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In a large variety of spectroscopical applications Bloch-Boltzmann equations �BBE� play an essential role.
They describe the evolution of the reduced-density operator of an active atom, which is coupled to radiation
�Bloch part� and which interacts collisionally with the perturber gas �Boltzmann part�. The standard approach
to the collisional part is well known from the literature. It preserves hermiticity and normalization, but the
question of whether it preserves positivity seems to remain open. The completely positive BBE were recently
derived via the general master-equation techniques. These two approaches are applied for a model of n-level
nondegenerate atom. We show that within this model both approaches to the collisional part of BBE are
equivalent �give the same physical predictions�. The approach based upon master-equation techniques guaran-
tees the preservation of hermiticity, normalization, and positivity. The proven equivalence ascertains that the
standard approach also preserves positivity. Moreover, some aspects of the standard derivation �which atomic
states do contribute to the evolution� are clarified by the established equivalence.
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I. INTRODUCTION

One of the typical, spectroscopically important experi-
mental situations occurs when a gaseous mixture is irradiated
by the external light source. The mixture consists of active
atoms, which couple to the incident radiation and of a usu-
ally much denser inert gas. The perturbers’ atoms collide
with the active ones, thereby influencing their behavior.
Then, many properties of such a system can be studied, both
experimentally and theoretically. The literature devoted to
such problems is large, so we indicate only some essential
monographs �1–4�.

Usually, only the active atoms are of interest, hence they
must be theoretically described within the density-operator
formalism. The equations of motion for the active-atom den-
sity operator may be called, in the absence of any better
name, Bloch-Boltzmann equations �BBE�. The Bloch part
describes the interaction between the active atoms and radia-
tion. It is a generalization of the well-known two-level opti-
cal Bloch equations �4� to a more general multilevel case.
The collisional interaction between active atoms and perturb-
ers is given by suitably constructed collision integrals. This
contribution to equations of motion might be called the Bolt-
zmann part.

The recent advances in the fundamentals of quantum me-
chanics and in the quantum information theory have shown
the importance of the preservation of the basic properties of
any density operator: hermiticity, normalization, and positiv-
ity �for an excellent review, see Ref. �5� and the references
given therein�. These essential properties of the density op-
erator must be preserved by any theoretical formalism. The
aim of this work is to discuss this point for the spectroscopi-
cally important situation, which was sketched above. Since a
radiative �or Bloch� part of the corresponding equations of
motion is already well investigated, we shall focus our atten-
tion on the collisional �Boltzmann� part.

In the recent paper �6� a gaseous mixture of two species,
A �active atoms� and P �perturbers�, was considered. The
densities of these two components are assumed to satisfy the
relation NA�NP, and an equation of motion for the density
operator of the A atom interacting collisionally with the per-
turbers, i.e., is rederived. This approach is based upon gen-
eral master equation �ME� techniques �for a review, see Ref.
�7�� in the spirit of the Lindblad-Gorini-Kossakowski-
Sudarshan method. The employed technique ensures that the
A-atom density operator possesses all the necessary proper-
ties: it is Hermitian, normalized, and positive-definite for all
instants of time. It is perhaps worth mentioning that the
Bloch part �i.e., radiative one� of the equations of motion for
the active-atom density operator is usually derived within
ME techniques �see Ref. �4��. Therefore, this contribution to
BBE is certain to preserve the mentioned properties of the
density operator. This is also the reason why we restrict our
attention to the collisional part of BBE.

The other approach to the derivation of the Boltzmann
part of the BBE is known since the pioneering work of
Snider �9�. Then, it was refined by many other authors and
employed in a variety of practical applications �see, for ex-
ample, Refs. �10,11��. Moreover, in a recent work Snider
�12� gives an excellent and quite general review of this deri-
vation together with an extensive discussion of all underly-
ing physical assumptions and approximations. On the other
hand, when spectroscopical applications are within focus,
then the monograph �2� by Rautian and Shalagin seems to
give the most comprehensive review of the derivation of
collision integrals appearing in BBE. In the following, we
shall call their presentation the standard approach to the deri-
vation of BBE. It is, perhaps, worth noting that the derivation
given by Rautian and Shalagin leads to the appearance of
some Kronecker-type delta factors, which perform the role of
“state selectors”—select the atomic states, which contribute
to the evolution of the A-atom density operator. The authors
themselves say that their procedure is open to question ��2�,
p. 42�.

Working within the standard approach it is relatively
straightforward to prove that it preserves the hermiticity of*Electronic address: fizsk@univ.gda.pl
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the atomic-density operator. The proof that the normalization
is also preserved requires one to invoke the optical theorem
of the quantum-multichannel scattering theory. However, we
are not aware of any studies in which the preservation of
positivity is investigated. The discussion of this point is the
main aim of our work. The secondary aim of our work is to
investigate the validity of the state selection mechanism pro-
posed by Rautian and Shalagin.

It is not our aim to present the details of the derivations or
the underlying physical and mathematical assumptions of the
two indicated approaches to the Boltzmann part of BBE.
These aspects are well documented in the literature �2,6,12�,
so there seems to be no need to repeat them here. We shall
only use the results relevant to the main subject of our dis-
cussion.

Section II is devoted to a brief presentation of the colli-
sional contributions to BBE obtained within the master-
equation approach and in the standard one. We do not derive
them, but simply state the results, which are essential for
further discussion.

In Sec. III we adapt the general formulas of the previous
section to the model of n-level atom with nondegenerate en-
ergies. We construct the collisional parts of BBE correspond-
ing to both approaches. In the Sec. III D we argue that the
obtained results are, in fact, equivalent. This allows us to
state that the standard approach �within the adopted model�
preserves the positivity of the active-atom density operator.
The proof of this fact constitutes the main result of this work.
Since both approaches satisfy the essential requirements, we
do not need to seek for differences. This also means that the
underlying assumptions and/or approximations need not be
discussed here.

Finally, Sec. IV contains some remarks that may be useful
for some further research, that is, for discussing the preser-
vation of positivity for more general models studied within
the standard approach �the master-equation approach is guar-
anteed to do so�. Moreover, we hope that some of our re-
marks will be useful to provide the standard approach with a
more rigorous standing. Namely, the equivalence of both ap-
proaches validates the Kronecker deltalike state selective
factors, which appear in the standard approach of Rautian
and Shalagin.

II. TWO APPROACHES TO THE DERIVATION OF THE
COLLISIONAL PART OF BBE

A. Master-equation approach

The derivation of the Boltzmann part of BBE via the
master-equation technique is given in the recent paper �6�,
where the necessary assumptions are also discussed. This is a
mathematically rigorous, although fairly involved method. It
is not our purpose to obscure the physical discussion by
mathematical technicalities, therefore we will present here
only the most essential results of the theory given in Ref. �6�.

In order to ensure the preservation of hermiticity, normal-
ization, and positivity of the reduced atomic-density opera-
tor, the corresponding equation of motion must be of the
general, Lindblad-Kossakowski-Gorini form �7� �see also
Ref. �8� for an intuitive and simple discussion�. This is a

well-known general ME, which stems from the Kraus theo-
rem �5,8� and it reads

�

�t
�� = −

i

�
�H�,��� + �

�
�

�

Ŝ��
� ���Ŝ��

� �† −
1

2
�B̂��� + ��B̂�� ,

�1�

where �� is a �reduced-� density operator of an A atom. It is
parametrized by an index �, which, under the suitable addi-
tional assumptions �6�, can be shown to correspond to the
velocity of a considered atom. Let H� denote a Hilbert space
of the atomic states. Then the quantities appearing in Eq. �1�
are defined as mappings �operators�,

H� = H�
†:H� → H� �Hamiltonian� , �2a�

Ŝ��
� :H� → H�, �2b�

�Ŝ��
� �†:H� → H� �H.c. of Ŝ��

� � , �2c�

B̂� = �
�

�
�

�Ŝ��
� �†Ŝ��

� . �2d�

The general master equation �1� is then adapted to our
needs—to describe the active-atom-perturber collisional in-
teraction. These steps are also discussed in Ref. �6�, so we
only state the results essential to further discussion.

We consider a n-level A atom immersed in much denser
perturbers. The perturbers �assumed to be structureless par-
ticles� thermalize very rapidly, hence their distribution is
simply Maxwellian,

W�P��v�� = � 1

�up
2�3/2

exp�−
v�2

up
2� , �3�

with up
2 =2kBT /mp, where mp is the mass of the perturber

atom.
Let us now take the Hamiltonian of the free A atom as

HA = �
k

n

� �k�k	
k� , �4�

where the eigenfrequencies �k may, in general, be degener-
ate.

Next, let �Sa� be a basis in the space of operators acting on
the Hilbert space of A-atom states ��k	�. These operators sat-
isfy the relation

�HA,Sa� = � 	aSa, a = 1,2, . . . ,n2, �5�

where the quantities 	a are identified as Bohr frequencies.
Within this framework, the collisional part of the master

equation becomes �6�

�

�t
��v��coll. = −

1

2�
a,b


ba�v���Sa
†Sb,��v����+�

+ �
a,b
� dv��Kab�v� ← v���Sa��v���Sb

†, �6�

where the �+� subscript denotes the anticommutator and

STANISŁAW KRYSZEWSKI AND JUSTYNA CZECHOWSKA PHYSICAL REVIEW A 74, 022719 �2006�

022719-2



��v��=��r� ,v� , t� is the reduced-density operator of an A atom
with respect to internal variables �states� but a phase-space
distribution with respect to position and velocity. The relax-
ation �collisional� rate 
ba�v�� is specified as


ba � 
ba�v�� =� dv��Kba�v�� ← v�� . �7�

Finally, it can be shown �6,7� that the matrix Kab�v� ←v��� is
expressed as

Kab�v� ← v��� = 2NP�	a,	b� dv�r1� dv�r

�W�P��v�� − v�r1��3�v� − v�� −


ma
�v�r − v�r1��

���vr
2 − vr1

2 +
2 � 	a


�

�fa�v�r ← v�r1�fb
*�v�r ← v�r1� . �8�

The given Kab�v� ←v��� matrix clearly ensures the momentum
and energy conservation. The employed notation is as fol-
lows: ma is the mass of an A atom, while  is the reduced
mass of A-P colliding partners; v�r and v�r1 are the relative
velocities; and NP is the density of the perturber gas. The
functions fa�v�r←v�r1� are connected with the usual �taken in
the center-of-mass frame� scattering amplitudes

�
a

fa�v�r ← v�r1�Sa = �
j,k=1

n

f�j,v�r ← k,v�r1��j	
k� . �9�

We note that the Kab�v� ←v��� matrix is clearly Hermitian and
positive definite. Hermiticity of the matrix Kab�v� ←v��� im-
plies that 
ba

* �v��=
ab�v��. These ensure the preservation of
the hermiticity of the A-atom reduced-density operator.

The factor �	a,	b
in Eq. �8� has the sense of the Kronecker

delta

�	a,	b
= �0 for 	a � 	b

1 for 	a = 	b.
�10�

This factor appears due to the averaging procedure, which is
necessary to ensure the positivity preservation. This point is
discussed in Ref. �7� �p. 29�. The �	a,	b

factor may also be
alternatively viewed as a result of the secular approximation.
This second view is beautifully discussed by Cohen-
Tannoudji �4� and it is allowed �similarly, as the above-
mentioned averaging procedure� because of the existence of
two largely different time scales �see the discussion in Ref.
�4�, p. 278�.

We stress that the resulting collisional ME �6� preserves
all the necessary properties of the A-atom reduced-density
operator ��v��. Preservation of hermiticity follows from the
hermiticity of the Kab�v� ←v��� matrix. Next, relation �7� en-
sures that

�

�t
� dv� Tr���v��� = 0, �11�

as necessary for the preservation of normalization. Finally,
the preservation of positivity is ensured by the general Lind-
blad structure of the ME �6�.

B. Standard approach

The standard derivation of the Boltzmann part of BBE as
presented by Rautian and Shalagin �2� is rather lengthy and
fairly complicated. It is based upon the following physical
assumptions: �i� NA�NP, so that the A-A collisions are neg-
ligible; �ii� the densities are sufficiently low so that only
localized binary collisions are of importance; �iii� the as-
sumption of the molecular chaos holds, so that the two-
particle density operators can be factorized and thereby the
Bogoliubov-Born-Green-Kirkwood-Yvon �BBGKY� hierar-
chy can be truncated; and �iv� the duration of the collision is
by far the shortest time scale, so that the impact approxima-
tion is valid �see Ref. �2�, p. 31�. A similar approach albeit
more general �not focused on specific spectroscopic applica-
tions� is also reviewed in Ref. �12�.

When the above assumptions hold, then the general von
Neumann equation for the density operator for the entire sys-
tem is truncated �traced� to an equation for a single A atom.
The interaction with the perturbers is considered within the
framework of the time-dependent scattering theory. The col-
lision integrals are expressed �similarly as in Refs. �9,12�� in
terms of the elements of the scattering T matrix, which are
subsequently reexpressed by the usual scattering amplitudes.
Further steps consist of semiclassical approximation, which
leads to the collisional terms of the following shape:

 �

�t
�����v��

coll.
= − �

�1�1�

�����,v� ��1�1����1�1�
�v��

+ �
�1�1�

� dv�1K����,v� ��1�1�,v�1���1�1�
�v�1� ,

�12�

where �����v�� denotes the matrix elements of the A-atom
reduced-density operator �which has the same sense as in the
ME approach�. The indices � should be understood as mul-
tiple ones �atomic states may be labeled by several quantum
numbers�.

The collision rate appearing in the first term is given as

�����,v� ��1�1�� = NP�2��

i
� � dv�rW

�P��v� − v�r�

��f��,v�r ← �1,v�r������1
�����1�

− f*���,v�r ← �1�,v�r�������1�
����1

� .

�13�

We note that this collisional rate is given by the elastic
forward-scattering amplitudes. ���1

are simple Kronecker-
type deltas, while the factors �����1

�=����−��1
� have
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meaning similar to that defined in Eq. �10�. These delta fac-
tors ensure energy conservation. Their origin and signifi-
cance will be discussed later.

The second term of Eq. �12� contains the collision kernel
specified as

K����,v� ��1�1�,v�1� = ������������1�1�
� + �1 − ��������

������1
�������1�

��

�2NP� dv�r� dv�r1W�P��v�1 − v�r1�

���v� − v�1 −


ma
�v�r − v�r1��

�f��,v�r ← �1,v�r1�f*���,v�r ← �1�,v�r1�

���vr
2 − vr1

2 +
2


�E� − E�1

�� . �14�

The important feature of the standard derivation �2,12�
consists of the appearance of the Kronecker-type delta fac-
tors of the type of �������. They play a selective role, indi-
cating that not all matrix elements ��1�1�

�in the right-hand
side of Eq. �12�� contribute to the evolution of ����. The
origin of these factors can be explained �2,12� in the follow-
ing way.

The T-matrix elements 
� ,p� r � T̂ ��1 ,p� r1	 �in the time-
dependent scattering theory and in the center-of-mass frame�
include phase factors of the type of

exp�it�E� − E�1
�/ � � . �15�

When Bohr frequencies ���1
= �E�−E�1

� /� are nonzero, the
corresponding exponentials oscillate rapidly and their contri-
bution to the overall evolution averages out virtually to zero.
In other words, only those states for which Bohr frequencies
are close to zero contribute significantly to collision inte-
grals. This argument gives rise to the �����1

�-type factors in
the collision rate and kernel. In the following of Rautian and
Shalagin, it must be stressed, however, that these simple
deltalike terms appear due to the assumption that the perturb-
ers are unpolarized. If this assumption does not hold, the
structure of the corresponding deltalike factors would be dif-
ferent and more complicated since these factors would in-
clude Bohr frequencies also for perturbers.

Rautian and Shalagin discuss the role of the exponential
factors but do not carry their calculation as far as we did
�13�. They retain factors �15� in their formulas and comment
only verbally on their significance. We can say that the av-
eraging procedure resulting in the appearance of the
�����1

�-type terms is similar to the averaging procedure em-
ployed in the ME approach. Alternatively speaking, the se-
lection rules due to factors �15� are equivalent to the secular
approximation as discussed by Cohen-Tannoudji �4�. One
may say, somewhat colloquially, that the significance of the
discussed deltalike factors, to quote Rautian and Shalagin,
reduces to “like is excited by like” ��2�, p. 42�. This means
that the equation of motion �12� connects populations with
populations and coherences with coherences.

In the following sections we will return to the discussion
of this point, where we will compare the ME results with the
standard ones for a more specific model of an active atom.
This will allow us to shed some new light onto the role
played by the “selective” deltalike factors.

Furthermore, we note that it is relatively easy to show that

�*����,v� ��1�1�� = �����,v� ��1��1� , �16�

and similarly,

K*����,v� ��1�1�,v�1� = K����,v� ��1��1,v�1� . �17�

Both these relations ensure that the evolution given by Eq.
�12� preserves the hermiticity of the A-atom density operator.

The preservation of the proper normalization of the den-
sity operator on one hand, follows directly from the general
formalism employed by Rautian and Shalagin. On the other
hand, it should be also possible to prove that the summation
�over atomic states� and integration over v� of the diagonal
equations �12� yields zero, as required by normalization. The
complicated structures of the rate � and kernel K make it a
rather formidable task �at least in general�. It seems that it is
better to use the general equations for some specific model of
the A-atom structure. Then, checking that normalization is
indeed preserved should be much easier. We shall do so in
the following sections. It is, however, not clear whether the
positivity of ��r� ,v� , t� is also preserved. There seems to be no
compelling, rigorous argument to state so for certain. We
shall later return to the discussion of this very important
issue.

Finally, we note that the collisional rate �13� has the fol-
lowing interesting property:

Re������,v� ������ =
1

2
�����,v� ���� + ������,v� ������� ,

�18�

which will be useful in the further discussion.

III. DISCUSSION

A. General comments and atomic model

Equations �6� and �12� representing two approaches to the
quantum-mechanical Boltzmann equation are of the similar,
although not necessarily identical, form. These external dis-
similarities have led us �see Ref. �6�� to the supposition that
the standard approach may not preserve the positive definite-
ness of the A-atom density operator. This supposition was
somewhat strengthened by two additional facts.

The general structure of the collision kernels �Eq. �8� in
the ME approach and Eq. �14� in the standard one� is quite
the same. The only external difference consists of the struc-
ture of the “state-selective” deltalike factors. At first sight it
is not at all clear whether these factors lead to the same state
selection mechanisms.

Secondly, the collision rate � is given in Eq. �13� by the
difference of forward-scattering amplitudes, while 
ba de-
fined in Eq. �7� clearly contains products of scattering am-
plitudes, as it follows after the insertion of Eq. �8� into Eq.
�7�.
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These arguments seem to support the supposition that the
standard derivation is not certain to preserve the positivity of
the A-atom density operator. To clarify these points we shall
consider the A atom with a multilevel but nondegenerate
structure. Hence, we once again take the free-atom Hamil-
tonian as: HA=�k��k�k	
k�, with kets �k	 constituting an or-
thonormal and complete basis in the Hilbert space of atomic
states. The free evolution of the elements of the atomic-
density operator is given as

 �

�t
�mn�v��

free

= − i�mn�mn�v�� , �19�

while we assume that Bohr frequencies �mn�� jk for differ-
ent pairs of indices �obviously � j j =0 holds for any j�. Thus,
adopting the nondegenerate model we avoid dealing with the
off-diagonal matrix elements of the density operator, which
correspond to Bohr frequencies equal to zero.

B. Master-equation approach

The general structure of the master equation is given in
Eq. �6� and it must now be adapted to the presently consid-
ered model of the multilevel nondegenerate atom. The choice
of the operator basis is in this case obvious. We simply take

Sa ↔ Pjk = �j	
k� . �20�

Hence, index a used previously to enumerate the operator
basis is now replaced by a pair of numbers �j ,k�. Moreover,
Bohr frequency 	a corresponds now to � jk. The considered
density operator can then be expanded in the chosen basis as

��v�� = �
j,k

� jk�v��Pjk. �21�

Using the adopted identifications, all the terms in Eq. �6� can
easily be computed. Since we are mainly interested in the
comparison of the two variants of the collisional terms of
BBE we shall omit the computational technicalities. The ker-
nels Kab=K jk,mn �and consequently the rates 
ab=
 jk,mn�
contain the state-selective factors �	a,	b

=��� jk−�mn� acting
as Kronecker deltas. Careful but simple computation of all
the necessary sums leads to the following collisional equa-
tions of motion: for populations we get

 �

�t
�mm�v��

coll.
= − 
̃mm�v���mm�v��

+ �
k
� dv��Kmk,mk�v���kk�v��� , �22�

where we notice that the presence of the summation reflects
the fact that inelastic collisions are also accounted for. On the
other hand, for coherences we get

 �

�t
�mn�v��

coll.

�m�n�

= −
1

2
�
̃mm�v�� + 
̃nn�v����mn�v���

+� dv��Kmm,nn�v� ← v����mn�v��� .

�23�

In Eqs. �22� and �23� we have introduced a convenient ab-
breviation


̃mm�v�1� = �
j


 jm,jm�v�1� = �
j
� dv�K jm,jm�v� ← v�1� .

�24�

The collision kernel appearing here is now written in the
following form:

Kmj,nk�v� ← v�1� = 2NP� dv�r� dv�r1

�W�P��v�1 − v�r1
��3�v� − v�1 −



ma
�v�r − v�r1

��
���vr

2 − vr1

2 +
2 � �mj


� f�m,v�r ← j,v�r1

�

�f*�n,v�r ← k,v�r1
� . �25�

Once again we feel it necessary to stress that the resulting
equations �22� and �23� preserve hermiticity, normalization,
and positivity of the atomic-density operator ��v��.

C. Application of the standard approach

Equation �12� has now to be transformed to suit the cur-
rently investigated model. General �multi�indices � ,��
should be replaced by numbers j ,k, etc. The corresponding
changes are then to be made in the expressions �13� and �14�
where the summations involving the state selective deltalike
factors can now be easily performed. This leads to the fol-
lowing equation of motion for populations:

 �

�t
�mm�v��

coll.
= − �mm�v���mm�v��

+ �
k
� dv�1J�mm,v� �kk,v�1��kk�v�1� ,

�26�

where we again see the contributions from inelastic colli-
sions. The corresponding equation for coherences reads

 �

�t
�mn�v��

coll.

�m�n�

= − �mn�v���mn�v��

+� dv�1J�mn,v� �mn,v�1��mn�v�1� .

�27�

The collision rate �13� transformed to suit the presently con-
sidered model is now given as
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�mn�v�� � ��mn,v� �mn� = NP�2��

i
� � dv�rW

�P��v� − v�r�

� �f�m,v�r ← m,v�r� − f*�n,v�r ← n,v�r�� . �28�

and the collision kernel is of the following form:

J�mn,v� �jk,v�1� = 2NP� dv�r� dv�r1W�P��v�1 − v�r1�

���v� − v�1 −


ma
�v�r − v�r1��

���vr
2 − vr1

2 +
2


�Em − Ej��

�f�m,v�r ← j,v�r1�f*�n,v�r ← k,v�r1� .

�29�

Definition �28� implies that �mn�v��=�nm
* �v��. Moreover,

the general relation �17� yields J*�mn ,v� � jk ,v�1�
=J�nm ,v� �kj ,v�1�. These two facts ensure that Eqs. �26� and
�27� preserve the hermiticity of the density operator.

To prove that the normalization is retained properly, we
need to show that relation �11� is satisfied. From Eq. �26� it
follows that requirement �11� is equivalent to the condition

�kk�v�1� = �
m
� dv�J�mm,v� �kk,v�1� . �30�

Obviously, definition �28� of the collision rate implies that

�kk�v�� = NP�4��


� � dv�rW

�P��v� − v�r�Im�f�k,v�r ← k,v�r�� .

�31�

Since the discussed formalism allows for inelastic scattering,
we need to use the multichannel scattering theory �14�. The
optical theorem allows us to express the imaginary part of
the elastic-forward-scattering amplitude by the total cross
section �T�k ,v�r� for scattering from the state �k	 ,v�r. Thus, we
cast the left-hand side of Eq. �30� into the form

�kk�v�1� = NP� dv�rW
�P��v�1 − v�r��v�r��T�k,v�r� . �32�

The total cross section can be written as a sum

�T�k,v�r� = �
m
� d	�v�r1�

d�k→m

d	�v�r1�
, �33�

where in the right-hand side we have differential cross sec-
tions corresponding to scattering from state �k	 ,v�r to �m	 ,v�r1
and where the integration is performed over the angles speci-
fied by the direction of final velocity. We note that the cross
sections are computed on a constant energy shell, that is,

Ek + 1
2v�r

2 = Em + 1
2v�r1

2 . �34�

Then, the collision rate �32� takes the form

�kk�v�1� = NP�
m
� dv�r� d	�v�r1�

�W�P��v�1 − v�r��v�r�
d�k→m

d	�v�r1�
. �35�

On the other hand, the right-hand side of Eq. �30� contains
square moduli of scattering amplitudes �as it follows from
Eq. �29��. From the multichannel scattering theory we have

�f�m,v�r ← k,v�r1��2 =
�v�r1�
�v�r�

d�k→m

d	�v�r�
�36�

�note the reversed roles of relative velocities v�r and v�r1�.
Inserting the kernel �29� into the rhs of Eq. �30� and using
Eq. �36� we can perform all the necessary integrations. Then
we arrive at the expression identical with the rhs of Eq. �35�.
This completes the proof of relation �30� and, therefore, we
see that the considered model ensures the preservation of the
proper normalization of the A-atom density operator. We
note, however, that the question of positivity preservation
still remains open.

The general property �18� of the collisional rate in the
standard approach allows us to write for the presently con-
sidered case

Re��mn�v��� = 1
2 ��mm�v�� + �nn�v��� �37�

which has important consequences. Equation �27� describes
the collisional evolution of coherences. The term containing
the imaginary part of �mn can be written separately. Then it
can be combined with the Hamiltonian �unitary� part of the
evolution and identified as the collisionally induced atomic-
frequency shift. Therefore, only the term containing Re��mn�
contributes to the relaxation part of Eq. �27�, which is there-
fore replaced by the following equation:

 �

�t
�mn�v��

coll.

�m�n�

= −
1

2
��mm�v�� + �nn�v����mn�v��

+� dv�1J�mn,v� �mn,v�1��mn�v�1� ,

�38�

Moreover, we note that within the discussed model only the
rates �kk�v�� given in Eqs. �30� and �31� or in Eq. �35� are of
importance.

Summarizing, we can say that within the standard ap-
proach the evolution of the density operator of a multilevel
nondegenerate atom is governed by Eqs. �26� and �38� for
populations and coherences, respectively. Finally, we note
that Rautian and Shalagin give corresponding equations,
which do not fully agree with the results given above �15�.
We attribute this discrepancy most probably to misprints.
Moreover, we have fully used the state-selective deltalike
factors, which, unfortunately, are not consequently resolved
by Rautian and Shalagin, who retain exponential factors like
the ones in Eq. �15�.
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D. Equivalence of both approaches

Collisional equations of motion for both discussed ap-
proaches are given by formulas �22� and �26� for popula-
tions, and by Eqs. �23� and �38� for coherences, respectively.
By inspection, we see that these two pairs of equations have
the same formal structure. On the other hand, comparing
Eqs. �25� and �29� giving the kernels for respective ap-
proaches, we see that they are, in fact, identical;

J�mn,v� �jk,v�1� = Kmj,nk�v� ← v�1� . �39�

Next, from Eq. �24� it follows that


̃mm�v�1� = �
j
� dv�1K jm,jm�v�1 ← v��

= �
j
� dv�1J�j j,v�1�mm,v�� = �kk�v�1� , �40�

where, in the last step, we have used relation �30�, which was
proved for the standard approach.

We conclude that the pairs of equations �22�, �26� and
�23�, �38� are not only of the same formal structure but are
strictly identical. This allows us to answer the question on
the preservation of positivity of the atomic-density operator
within the standard approach. Since master-equation tech-
nique is guaranteed to do so and the standard approach yields
the same results, it also preserves all the necessary properties
of the atomic-density operator. Obviously, this conclusion is
valid for the considered model—a multilevel atom with non-
degenerate levels satisfying the requirement that � jk��mn
for two different pairs of indices.

It is perhaps worth noting that proving the equivalence of
both approaches, we have used Eq. �38� for the evolution of
coherences in the standard approach. Certainly, this equation
is valid due to the possibility of replacing �mn in Eq. �27� by
the right-hand side of Eq. �37�. Hence, the latter one is es-
sential in the proof of equivalence and it follows directly
from definition �28� �see also Ref. �15��.

IV. FINAL REMARKS

We have compared two different approaches to the deri-
vation of the collisional �Boltzmann� part of the spectro-
scopically important Bloch-Boltzmann equations: the
master-equation approach �6� and the standard approach as
reviewed by Rautian and Shalagin �2�. We have shown that
both approaches for a multilevel atom with nondegenerate
levels and with nondegenerate Bohr frequencies are equiva-
lent. Within the given model, both preserve the fundamental
properties of the atomic-density operator: hermiticity, nor-
malization, and positivity. We have thus proved that the sup-
position stated at the beginning of Sec. III was wrong and
both approaches, at least within the discussed model, are
equivalent.

As it is seen from our comments, lifting any of our as-
sumptions may lead to different conclusions. We note that
allowing for overlapping line profiles, that is, for � jk not
necessarily different from �mn �with �j ,k�� �m ,n��, may
lead to other results. In the above-considered case the colli-

sional equations of motion for coherences �23� and similarly
�38� connect the given coherence �mn only to itself. This is
clearly due to the assumption that � jk��mn. In the above-
presented model the populations �see Eqs. �22� or �26�� are
coupled to other populations. This population transfer is ob-
viously due to inelastic collisions, which induce excitation-
deexcitation processes. It may be expected that when the
assumption � jk��mn is not valid, the same would happen to
coherences—inelastic collisions would induce polarization
transfer, that is, would couple coherence �mn to other coher-
ences. However, details of such couplings would certainly
depend on the degeneracies between different Bohr frequen-
cies. It is, therefore, difficult to give any predictions on the
specific couplings. Perhaps the best way is to examine some
concrete model with the discussed degeneracies and thus ex-
hibiting polarization transfer. Then, the problem whether the
standard approach to BBE still retains all the required prop-
erties of the atomic-density operator needs to be reexamined.
In this context we may say that the master-equation tech-
nique is advantageous. Due to its rigorous mathematical
background it will certainly preserve all the necessary prop-
erties of ��r� ,v� , t�. Indicated problems are clearly of interest
and seem to be a good subject for further investigations. The
question of conservation of positivity could be answered
again and the advantages of both approaches would be
weighted again.

It is important to remember that we have taken the per-
turbers to be structureless. It is, however, not an essential
simplification. It is straightforward to generalize our results
to unpolarized perturbers, as it is consequently done by Rau-
tian and Shalagin. Additional degree of freedom �that is,
�—an index indicating an internal state of the perturber� will
result in additional summations in the expressions for the
collision kernels and in additional terms in the Dirac deltas
responsible for energy conservation. The state-selective fac-
tors either in the standard or in the master-equation method
would remain unchanged. Moreover, it seems that the as-
sumptions concerning the perturbers are less constraining.
The reason, having a purely physical but not mathematical
background, seems to be simple. In the majority of spectro-
scopically interesting situations the noble gas serves as per-
turbers. The excitation energy of noble gas atoms is usually
beyond the region of interesting energies of A-atom transi-
tions. So, the perturbers indeed act as structureless particles.
As we already mentioned, it does not seem difficult to gen-
eralize our master-equation approach to perturbers with full
internal structure �discarding even the assumption about non-
polarizability�. The question is whether it is experimentally
interesting or relevant. But on the other hand, the problem of
positivity conservation within the standard approach would
need to be reexamined again.

In the standard approach the state selection follows from
the averaged phase factors �15�. Rautian and Shalagin ex-
press their reservations about the validity of such an ap-
proach. Since the results of both approaches, at least within
the model discussed in this work, are equivalent, such reser-
vations seem to be unjustified. The results presented in the
recent review �12� also support such a conclusion. The pro-
cedure of Rautian and Shalagin is equivalent to the secular
approximation inherent in the master-equation approach.
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This seems to clarify the relationship between two deriva-
tions of collisional terms in the BBE and to strengthen the
arguments given by Rautian and Shalagin. However, when
perturbers are allowed to be polarizable the phase factors of
Rautian and Shalagin do not necessarily coincide with the
delta factors resulting from secular approximation in the
master-equation approach. The consequences of this also
present another problem, which deserves further investiga-
tions.

We hope that our work is useful to clarify some questions
concerning the various approaches to the derivation of Bolt-

zmann parts of BBE. We also hope that the results given here
would be a useful starting point for some further research.
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�mn
�RS��v�� = NP�2��

i
� � dv�rW

�P��v� − v�r�

��f�m,v�r ← n,v�r� − f*�m,v�r ← n,v�r��.

= NP�4��


� � dv�rW

�P��v� − v�r�

�Im�f�m,v�r ← n,v�r�� ,

with notation changed to one used in this work. We note that
the rate �mn

�RS� given by Rautian and Shalagin is, for popula-
tions, the same as our rate given in Eq. �31�. However, for
coherences �when m�n� the rate �mn

�RS� does not agree with our
relation �28�. Hence, the collision rate as given by Rautian and
Shalagin does not have the property �37�. This relation, in turn,
is essential in our further discussion. We conclude that the
results of Rautian and Shalagin must be treated with care due
to quite probable misprints. On the other hand, definition �28�
presented in this work agrees with the expressions used by
other authors �see, for example, Ref. �11�, Eq. �2.4��.
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