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As shown by Pauli, [Z. Phys. 36, 336 (1926)], the electric dipole operator r can be replaced by the
Runge-Lenz vector A when operating within the n> degenerate manifold of hydrogenic states of principal
quantum number n. We seek to develop similar rules for higher multipole operators by expressing equivalent
operators in terms only of the two vector constants of motion—the orbital angular momentum L and the
Runge-Lenz vector A—appropriate to the degenerate hydrogenic shell. Equivalence of two operators means
here that they yield identical matrix elements within a subspace of Hilbert space that corresponds to fixed n.
Such equivalent-operator techniques permit direct algebraic calculation of perturbations of Rydberg atoms by
external fields and often exact analytical results for transition probabilities. Explicit expressions for equivalent
quadrupole and octupole operators are derived, examples are provided, and general aspects of the problem are

discussed.
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I. INTRODUCTION

Highly excited Rydberg states with the same principal
quantum number n have small deviations from pure hydro-
genic behavior. The degenerate shell of these states forms the
basis of a representation of the O(4) symmetry group [1]
associated with the 1/ Coulomb potential governing the dy-
namics of the Rydberg electron. Many structural properties
of the Rydberg atom can then be calculated by using alge-
braic rules and group representation techniques. These fea-
tures combine mathematical beauty with pragmatic useful-
ness. Moreover, such algebraic techniques facilitate direct
quantal and classical solution of Rydberg atoms in static ex-
ternal electric and magnetic fields [2], slow collisions with
Rydberg atoms [3-5], and intrashell dynamics of a Rydberg
atom in time-dependent electric and magnetic fields [6]. For
example, analytical probabilities have been derived [3-5],
without the need for any perturbative and numerical analysis,
for the full array of [—/' transitions in atomic hydrogen
H(nl) induced by a time-varying weak electric field gener-
ated by adiabatic collision with slow ions.

The dimension of the degenerate subspace grows as n
(without electron spin) and traditional close-coupling
(R-matrix) calculations using spatial wave functions become
prohibitively difficult and ultimately impractical, either be-
cause of the sheer dimension of the space or because of the
large number of oscillations. Rydberg states with n as large
as several hundred are now accessible to observations and
experiments. The group representation technique may there-
fore offer the only practical and effective way of solving
problems involving such Rydberg states. In so doing, some
essential underlying physics can be exposed, as an additional
asset.

In particular, the theory of a Rydberg atom in weak exter-
nal electric and magnetic fields is reduced to an algebraic
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problem that is extremely well poised towards extracting
both quantitative analytical results and qualitative insight.
This is possible provided the necessary operators of interac-
tion with the fields can be represented in terms of integrals of
motion—the angular momentum operator L. (common to all
central field problems) and the Runge-Lenz vector A (spe-
cific to the Coulomb potential alone). This key step, basic to
the subsequent algebraic construction, can be only taken
when the dynamics becomes restricted to the subspace of
energy degenerate states, i.e., when the external perturbation
is so weak that it does not induce n-n’ coupling among shells
of different energy.

All of the above work [2—-6] was based on a paper as old
as quantum mechanics [7]. There, Pauli [7] has shown that
the electric dipole operator r becomes identical with the
Runge-Lenz vector when the two operators are restricted to
an energy shell with fixed principal quantum number n. This
can most easily be seen by comparing all the matrix elements
of these operators between states within the same energy
shell. The power of this result comes from its general valid-
ity and utility for any shell with quantum number n.

The advantage of expressing the intrashell dynamics of
Rydberg atoms in terms of the A, L set of constants for elec-
tronic Coulombic motion has already been demonstrated
[3-5] for collisional / mixing transitions induced by a pro-
jectile charge-Rydberg dipole interaction. Also the interac-
tion between two Stark-stretched (polar) Rydberg atoms has
recently been expressed [8] in terms of interactions between
the permanent multipoles of each atom. A basic question
now arises quite naturally from these studies [3-5,8]. It is
one which does not appear to have been previously posed or
addressed. Can all higher multipole interactions be equiva-
lently expressed solely in terms of the A,L integrals of mo-
tion on the energy shell?
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In an effort to answer this, the present paper considers
general equivalent multipole operators in Secs. II and III. A
procedure is then presented and applied, with examples, to
the explicit determination in Secs. 1V, V, and VI of the
equivalent operators for the dipole, quadrupole, and octupole
moments, respectively. The algebraic evaluation of the op-
erators in terms of (A,L) is conducted in the Appendixes.
Our eventual aim is to provide, if possible, the full solution
for general multipoles. Atomic units are used throughout the
paper, unless otherwise noted.

II. INTRASHELL EQUIVALENT OPERATORS

The angular momentum L and the unrestricted Runge-
Lenz vector

1 r
=5(pXL-LXxp)-—
2 r

are constants of motion for the internal Hamiltonian H
=p?/2—1/r of the Rydberg atom. A more convenient form
for the unrestricted Runge-Lenz vector is

1
:Erpz—p(r~p)+rH.

The vector operators L and U do not close under commuta-
tion to form a Lie algebra because

[Ui’ Uj] = (— ZH)iGijkLk,

where € is the Levi-Civita antisymmetric symbol for indi-
ces i,j,k=1,2,3. If, however, the action of operators U is
restricted to the Hilbert subspace of states with principal
quantum number n, then the Runge-Lenz vector for bound
states of energy E, can be defined as

1 1,

A \J/TEn 21‘p p(l‘ P)"‘I'En . (1)
The six components of the vector operators A and L are
generators of the symmetry group SO(4) of proper rotation
in four dimensions. They satisfy the commutation relations
[A;,Aj]l=i€uly, [Li,Lj]=i€yL; and [L;,A;]=i€;3A. The dis-
crete part of the hydrogenic spectrum is then exhibited [7] by
the theory of irreducible representations of SO(4).

When redefined by Eq. (1), the Runge-Lenz vector A acts
only on states within the n shell and has nonzero matrix
elements only between states within the n shell. If P, is the
projector onto the n-shell subspace then one can write

U
A=P,——P,.
\V-2H
The operators A and U/V-2H are equivalent because all
their matrix elements are equal when evaluated between all
states within the same n shell. In general, the operators A
and B are equivalent within the n shell if all their intrashell
matrix elements are equal

(ny|Alny') = (ny|Blny'). ()

The quantum numbers 7 label the basis set which spans the

n* degenerate subspace. Spherical (n,l,m), parabolic
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(ny,ny,m), Stark (n,k,m) or algebraic (n,m,;,m,) quantum
numbers are all useful hydrogenic sets (see, e.g., Ref. [8],
Table 1). When an operator has an n-shell equivalent which
can be expressed in terms of the constants of motion L and
A, then its intrashell matrix elements are easily calculated in
any basis of states, using the SO(4) irreducible matrix repre-
sentations. For example, Pauli [7] has proven that

3n
PyrP,=——A,
2

so that the dipole operator r within the n shell is equivalent
to —(3n/2)A. The dipole matrix elements between all (I,m)
states of the same n are therefore simply related to the matrix
elements of A, which are then algebraically determined most
effectively in the algebraic or Stark bases.

III. MULTIPOLE AND MULTIPOLE-TYPE OPERATORS

Many applications require calculation of matrix elements
of higher multipole operators and therefore it is useful to find
their n-shell equivalents. The spherical-coordinate represen-
tation of the multipole operator of order \ is

dar
2A+1

oW = Yy (F), (3)
where r is the electron position vector, with magnitude r and
direction F, and where w are the 2A+1 components with
—N\=u=NA\. Equation (3) for A\=1,2,3 provides the dipole,
quadrupole, and octupole operators, respectively. In general,
as a function of coordinates, the multipole QS‘) is a solution
of the Laplace equation in the entire free space (excluding
the singular r=0 point).

Another definition [9], which directly reveals the irreduc-
ible tensor properties of the multipole operators, is

GA-DY e @en® . @ s @)

N _
Qu = \!

which represents Q as a multiple irreducible tensor product
of vector r over itself N times. A multipole-type operator is
obtained if the identical factors r are replaced by different
vectors a,b,c,... . Theory based on this definition will not be
developed here but will be the subject of future investigation.

Representation of the multipole operator by its Cartesian
components provides several advantages for the approach
taken in the present paper. The tensor g™ of rank \ with
Cartesian components

(_ I)ArZ)\H 1

Qiiy iy = mﬂilﬂiz dy (5)

is a harmonic polynomial of power X\ in the Cartesian com-
ponents x; (j=1,2,3) of the electronic position vector r.
Harmonic polynomials, by definition, satisfy the Laplace
equation. For N > 1, the tensor (5) can be expanded as a sum
of terms, as a result of taking successive derivatives. One of
the terms is Xi s Xiys oo Xis while the remaining terms contain
at least one Kronecker delta symbol for a pair of indices.
However, not all 3* components of the tensor g™ are inde-
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pendent because the tensor is fully symmetrical with regard
to index permutation and has zero trace when any pair of
indices is contracted. The fully symmetric tensor has (%:2)
independent components and there are ()2‘) pairs of indices
for which the trace is zero. The tensor g™ has therefore only
(”;2)—(§)=2>\+1 independent components. The first three
multipole operators have the following Cartesian compo-
nents:

" =x;, (6)
@_ Lo ;
qu xxj 3 ij> ( )
(3) 1 2
ije = XX = 5T (x; 0 + x; 0y + 1. 5) » (8)

for the dipole, quadrupole, and octupole moments, respec-
tively. An alternative definition for the Cartesian components
(5) is obtained by starting from the monomial x; ,x; ,....x;
and constructing from it the tensor components i iy. .., DY
adding terms such that the result has both the required sym-
metry and the zero trace condition for all pairs of indices. As
an example, the octupole operator is explicitly derived via
this procedure in Sec. VI. This is also the way one can con-
struct multipole-type operators starting from a set of vectors
(L and A in our present case) which replace the position
vector. For example, if one begins with vectors a,b,c,...,
the multipole-type operator contains the Cartesian compo-
nents aj,, biz’ci3’ ..., and the remaining terms are obtained by
permutations and contractions. Care must, however, be exer-
cised when the operators do not commute.

A relation between the spherical (3) and Cartesian (5)
components of the multipole operator is facilitated by using
the following definition for the spherical harmonics:

2L+1 )”2
47(L+ M)\(L - M)!

Y@ = (=DM rl(

1
X9y +id)MAK ™M=,
r

so that

- DMQL-1)1 <& (M
= [(L+M)!(L—M)!]”2k§olk( k >q‘~'3 Ly

M-k k  L-M

provides the required result. Explicit relations are

o=,

01" =~ (a)" +igs" )2, (9)
for the dipole operator,
3
2_=Z )
Oy’ = 2932 ’

SN TS
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1 /3 .
P == \ﬁ(q?f +2iq\3 - 4%), (10)
2 V2
for the quadrupole operator and
5
3 3
08 =248,
Q(13) =- _\ 3(6113% + “1233

15 3 3
— (g3 + 251(12)3 ‘1(22)2

Q(ss):__\’s(‘1111+319112 361(132)2_“1(232)2 (11)

for the octupole operator. We now seek to obtain equivalent
multipole operators within the n shell by constructing gen-
eral multipole-type operators

P,oMP,=FN(L,A)

from the two vector constants of motion L. and A. Because
the multipole operator Q™) of order \ is a uniform function
of coordinates of order A, coordinate scaling r — yr implies
that the operator scales as Q™ — Q™. We therefore re-
quire a similar property for the equivalent operator, such that
JF contains products of \ terms, where each of them can be
either L. or A. Further restrictions follow from parity
(coordinate-inversion) considerations—the parity of oW is
(=1)M, the parity of A is —1, and the parity of L is +1.
Multipoles of even order may therefore contain only prod-
ucts of even number of L operators. The equivalent dipole
operator (with odd parity) is expressed only in terms of A.
The equivalent quadrupole operator (even-parity) has terms
A-A and L-L, but not the odd-parity terms with A-L. Be-
cause of parity considerations, the equivalent octupole opera-
tor can only contain the two odd-parity terms, A-A-A and
A-L-L, while the even-parity term A-A-L is forbidden.

IV. EQUIVALENT DIPOLE OPERATOR

Using the general procedure outlined in the previous sec-
tion, we seek the operator equivalent to the dipole operator
(6) in the form

P,q"VP,=P,rP,=aA +bL.

The operator L has the opposite parity of ¢! and is therefore
precluded by setting b=0. The coefficient a is calculated by
comparing the matrix elements of A and r. Because of iden-
tical rotation properties of the two vectors, it is sufficient to
calculate the matrix elements only along one direction. It is
convenient to choose this direction as the z direction. Be-
cause of the selection rules, the dipole operator r and the
Runge-Lenz vector A have nonzero matrix elements only
between states with angular momentum quantum numbers
differing by one unit (I’=[%1).
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Using Eq. (9), the intrashell matrix elements of the z com-
ponent of the dipole are

(nl = 1mlz|nlm) = (R |r[R,) (Y 1oyl Y 10 Y1)

3 2 _ 12 12 2
__ 3, =DE=m) g
2 2-1D)@2L+1)
where the results (A3) and (A11) of Appendix A have been
used.
On the other hand, the Runge-Lenz component A, has the
matrix elements

(nz _ 12)(12 _ m2)
(nl—1m|A |nlm) = | QID@ie D) (13)
easily deduced from Eq. (A17).

By comparing Egs. (12) and (13), the coefficient is
a=-3n/2. This reproduces, as expected, the result
r——(3n/2)A originally obtained by Pauli [7]. The position
operator r can be therefore replaced by the Runge-Lenz vec-
tor, when restricted to states within the n shell. This result is
sometimes referred to as “Pauli’s replacement rule,” which,
in addition to Pauli’s original proof [7] can also be derived
from other approaches, as in Refs. [2,3]. It is useful to note
that the Cartesian components commute when unrestricted
([x,y]=0, for example), but behave as angular momentum
vectors when restricted to the n shell, because [Ax,Ay]=iLZ.

V. EQUIVALENT QUADRUPOLE OPERATOR

The quadrupole operator is a rank 2 tensor with Cartesian
components g defined by Eq. (7). It is symmetrical (g
=¢q,;) and has zero trace (2,q;,=0). Two quadrupolelike op-
erators, symmetrical, with zero trace and even parity, can be
constructed from A and L and can contribute to the equiva-
lent quadrupole operator. They are

1 1
o= S (A +A) - 2A%5,; (14)
and
1 1
2 _ = 272
0 = J(LiLj+ LiL) - 3175, (15)

where the end §;; term insures zero trace. Mixed terms of the
form A;L; have odd parity (sign changes under coordinate
inversion) and are therefore precluded. The equivalent quad-
rupole operator has therefore the general form

P,q?P,=a0V +b0?,

where the coefficients a and b are determined by comparing
the matrix elements of specific tensor components, between
states with angular momentum quantum number differing by
0 or 2 units, i.e., (I'=[,1%2).

It is convenient to calculate the matrix elements of the zz,
or 33, components of the quadrupole and quadrupolelike op-
erators and then to solve the set of equations

(nim|q ) |nim) = a(nlm| O\ |nlm) + b(nim|OF|nim),
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(nl' m|q ) |nim) = a(nl' m|0\Y|nim) + b{nl' m|0\2|nlm)

for the coefficients a and b, where I'=[-2.

A. Implementation

Explicit calculations of the above matrix elements of q(2)

33>
Og;), and O%) yield the results (A20), (A21), (A24), and
(A23), derived in Appendix A. The coefficients are thus cal-
culated as a=5n?/2 and b=-n?/2. The quadrupole equiva-
lent operator can therefore be expressed exclusively in terms

of the L and A operators as

1
anEJZ)Pn = Pn(xixj - grzaij>P"

S5n? 2,
n’ 2,

This is our desired rule which replaces the Cartesian quad-
rupole components (7) by Eq. (16). From this general rule,
the equivalent-operator relation

2
n
p25x2+y2=r2—z2=E(n2+3+L§+4A2—5A§),

(17)

for the cylindrical diagonal element squared is readily de-
duced. Expression (17), originally proven by Solov’ev [10],
was key to theoretical development for the hydrogen atom in
weak magnetic fields and in crossed electric and magnetic
fields (see Ref. [11], for example). The explicit rule (16)
provides, of course, all five independent quadrupole tensor
elements.

B. Equivalent operator for nlm—nlm’ transitions

It is worth noting that a construction was developed ear-
lier for the 3D rotational SO(3) group with generator L and
the unit vector n=r/r, instead of the SO(4) group vector r.
In one of their problems [13], Landau and Lifshitz derive the
equivalent-operator relation

1

2
—Sp=— ———————| LiLy+ L,L,— 125,
3T Q=11+ 3) | T TR 3 Tk

ning —

(18)

to be compared with our equivalent operator (16). This rela-
tion (18) is valid for the Hilbert space of states on a unit
sphere, within the subspace of states with definite total an-
gular momentum [ (but with different m), i.e., for nim
—nlm' transitions. The definition of equivalent operators for
this SO(3) group is

(nly| Alnly') = (nly|Blnly") (19)

in contrast to the definition (2) of hydrogenic SO(4) equiva-
lent operators. The present study provides the multipole op-
erators, i.e., irreducible tensors built from electron coordinate
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r, in terms of the hydrogenic SO(4) symmetry group genera-
tors L and A which permit all intrashell nlm — nl'm’ transi-
tions.

C. Quadrupole operator in the SO(3) ® SO(3) representation

In the Coulomb problem, it is conventional to replace L
and A by a pair of integrals of motion IV and I? related by

1 1
IW=—(L+A), 1P==(L-A),
SL+A) SL-A)

L=1D+1%, A=1V-1?,

The operators I'") and I®) possess all the properties enjoyed
by independent angular momentum quantum-mechanical op-
erators

AP =2 = +1), =5 0n-1),

[, 1?]=o0.

These pseudospin operators are generators of SO(3)
® SO(3) representation of algebra of SO(4) symmetry group
in quantum mechanics and provide the algebraic basis set [8]
of wave functions with quantum numbers (n,m;,m,). The
equivalent quadrupole operator rule (16) can now be recast
in terms of pseudospin vectors I") and I as

= U B0 (4 )
1
_ 3”2[151)11((2) + 152)15(1)] _ 5n2(nz _ 1)5[}(
+2n7[10 - 1?]85,.

D. Application: Averaged ion-quadrupole interaction

In a number of physical problems, the angular momenta
operators IV and I® are quantized with respect to indepen-
dent axes w; and w, in space. One example is the hydrogen
atom in crossed electric and magnetic fields, where the vec-
tors w; and w, are expressed [2] in terms of the electric field
strength and the magnetic field induction. This approach is
extended also to time-dependent fields [6]. Another example
appears in the theory [3,5] of intrashell mixing in excited
hydrogen atom by collision with a particle with charge Zp.
Here, in the corotating frame, the electric field is space-fixed
and directed along the z axis towards charge Zp, while the
effective magnetic field is perpendicular to it and normal to
the collision plane. The theory [3,5] of intrashell mixing usu-
ally accounts only for the leading and dominant charge-
dipole term in the expansion for the full charge (Zz)-Rydberg
atom interaction. The next term is the charge-quadrupole in-
teraction which, in the corotating frame, is

(2)

3775 (20)
where R is a vector directed from the atomic nucleus of the
target atom towards the projectile of charge Z and the com-
ponent along R is denoted by subscript 3.
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As a useful application of the present equivalent-operator
method, we evaluate the average of interaction (20) appro-
priate to perturbation theory. Namely, we perform in the
SO(3) ® SO(3) representation of Sec. V C, the average of the
quadrupole operator q%) over the atomic state defined by two
quantum numbers m; and m,, where m;, i=1,2 are the re-
spective eigenvalues for projection of the vector operators I
onto the respective axes ;. Let a;, i=1,2 be the angle be-
tween vectors w; and R, and let 8 be the angle between
vectors w; and w,. Algebraic manipulation readily yields the
important result

<m1m2|q(323)|m1m2>

2 2

=n® 2m%cos a; — 6m;m,cos a,cos a, + 2m§cos @,

+((n* = 1)/4 —mD)sin® a; + (n* = 1)/4 — m3)sin® a,
L,
- g(n —1) +2mmycos B

for the quadrupole moment averaged over an algebraic basis
set of wave functions with quantum numbers (n,m,,m,).

VI. EQUIVALENT OCTUPOLE OPERATOR

The Cartesian components of the octupole moment as a
tensor of rank 3 are defined by Eq. (8). The octupolelike
combinations of L. and A which have contributions to the
equivalent octupole operator within the n-shell are based on
A-A-A and L-L-A. Other combinations have even parity
and are forbidden by the parity rule, as previously explained
in Sec. III.

Following our general procedure, we seek the equivalent
octupole operators in the form

an(S)Pn =a0" + p0?,

where the tensor operator OV is derived from the set
A-A-A and O? from the set L-L-A, respectively. The pre-
cise method for constructing these operators is now ex-
plained.

The matrix elements of the 333 tensor components be-
tween states with one and three units difference in angular
momentum number are compared. The unknown coefficients
a and b are then solutions of the set of equations

(nl = 1m|qh|nim)
= a(nl — 1m| O\ %|nim) + b(nl = 1m|0Z}|nim),

(nl = 3m|q¥s|nim)
= a(nl - 3m|O % nim) + b{nl — 3m|03,|nim).

The Cartesian components Ol(.‘lk) and 01(22 of the octupole-
like operators are now constructed from A;A;A; and L;L;A,
respectively. Three operations are then applied to these el-
ementary combinations to insure that the resulting operators
possess the following properties: (1) they have zero trace
when any pair of indices are contracted, (2) they are fully
symmetric with respect to index permutations, and (3) they
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are symmetric over the order of noncommuting factors.
Given three vector operators a, b, and ¢, the ijk compo-
nent of the most general octupole-type operator is given by

3
1 1
o;x(a,b,c) = Z[aibjck - g‘sjkgl abscs— 551',‘;1 asbcy

3
1
- gb‘lkE axbjcx] s (21)
s=1

where Z represents the operation of symmetrization with re-
spect to both index and vector permutations. For example,
Zlabic,] = %2 2 (@) P (B) m(yP(C) s (22)
p T
where p represents a permutation of the vector set {a,b,c}
and where 7 is a permutation of the index set {i,;,k}. It is
easy to check that the combination (21) obtained in this way
possess all of the above (1)—(3) required properties.
Implementation. According to the general prescription
(21) above, the operator (8) takes the form o;;=0;(r,r,r)
so that its zzz (or 333) component in Cartesian representation
is

3
3) _ _3 23
G333 = 0333(r,1,1) = X3 — 5” X3,

as expected. From vectors L and A, two octupole operators
with the same parity as for o, can be constructed. One is

O\})=0,%(A.AA) and the other is O\})=0,;(A L.L).

The zzz (or 333) component of the octupole -type operator
o is

3
0% = 0333(A,A,A) = ZlA% -2 (ASAS)As] . (23)
With the aid of Eq. (22) and the commutation relations

[A;,A]=i€ly and [L;,A;]=i€;;A;, expression (23) reduces
eventually (see Appendix B 1) to simply

3 1
o), =A3 - E(A2A3 +A;A?) + As (24)

The second operator

0%)3 =0333(L,L,A)
,o 1
= 2y L:A; - 52 [(AL)Ly + (LAJLs + (LL)A;] ¢,

(25)

with the aid of similar algebraic reduction and the additional
identity A-L=L-A=0, eventually reduces (see Appendix
B 2)to

1 1
03, =13A;- E(L2A3 +A;L%) + §A3. (26)
Using Egs. (A26)—(A31) of Appendix A, the solution of

the set of equations of matrix elements yields the required
coefficients to be a=—%n> and b=gn’. The equivalent oc-
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tupole operator within the n shell is therefore

3 3

35n 15n
anlj P - 8 Oijk(A7A,A) + _Oijk(L’L’A)-

(27)

This is our desired rule which replaces the Cartesian octu-
pole (8) by Eq. (27), where the general components o, are
determined in the prescribed manner.

In particular, the sequences involved are provided in Ap-
pendix B for the 0333 case, as an example characteristic of
the overall calculational procedure. Specifically, Eq. (27),
with the aid of A%+ L?+1=n?, yields the expression

3) 5n° 2 12, 2 2
P.q333P, = ? 3L3A5 + ?(A Az +A3A°) — TA3

3
- %(3,12 +5) (28)

for the equivalent octupole 333-component operator in the
(L, A) representation.

VIIL. LIST OF EQUIVALENT MULTIPOLE OPERATORS
AND A TEST EXAMPLE

We have shown that the Cartesian dipole, quadrupole, and
octupole operators

" =x (29)
(2) 1 2
qU _xxj_g 5ij’ (30)
(3) 1 2
ije = XX = 5T (x; 8y + X0 + 1 5;5) (31)

have the equivalent intrashell dipole, quadrupole, and octu-
pole operators

3
gV =- S (32)

@ _ n? 2,

5n? 2,
35 15
‘folz == 8 ’;OUk 8 OIjk (34)

expressed explicitly in terms of the L. and A integrals of the
motion on the energy shell. Equation (32) reproduces the
Pauli [7] operator replacement rule r=-(3n/2)A, for the
dipole Cartesian component (29). Equations (33) and (34)
summarize our replacement rules for both the quadrupole
and octupole Cartesian elements (30) and (31). The operators

OS;k—o,,k(A A,A) and 0 —o,jk(L L,A) are defined in Sec.
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VI and are calculated in Appendix B. The n* scaling law is
apparent in Egs. (32)-(34). Note that equivalent operators
generally contain several terms with simple coefficients.

Application: Multipoles of extreme Stark states. As a test
example, consider the permanent multipole moments associ-
ated with the extreme Stark hydrogenic states, i.e., for those
Stark (parallel and antiparallel) states most stretched along
the positive and negative direction of the Z axis. With the aid
of the replacement rules (32)—(34), the appropriate spherical
multipole operators Qf) are

0y =45’ == A, (35)
0= %q%) =- 37"2( 3= %Lz) 154"2 (A% - %Az),
(36)
6= %qé%é =- 171—56”3(A§ + éA3 - %A% - %Agfﬁ)
+ %(L%& + éA3 - 11—0L2A3 - %A3L2). (37)

The parabolic and algebraic representation of these states
are, respectively,

¢(n—1)00(r) = | + > = n,j,‘j),

lrIIO(n—l)O(r) = |_ > = n’_j’j>'

Any of these hydrogenic stretched states |a)=|+) has expec-
tation value

0" = (alQ)|@) = (a|Qf| @) 8,0- (38)
For the “plus” states |+)=|n,j,—j) of the algebraic basis,

we have

3
0 =10 +) == Tas+).

where A;(+)=-2j=—(n—1), so that

3n(n-1)

0+ ==

is the permanent dipole moment for the extreme stretched

Stark state. On using L;(+)=0, L*(+)=n—-1, and A%(+)=n(n
—1), the quadrupole and octupole moments are

0F(+) = 37~ (5n=7)
and
0P ()= 20°(n= (1= 2)(Tn-9),

respectively. All these moments are in exact agreement with
the analytical results [8] of theory recently developed solely
for the case of these extreme Stark states. Matrix elements of
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operators (35)—(37) over the (n, [, m) basis have also been
checked for n=1-6.

VIII. CONCLUSIONS

We have shown that it is possible to construct both the
quadrupole and octopole operators solely in terms of the
AL operators which are integrals of motion on the energy
shell with quantum number n. We have provided and illus-
trated the various steps involved with their construction and
have derived explicit expressions for these operators. The
basic importance of these expressions is that they furnish the
ability to solve various structure and collision problems
solely by algebraic group theoretical techniques and commu-
tation relations based on the SO(4) symmetry of the hydro-
gen atom, when the dynamics is confined to the energy shell.
We gave various useful averages of these operators. Our gen-
eral theory readily provides the permanent dipole, quadru-
pole, and octupole of polar Rydberg atoms in their extreme
Stark states, a case which can be also solved by less-
sophisticated standard techniques. The present treatment will
be key to further developments in the theory of Stark / mix-
ing via the combined charge-dipole, charge-quadrupole, and
charge-octupole interactions evident in ion-Rydberg atom
collisions. The present study would also be important to in-
vestigation [14,15] of Rydberg atoms in the field of electric
multipoles.

Although the dipole, quadrupole, and octupole are the
most significant in many practical applications, the full gen-
eral solution for any multipole remains, at present, elusive.
Although plausible, the very existence of equivalent opera-
tors for a general multipole is not completely certain. Con-
sider, for instance, the hexadecapole operator [i.e., Eq. (5)
with A=4]. Here three tensor operators are appropriate: O'!)
derived from the set A-A-A-A, 0@ derived from the set
A-A-L-L, and 0¥ derived from the set L-L-L-L, while
the sets A-A-A-L and A-L-L-L with odd-parity are all
forbidden. The equivalent operator can then be taken as the
linear combination a0V +50® +c0®). Three nonzero non-
diagonal intrashell matrix elements (I'=/, I'=1[-2, and ['=1
—4) are then used to fit the coefficients a,b,c, in the manner
prescribed in Sec. VI.

Although this reasoning could, in principle, be extended
to higher multipoles, the overall procedure ultimately be-
comes quite cumbersome for actual calculations for larger \.
The simplicity of the coefficients in formulas (32)—(34) pos-
sibly indicates that there may well be simpler methods of
derivation. Although fruitful, the present theoretical system-
atic pole-by-pole approach may not be sufficiently powerful
for the general multipole case. Instead, some other more en-
compassing approach, probably based on study of commuta-
tion relations (similar in spirit to the derivation of Pauli re-
placement rule in the Appendix of Ref. [3]) could be
developed.

Finally, we indicate that there is another context where
equivalent operators are of key importance. Namely, higher
order contributions from external fields might be expressed
in terms of equivalent operators. These effects imply virtual
intershell (n-changing) transitions conveniently expressed
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via Green functions. Although equivalent operators were
constructed quite long ago by Solov’ev [12] for the second-
order contributions from electric fields, higher orders have,
as yet, not been considered. Equivalent operators of this type
are beyond the scope of the present study.
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APPENDIX A: INTRASHELL MATRIX ELEMENTS

1. Radial and angular elements

A general expression for intrashell radial matrix elements
of integer power of r is (see Ref. [16], for example)

(nl'[rP|nl)

:J R, (r)R,/(r) P dr
0

1 @ﬁ-l{ (4 1)l =L = DL

4\2 (n+1)(n=1-—=1)!
B+l ;
=
% Z;i!(ﬂn—i)!

« m+lo+D)(n=1--1+i)!
n+la+i-(B+ D] [n-Il--1+i-(B+ D]

where the lower limit in summation is iy=max[0,B+1—-(n
—I--1)], l.=max(l,I'), and [-=min(l,!’). This general
equation yields the following useful matrix elements for low
powers of r:

(nl|°nl) =1, (A1)
1 Lo
(nl|r'|nl) = 5[3}1 -1+ 1)], (A2)
3 5
(nl=1|rt|nl) = - En\“’ﬂ2 -, (A3)
1

(nl|r?|nl) = Enz[Snz =301+ 1)+ 1], (A4)

1 1
(nl = 1|r?|nl) = - 5}1(5}12 -+ 1)V -1, (A5)

2 S a2 2
(nl =2|r?|nl) = o V[n"=Flln* = (-1)7],  (A6)
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1
(nl|r|nl) = §n2{35n4 —5n¥61(1+1)-5]

+31(1-1D)(I+ 1)1 +2)}, (A7)

5 )
(nl =1]/|nl) = - §n3(7n2 32 +50Wn? -1, (AS8)

5
(nl =2|rnl) = §n2[7n2 —1(1-1)+2]

X\ =PI = (- 12, (A9)

(nl = 3|F|nl) = 33_5”3“'/[”2 — P - (1- 1) - (1-2)2].
(A10)

The standard angular integral is

(L] Y, | 1ymy) = f dQY, (DY, ()Y, ()

) 21, + 1) (2L, + D 0 ol
477(2[3_”_ 1) 110120 llmllzmz'

From standard tables (see Ref. [9], for example) of the

Clebsch-Gordan coefficients Cf?ﬁ?,zmz, we obtain the follow-

ing angular integrals for the quantum numbers of interest:

[3 | P-m?
(= 1m|Y g|lm) = VD (A11)
5 1(1+1)=3m?
mYoltm) =\ 2 ar =D i+ 3)

(1= 2mVoglim) = | = ——
MR =N g rai-1)

(A12)

(P =mH[(1-1)*—m?]
21-3)2l+1)

b}

(A13)

(l 1 |Y |l )_ lg 2_5m2-1 P —m?
T E N 2 = 3) 20+ 3) N @i D@1y
(Al4)

[ = 3m| Y|l )—\/l;
(1= 3m|Ys|lm) = 472(21-3)(21-1)

y J(zZ—nﬂ)[(z—1)2—m2][<z—2)2—m2]
(21-5)21+1) '

(A15)

2. Dipole matrix elements for Sec. IV

On using the relation (9), radial (A3), and angular (A11)
integrals, the dipole matrix elements are
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(nl = 1m|qsV|nlm) = (nl — 1m| QY |nlm)

[4
= ?ﬂ-(nl— r|nD)(I = 1m|Y 1o|lm)

(n2_l2)(12_m2)
QI-1D2i+1) (A16)

3. A and L operators

The action of Runge-Lenz vector on n-shell states is (see
Adams [1], p. 112, DeLange and Raab [1], p. 264, or Ref.
[17], for example)

(n2 _ 12)(12 _ mZ)

QI-1)21+1)

\/[n2 —(+ D+ 1) = m?]

+
21+ 1)(21+3)

As|nlm) = |nl — 1m)

|nl + 1m).

(A17)

The Pauli replacement rule r——(3n/2)A immediately fol-
lows on comparing Egs. (A16) and (A17).
In terms of the coefficient

~ (n2_12)(12_m2)
Enl = (21_1)(21+1) > (AIS)

Eq. (A17) can be rewritten as the linear combination
(A19)

of (n,lx1,m) states. The operators A,=A;+iA, which
change m by =1, respectively, can also be written as the
similar combinations

A3|nlm> = gnl|nl - 1m> + gnl+l|nl + 1m>

A+|nlm> =+ Bm,l—lcnl|nl_ Im+ 1> - 7m,l+lcnl+1|nl+ Im+ 1>»

A_|nlm> == ﬁ—m,l—lcnl|nl -lm- 1> + Yom,1+1Cni+1 |nl +1m - 1>

of (n,l+x1,m=1) states. The coefficients are
R —
Bui=\NI=m+1)(I-m),

Yma =N+ m+1)(1+m),

cu=Nm*=1)1Q1-1)21+1).

For completeness with above, the components L; and L,
=L,+iL, of the L operator obey the standard relations

Ls|nlm) = m|nlm),
L,|nlm) = w,, |nlm + 1),

L_|nlm) = w_,, jnlm - 1),

where w,, ;=(I-m)(l+m+1).

In the subsequent reduction of the bas1c A Aj and LiL;
operations within the quadrupole operators 0 and O(f) and
the A;A;Ay, A;L;Ly, and L;L;A; operations wrthln the octupole
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operators 0( k) and 0( , frequent use is made of the standard
commutation relatrons [Ai.A/]=i€uly, and [L;,L;]=ie; Ly
together with [L;,A;]=i€;;A, (Which relation rotates A; about
axis i to give Ay, thereby confirming the vector character of
A). We also employ the additional relations AL,
=(A-L)=0 and Z,LA,=(L-A)=0 for 0 3 reduction.

4. Quadrupole matrix elements for Sec. V

On using the relation (10), radial (A4), and angular (A12)
integrals, the quadrupole matrix elements are

(nlm|q'Y|nim) = —(nlm|Q02)|nlm)

2 (4
=§ ?Tr(nl|r2|nl)(lm|Y20|lm)

o’ I+ 1) =3m

= 5n* =31 =31+1
302" )

(A20)
and similarly, using Egs. (A6) and (A13),
(nl - 2m|q(2)|nlm>

= §<nl - 2m| QP |nim)

2 /4
= 2\ =2l Pl 1= 2
2

T2020-1)

" \/(nZ— P)n® = (1= 1)1 - m)[(I - 1)> - m?]
(21-3)21+1) '

(A21)

On using Eq. (A19), direct algebraic calculation of the

matrix elements of the quadrupole operators (14) and (15)
yields

1
(nlm|0(313)|nlm) = gil + gim - g[n2 —1(I+1)-1],

(A22)

(nl - 2m|O|nlm) = g ygm-1- (A23)
1

(nim|0Z|nim) = - =[1(1 + 1) = 3m?], (A24)
33 3

(nl - 2m|0F|nim)y =0, (A25)

in terms of the g,, coefficient (A18). The relation A%+L?
=n?~-1 has been used for Eq. (A22).

5. Octupole matrix elements for Sec. VI

The octupole matrix elements calculated using Egs. (11),
(A8), (A10), (A14), and (A15) are
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2
(nl = 1m|qh|nimy = =

PHYSICAL REVIEW A 74, 022720 (2006)

4
77T(nl— 1Pl (L = 1m| Y| im)

5
30 (In* =3P +5)(P=5m* = 1) [(n* = P)(I*—m?)
8 (21-3)(21+3) 20-1)2[+1) (A26)
and
(nl = 3m|qh|nim) = % 4777(111 = 3|7 |nl) (1 = 3m| Y 3|lm)
~ 35n° \/ (n* = P)[n* = (1= D*][n* = (1= 2)*)(* = m*)[(I = 1)* = m*][(1 - 2)* = m"]
T 8(20-3)(21-1) (21-5)21+1) '
(A27)

Direct calculation based on Eq. (A19) then provides the
following octupole matrix elements:

(nl - 1m|0333|nlm>

= 8| 8ai1 + 8+ Sris + 5 g(” -1,
(A28)
(nl = 3m|Oy|nim) = g,u8,1-18ui2- (A29)
15 2
(nl— 1m|0333|nlm) =- ggn,(l -5m~-1), (A30)
(nl = 3m|0Z|nim) =0, (A31)

in terms of the coefficient (A18). The relation A%+L*=n?
—1 has been used in Eq. (A28).

APPENDIX B: (A,L) Representation for operators
1) (2)
0333 and Oy,

We illustrate here the procedure for evaluating, in terms
of (A,L), the 0(3% and 0(323)3 operators from their basic defi-
nitions (23) and (25). At the outset, proper account must be
taken of the inherent Z-operation prescribed by formula (22)
for symmetrization with respect to both index and vector
permutations.

1. The 0333 component

The definition of 0333 is

O = 0335(A,AA) = Z| A3 -

-S (AAAS)Agl. (B1)

The first term ZA3=A] is left unaffected. The symmetrized
sum can be evaluated via the following progression of steps:

1

22 (AA)A;= 2 (AAA+AAA + AAA; +AAA,
+AAA+AZAA))
1

§(A2A3 +AAY + = 2 AAA,

1 1

= WA+ AAY) + 23 (AAA; - AAA;
F2AA5, - AA A+ AAA)
1 1

= (A3 +AAY) + 23 (A A3 A]
- [A3’A3]As)
[ o, ] . .

= E(A A3 +A3A ) + g[Alle - lL2A1
+Ay(—iLy) = (—iLy)A,]
1 1

= 5(A2A3 +A3A%) + gi([Al,Lz] -[A,,L,])
1, a1 .

= E(A A3 +A3A ) + gl(lA:; + lA3)

= l(AZA +A;A%) La

=5 3 3 33

The 0;13)3 operator (B1) therefore reduces to

Oy =A3- —(A Ay+AA%) + —A3 (B2)

as stated by Eq. (24) of the text.

2. The 0;23)3 component

0, is defined by
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1
0%, = 0335(L,L,A) = Z{ L2A;- 52 [(AL)Ls + (LA,)Ls + (LSLS)As]} : (B3)

Because the operators L; and A; commute, the first term ZL§A3=L§A3 is left unaffected. Symmetrization of the remaining

terms proceeds via the following steps:

1
ZE [(AsLs)LS + (LsAs)L3 + (LsLs)A3] = 62 (ASLSL3 + ASL3LS + LsAsLS + LSL3AS + LSAsLs + LSLsAs + LsAsL3 + LsL3As + AsLsL3

+ AsL3Ls + LSLXAs + L3AsLx + LSLSA3 + LSA3LS + LSLSA3 + LSA3LS + A3LSLS + A3LSLS)

1 1
= 52 (ASLSL3 + ASL3LS + L.S‘ASL3 + LsL3As + L3AsLs + L3LxAs) + §(L2A3 + A3L2)

1 1 1 1
+ 52 LA;L, = 32 (ALsL, + LA, + §(L2A3 +A;L2) + 52 LA;L,. (B4)

The first sum on the right-hand side of (B4) transforms
from

Sl = 2 (AsLSLs + LSL3AS)

N

= > (ALsLy~ AL Ly +L LA~ LsLA)

s

= E (AS[L3’L5] - [LS’Ls]As)

to
S1=AiL, —il,A, +A2(— i)Ll - (— i)LlAz
= i[Al»Lz] - i[AZ’Ll] == 2A3-

The second sum on the right-hand side of (B4) becomes
reduced by the steps from

S2 = 2 L3A3Ls
1
= 22 (Ll Ay = LLA + 2L AL+ Asl L = ALL)

1 1
= E(L2A3 +A;L%) + 52 (L A3, L] - [A3,L,]L,)

s

0| =

1
(L2A3 + A3L2) + E(LllAz - iA2L1 - L2iA1 + lAle)

0| =

1
(L’A3+AsL?) + UL A] = ilLo,AL])

(LA + ASL%) + %(iiA3 + (= i) (= i)iA3) (B5)

N | =

to

1
S2 = E(LZA:; +A3L2) _AS'

The full 0(323)3 operator (B3) is therefore
@ _ g2 L 2, ]
O333=L3A;5 - B(L Az +AsL%) + gA3, (B6)

as stated by Eq. (26) of the text. The end term of Eq. (B6)
being extracted from the detailed algebraic calculation
above, is the least obvious.
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