 6s-6p3/2� strongly dominate
in the summation �13�.

III. CALCULATIONS

In order to calculate frequency shift to the hfs transitions
due to the electric field one needs to have a complete set of
states and to have the energies, electric dipole transition am-
plitudes, and hyperfine structure matrix elements correspond-
ing to these states. It is possible to consider summation over
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the physical states and use experimental data to perform the
calculations. The lowest valence states for which experimen-
tal data are usually available dominate in the summation.
Off-diagonal hfs matrix elements can be obtained to a high
accuracy as the square root of the product of corresponding
hfs constants: Am,n=�AmAn �see, e.g., Ref. �21��. However,
the accuracy of this approach is limited by the need to in-
clude the tail contribution from highly excited states includ-
ing states in the continuum. This contribution can be very
significant and its calculation is not easier than the calcula-
tion of the whole sum. Also, for atoms like Yb+ and Hg+

available experimental data are insufficient to follow this
path.

Therefore in the present work we use an ab initio ap-
proach in which high accuracy is achieved by the inclusion
of all important many-body and relativistic effects. We make
only one exception toward the semiempirical approach. The
frequency shift is dominated by the term �10� which is pro-
portional to the hfs in the ground state. These hfs constants
are known to very high accuracy from measurements for all
atoms considered in the present work. It is natural to use
experimental hfs constants in the dominating term to have
more accurate results. Note, however, that the difference
with complete ab initio calculations is small. It is also in-
structive to perform calculations of the hfs and atomic polar-
izabilities to demonstrate the accuracy of the method.

Calculations start from the relativistic Hartree-Fock
�RHF� method in the VN−1 approximation. This means that
the initial RHF procedure is done for a closed-shell atomic
core with the valence electron removed. After that, states of
the external electron are calculated in the field of the frozen
core. Correlations are included by means of the correlation
potential method �22�. We use two different approximations
for the correlation potential ̂. First, we calculate it in the
lowest, second order of the many-body perturbation theory
�MBPT�. We use notation ̂�2� for the corresponding corre-
lation potential. Then we also include into ̂ two classes of
the higher-order terms: screening of the Coulomb interaction
and hole-particle interaction �see, e.g., Ref. �23� for details�.
These two effects are included in all orders of the MBPT and
the corresponding correlation potential is named ̂���.

To calculate ̂�2� we need a complete set of single-
electron orbitals. We use the B-spline technique �24,25� to
construct the basis. The orbitals are built as linear combina-
tions of 50 B-splines in a cavity of radius 40aB. The coeffi-
cients are chosen from the condition that the orbitals are
eigenstates of the RHF Hamiltonian Ĥ0 of the closed-shell
core. The ̂��� operator is calculated with the technique
which combines solving equations for the Green functions
�for the direct diagram� with the summation over the com-
plete set of states �exchange diagram� �29�.

The correlation potential ̂ is then used to build a new set
of single-electron states, the so-called Brueckner orbitals.
This set is to be used in the summation in Eqs. �8�–�10�.
Here again we use the B-spline technique to build the basis.
The procedure is very similar to the construction of the RHF
B-spline basis. The only difference is that new orbitals are

now the eigenstates of the Ĥ0+ ̂ Hamiltonian, where ̂ is

either ̂�2� or ̂���.

We use the all-order correlation potential ̂��� for Rb, Cs,
and Ba+. It has been demonstrated in a number of works �see,
e.g.,�23,26,27�� that inclusion of the screening of Coulomb
interaction and the hole-particle interaction leads to very ac-
curate results for alkali-metal atoms. However, for other at-
oms with one external electron above closed shells these two
higher-order effects are not dominating and their inclusion
generally does not improve the results. Therefore for the Yb+

and Hg+ ions we use only the second-order correlation po-

tential ̂�2�.
Brueckner orbitals which correspond to the lowest va-

lence states are good approximations to the real physical
states. Their quality can be checked by comparing experi-
mental and theoretical energies. Moreover, their quality can

be further improved by rescaling the correlation potential ̂
to fit experimental energies exactly. We do this by replacing

the Ĥ0+ ̂ with the Ĥ0+�̂ Hamiltonian in which the rescal-
ing parameter � is chosen for each partial wave to fit the
energy of the first valence state. The values of � are pre-
sented in Table I. Note that all values are very close to unity.
This means that even without rescaling the accuracy is very

good and only a small adjustment to the value of ̂ is
needed. Note also that since the rescaling procedure affects
both energies and wave functions, it usually leads to im-
proved values of the matrix elements of external fields. In
fact, this is a semiempirical method to include omitted
higher-order correlation corrections.

Matrix elements of the hfs and electric dipole operators
are found by means of the time-dependent Hartree-Fock
�TDHF� method �22,28�. This method is equivalent to the
well-known random-phase approximation �RPA�. In the
TDHF method, single-electron wave functions are presented
in the form �=�0+��, where �0 is the unperturbed wave

function. It is an eigenstate of the RHF Hamiltonian Ĥ0:

�Ĥ0−	0��0=0. �� is the correction due to external field. It
can be found be solving the TDHF equation

�Ĥ0 − 	0��� = − �	�0 − F̂�0 − �V̂N−1�0, �14�

where �	 is the correction to the energy due to external field

��	�0 for the electric dipole operator�, F̂ is the operator of

TABLE I. Rescaling parameters for the ̂ operator which fit
energies of the lowest s and p states of Rb, Cs, Ba+, Yb+, and Hg+.

Atom ̂ s1/2 p1/2 p3/2

Rb ̂�2� 0.868 0.903 0.906

Rb ̂��� 1.008 0.974 0.976

Cs ̂�2� 0.802 0.848 0.852

Cs ̂��� 0.985 0.95 0.95

Ba+
̂�2� 0.782 0.830 0.833

Ba+
̂��� 0.988 0.963 0.967

Yb+
̂�2� 0.866 1.09 1.185

Hg+
̂�2� 0.805 0.890 0.926
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the external field �Ĥhfs or eE ·r�, and �V̂N−1 is the correction
to the self-consistent potential of the core due to external
field. The TDHF equations are solved self-consistently for all
states in the core. Then matrix elements between any �core or
valence� states n and m are given by

��n	F̂ + �V̂N−1	�m� . �15�

The best results are achieved when �n and �m are Brueckner

orbitals calculated with rescaled correlation potential ̂.
We use Eq. �15� for all hfs and electric dipole matrix

elements in Eqs. �8�–�10�, except for the ground-state hfs
matrix element in Eq. �10� where we use experimental data.

To check the accuracy of the calculations we perform cal-
culations of the hfs in the ground state and of the static scalar
polarizabilities of the atoms. Polarizabilities are given by the
expression

�0�a� =
2

3�
m

	�a
r
m�	2

�	a − 	m�
�16�

which is very similar to the term �10� for the frequency shift.
The most important difference is that the energy denominator
is squared in term �10� but not in Eq. �16�. This means better
convergence with respect to the summation over the com-
plete set of states for term �10� than for Eq. �16�. Therefore if
good accuracy is achieved for polarizabilities, even better
accuracy should be expected for the term �10� �see also Ref.
�11��.

However, the behavior of the other two terms, Eqs. �8�
and �9�, is very different and calculation of polarizabilities
tells us little about accuracy for these terms. Therefore we
also perform detailed calculations of the hfs constants of the
ground state. Inclusion of core polarization �second term in
Eq.�15�� involves summation over the complete set of states
similar to what is needed for term �8�. Comparing experi-
mental and theoretical hfs is a good test of the accuracy of
this term.

In addition to the term �15�, we also include two smaller
contributions to the hfs: structure radiation and the correction
due to the change of the normalization of the wave function.
The structure radiation term can be presented in the form

Astr = ��n	�̂	�n� , �17�

where �̂ is the correction to the correlation potential due to
the external hfs field. The normalization term is

Anorm = − An��n	
�̂

�	
	�n� , �18�

where An is given by Eq. �15� with m=n.
The results for hfs are presented in Table II. Here the

column marked as “Brueck” corresponds to the ��n	F̂	�n�
matrix element. The column marked as RPA is the core po-

larization correction given by ��n	�V̂N−1	�n�, the notation
“Str” stands for structure radiation given by Eq. �17�, and
“Norm.” is the renormalization contribution given by �18�. In
all cases �n is the Bruckner orbital corresponding to the
ground state of the atom or ion, calculated with the rescaled

correlation potential ̂. All-order ̂��� is used for Rb, Cs, and

Ba+. Second-order ̂�2� is used for Yb+ and Hg+. Comparing
the final theoretical results with experiment shows that the
theoretical accuracy is within 1% for all atoms except Hg+

where it is 1.6%. If the structure radiation and normalization
are neglected, accuracy for Rb and Cs remains within 1%,
accuracy for Ba+ becomes about 2%, and accuracy for Yb+

and Hg+ becomes close to 5%.
The results for polarizabilities, calculated in different ap-

proximations, are presented in Table III. Pure ab initio results

obtained with ̂��� and results obtained with rescaled corre-

lation potential operators ̂�2� and ̂��� are very close to each
other and to other calculations and measurements.

IV. RESULTS AND DISCUSSION

Table IV presents contributions of terms �8�–�10�, into the
total frequency shift of the hfs transitions for the ground
states of 87Rb, 133Cs, 137Ba+, 171Yb+, and 199Hg+ calculated
in different approximations. Term �10� dominates in all
cases, while term �9� is small but still important at least for

Rb, Cs, and Ba+. Results obtained with ̂�2� and ̂��� differ
significantly �up to 14% for Cs�. However, after rescaling the

results for both ̂�2� and ̂��� come within a fraction of a per

TABLE II. Contributions to the hyperfine structure of the ground state of Rb, Cs, Ba+, Yb+, and Hg+

�MHz�; comparison with experiment.

Atom Brueck RPA Str. Norm. Total Expt.

87Rb 5s 2888 559 −27 −33 3386 3417a

133Cs 6s 1957 355 −10 −31 2278 2298b

137Ba+ 6s 3509 601 −21 −73 4016 4019c

171Yb+ 6s 11720 1540 −248 −247 12764 12645�2�d

199Hg+ 6s 38490 3873 288 −1483 41169 40507e

aReference �29�.
bReference �29�.
cReferences �30,31�.
dReference �32�.
eReference �33�.
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cent of each other. Naturally, rescaling has a larger effect on

results obtained with ̂�2�. This means that the rescaling re-
ally imitates the effect of higher-order correlations and
should lead to more accurate results. Comparing the results

obtained with ̂���, rescaled ̂���, and rescaled ̂�2� gives a
reasonable estimation of the accuracy of calculations. If we
also combine this with the calculation of the hfs discussed
above we can safely assume that the accuracy of the calcu-
lations for Rb, Cs, and Ba+ is on the level of 1%. Note that
the frequency shift due to blackbody radiation can be a little
larger ��1% � due to the effect of frequency distribution at
finite temperature.

For Yb+ and Hg+ we only have results with rescaled ̂�2�

and not rescaled ̂���. They differ by about 11%. However,
there are strong reasons to believe that the results obtained
with rescaling are more accurate. This is supported by calcu-
lations for Rb, Cs, and Ba+ as well as our experience with
rescaling used in many earlier works. Therefore the calcula-
tion of the hfs discussed above gives a more realistic estima-
tion of the accuracy for Yb+ and Hg+ which is about 5%.

Table IV presents values of k �see formula �4��. To obtain
the frequency shift at finite temperature one needs to convert
k into � using formula �5� and substitute � into Eq. �3�. For
accurate results one also needs to know the values of 	. We
calculate them using formula �13� in a very similar way as
we calculate parameters k. Our final values of k, �, and 	 are
presented in Table V. The parameter 	 for Cs was estimated
in single-resonance approximation in Ref. �1� and found to
be 0.014. This value is in good agreement with our accurate
calculations.

The frequency shifts of some alkali-metal atoms have
been calculated and measured previously. We present previ-
ous results for the atoms and ions for which we perform
calculations in Table VI together with our final results.

There is some disagreement for cesium. Our result is in
good agreement with early measurements �2,3,5� and ab ini-
tio calculations �9,10� while recent measurements �6,7� and
semiempirical calculations �8,11,12� give the value which is
about 10% smaller. Less accurate measurements of Bauch
and Schröder �4� cover both cases. We cannot comment on
disagreement between experimental results. However, the

TABLE III. Static polarizabilities �0 of Rb, Cs, Ba+, Yb+, and Hg+ in different approximations �a0
3�.

Atom ̂ �v
a �c

b Total Other works

87Rb 5s ̂�2�c 292.7 9.1 301.8 329�23�f

�̂�2�d 309.7 9.1 318.8 293�6�g

̂���e 312.4 9.1 321.5 318.6�6�h

�̂���d 310.5 9.2 319.7 318.5�6�i

133Cs 6s ̂�2�c 343.8 15.3 359.1 401.0�6�j

�̂�2�d 383.5 15.4 399.0 401.5h

̂���e 384.0 15.5 399.5 400.4k

�̂���d 384.4 15.5 399.9 400.6�1.0�l

137Ba+ 6s ̂�2�c 104.1 9.8 113.8

�̂�2�d 112.5 9.9 122.4

̂���e 112.8 9.9 122.7

�̂���d 112.7 9.9 122.7
171Yb+ 6s ̂�2�c 50.9 6.2 57.1

�̂�2�d 55.4 6.1 61.5
199Hg+ 6s ̂�2�c 10.5 7.7 18.2

�̂�2�d 11.4 7.6 19.0

aPolarizability due to valence electron.
bPolarizability of the core.
ĉ�2� is the second-order correlation potential.
dRescaled ̂. See Table I for the values of rescaling factors �.
ê��� is the all-order correlation potential.
fMeasurements, Ref. �34�.
gMeasurements, Ref. �35�.
hCalculations, Ref. �36�.
iCalculations, Ref. �37�.
jMeasurements, Ref. �38�.
kCalculations, Ref. �39�.
lCalculations, Ref. �11�.
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source of disagreement between theoretical results seems to
be clear. It comes from the contribution of the continuum
spectrum to the summation over the complete set of states in
term �8�. This term has off-diagonal hfs matrix elements be-
tween the ground state and excited states. Since the hfs in-
teraction is localized over short distances ��a0 /Z� it empha-
sizes the contribution of states with high energies including
states in the continuum �since �p�x��, a small area of
localization ��x� allows high momentum �p� and thus high
energy�. In our calculations the contribution of states above
7p into term �8� is −0.35�10−1 Hz/ �V/m�2 which is 15% of
the total answer.

In contrast, states above 7p contribute only about 0.05%
of the total value of term �10�. This is because the summation
goes over the matrix elements of the electric dipole operator
which is large on large distances and thus suppresses the

contribution of high-energy states. It is not surprising there-
fore that a semiempirical consideration, involving only dis-
crete spectrum states, gives very good results for the atomic
polarizabilities �see, e.g., Ref. �11��. However, let us stress
once more that the calculation of polarizabilities checks only
term �10� and tells us very little about the accuracy of other
two terms, �8� and �9�.

The contribution of the states above 7p is even more im-
portant for term �9�. Their contribution is about 30% of the
total value of this term. However, the term itself is small and
its accurate treatment is less important.

In ab initio calculations by Lee et al. �9� the summation
over complete set of states is reduced to solving a radial
equation �equations of this type are often called Sternheimer
equations after one of the authors of this work�. This ap-
proach does include the contribution of the continuum spec-
trum and the result is in very good agreement with ours �see
Table VI�.

In other ab initio calculations by Pal’chikov et al. �10� the
summation is done via Green functions. This corresponds to
summation over the complete set of states and does include
the continuum spectrum. Again, the result is in very good
agreement with other ab initio calculations Ref. �9� and the
present work�.

Recent calculations by Beloy et al. �13� applied a mixed
approach, with extensive use of experimental data for lower
cesium states and ab initio summation over higher states
including continuum. The result is in good agreement with
fully ab initio calculations.

TABLE IV. Contribution of terms �8�–�10� to the frequencies of the hyperfine transitions in the ground
state of Rb, Cs, Ba+, Yb+, and Hg+ ���0 /E2�10−10 Hz/ �V/m�2� in different approximations.

Atom ̂ Eq. �8� Eq. �9� Eq. �10� Total

87Rb 5s ̂�2�a −0.5457 0.0147 −0.6692 −1.2003

�̂�2�b −0.5668 0.0154 −0.6894 −1.2409

̂���c −0.5640 0.0156 −0.7034 −1.2518

�̂���b −0.5620 0.0154 −0.6972 −1.2437
133Cs 6s ̂�2�a −0.9419 0.0210 −1.0722 −1.9931

�̂�2�b −1.0239 0.0229 −1.2688 −2.2697

̂���c −1.0148 0.0232 −1.2706 −2.2622

�̂���b −1.0167 0.0230 −1.2695 −2.2632
137Ba+ 6s ̂�2�a −0.1027 0.0034 −0.1568 −0.2561

�̂�2�b −0.1095 0.0036 −0.1768 −0.2827

̂���c −0.1104 0.0037 −0.1778 −0.2845

�̂���b −0.1104 0.0037 −0.1773 −0.2841
171Yb+ 6s ̂�2�a −0.0672 0.0009 −0.0866 −0.1529

�̂�2�b −0.0714 0.0011 −0.1003 −0.1706
199Hg+ 6s ̂�2�a −0.0242 0.0000 −0.0296 −0.0538

�̂�2�b −0.0263 0.0000 −0.0335 −0.0598

â�2� is the second-order correlation potential.
bRescaled ̂. See Table I for the values of rescaling factors �.
ĉ��� is the all-order correlation potential.

TABLE V. Final results for the parameters k
�10−10 Hz/ �V/m�2�, � �10−14�, and 	 of the blackbody radiation
frequency shift for Rb, Cs, Ba+, Yb+, and Hg+.

Atom k � 	

87Rb 5s −1.24�1� −1.26�1� 0.011
133Cs 6s −2.26�2� −1.70�2� 0.013
137Ba+ 6s −0.284�3� −0.245�2� 0.004
171Yb+ 6s −0.171�9� −0.094�5� 0.002
199Hg+ 6s −0.060�3� −0.0102�5� 0.0005
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In contrast, analysis performed in Refs. �8,11,12� is lim-
ited to discrete spectrum. Adding −0.34�10−1 Hz/ �V/m�2

�which is the total tail contribution from all three terms
�8�–�10� found in our calculation� to the results of Feitchner
et al. �8� and Micalizio et al. �11� brings them to excellent
agreement with ab initio calculations. The same modification
of the result by Ulzega et al.�12� makes it a little bit too large
but still closer to other results than without the tail contribu-
tion.

V. CONCLUSION

We have performed calculations of the frequency shift of
the ground-state hyperfine transition for several atoms and
ions caused by a static electric field which can be used to
evaluate the effect of blackbody radiation on the frequency
of the microwave atomic clock transitions. The size of this
shift is comparable to the current error in the measurements

of the energy shift caused by variation of � and so needs to
be taken into account in laboratory measurements placing
limits upon � variation.

Detailed analysis of the calculations for cesium reveal the
source of disagreement between different theoretical ap-
proaches. This seems to be a contribution of the continuum
spectrum into summation over complete set of states which
was neglected in semiempirical calculations. Restoring the
tail contribution in works where it was neglected brings all
theoretical results in good agreement with each other.
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