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A blue line shape asymmetry near the center of the Cd 326.1-nm line induced by low-polarizability perturb-
ers �He, Ne� is explained by including the quasistatic contributions to the broadening rate associated with
free-free transitions between repulsive branches of potential curves. The resulting shape in the near blue wing
is represented by the addition to the Lorentzian and dispersion profiles of a quasistatic component. It is shown
that for heavy perturbers �Ar, Kr, Xe� the quasistatic contributions play a marginal role near the line center and
the line shape asymmetry arises mainly due to the finite duration of collision. It is also shown that for light
perturbers �He, Ne� the quasistatic contributions are much more significant than those due to the collision
duration and can adequately describe the blue asymmetry in the core region.
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I. INTRODUCTION

Much attention has been paid in the recent two decades to
the asymmetries of pressure-broadened spectral line shapes
observed at low perturber densities in the form of departures
of the measured intensity distribution in the core and near-
wing regions from the Voigt profile which is a convolution of
Lorentzian and Gaussian distributions describing the colli-
sional and Doppler components of the line shape, respec-
tively �1–17�. These asymmetries were identified as coming
from two distinct sources: �i� a collision time asymmetry
from breakdown of the impact approximation �6–12� and �ii�
a collision correlation asymmetry from the statistical depen-
dence between pressure broadening and emitter velocity
�13–17�. In the present paper we are concerned with pure
pressure broadening only and the collision correlation effects
are not considered. These effects, however, become increas-
ingly apparent with increasing values of the ratio of the mass
of perturber to emitter.

A pressure-induced asymmetry in the near-wing region
results from the first-order correction to the Lorentzian dis-
tribution which has a dispersion shape in agreement with that
derived first by Anderson and Talman �6� on the basis of the
classical phase-shift theory and later by other researchers
�7–12�. The term collision time asymmetry was first intro-
duced by Harris et al. �2� because for van der Waals poten-
tials the magnitude of the dispersion-shaped component was
shown to be proportional to the collision duration. All these
treatments predict that the asymmetry should be in the same
direction as the pressure shift of the line. This means that a
line with a redshift should have a more intense long-
wavelength side �red asymmetry� whereas a blueshift should
be associated with a blue asymmetry—i.e., a higher intensity
in the short-wavelength side. Such a behavior has been con-
firmed experimentally for the cases of perturbation by
heavier rare gases �Ar, Kr, Xe� of the sodium �1�, calcium
�2�, strontium �3�, and potassium �4� resonance lines. In all
these cases both the redshift and red asymmetry were ob-
served. On the other hand, Romalis et al. �5� observed the
blue asymmetry and the blueshift for the D1 and D2 lines of
rubidium perturbed by 4He and 3He isotopes. Contrary to

that, for the cases of perturbation of the calcium resonance
line �422.7 nm� by He and Ne, Harris et al. �2� have found
that the shift �red� and asymmetry �blue� are in opposite
directions. Similar results were obtained in our laboratory by
Bielski et al. �16� who observed the redshift and blue asym-
metry for the cadmium intercombination line �326.1 nm�
perturbed by He and Ne.

The fact that the shift is towards the red indicates the
dominant role of the attractive van der Waals potential in
perturbations of the 422.7-nm calcium and 326.1-nm cad-
mium lines by helium and neon atoms. On the other hand,
however, for this potential the dispersion-shaped correction
to the Lorentzian profile calculated on the basis of treatments
pioneered by Anderson and Talman �6–12� is such that it
always yields the red asymmetry contrary to what is ob-
served in experiments performed for Ca-He, Ca-Ne, Cd-He,
and Cd-Ne. One of the reasons for such discrepancies be-
tween theory and experiment may, of course, be due to the
assumed form of the interaction potential. Indeed, calcula-
tions performed by Bielski et al. �15� on the basis of ab initio
potentials for Cd–rare-gas systems given by Czuchaj and
Stoll �18� yielded the blueshift while the red one was ob-
served in experiment. Moreover, for Cd-Ne the calculations
based on the Czuchaj-Stoll potentials predicted the redshift
�in qualitative agreement with experiment� and the red asym-
metry in contradiction to experimental �blue� asymmetry.
Such discrepancies seem to indicate that in some cases the
dispersion-shaped correction to the Lorentzian profile con-
nected with the collision-duration time is insufficient to in-
terpret the observed asymmetry.

In the present work we shall focus our attention on the
profiles of the intercombination �5 3P1-5 1S0� 326.1-nm cad-
mium line perturbed by rare-gas atoms for which precise
measurements have recently been performed in our labora-
tory using the laser-induced fluorescence �LIF� method
�15,16,19�. It is the main goal of this paper to show that the
blue asymmetry of this line observed in cases of low-
polarizability perturbers �He, Ne� can be explained by taking
into account the contribution to the transition amplitude
coming from the free-free transitions associated with the re-
pulsive branches of potential curves. In the classical limit
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these contributions can be described in the framework of the
quasistatic model. It will be shown that for perturbers with
low values of polarizability they may contribute significantly
to the intensity distribution even in the close neighborhood
of the peak of the line in addition to both the Lorentzian and
dispersion broadening and thus they can be regarded as an
additional cause of asymmetry of a pressure-broadened spec-
tral line in the core and near-wing regions superimposed on
that due to the collision duration.

II. LINE SHAPE ASYMMETRY IN THE CORE AND
NEAR-WING REGIONS

In order to avoid problems with overlapping hyperfine
structure components associated with 5 3P1-5 1S0 transition
the 114Cd isotope was used in measurements reported in
Refs. �15,16,19�. This means that for this isotope the
326.1-nm line can be treated as a well-isolated line. For this
reason in the present work we shall not deal with line-mixing
effects, which in principle can also contribute to the asym-
metry of the profile �20,21�. Our analysis is based on the
unified Franck-Condon �UFC� formulation of the quasimo-
lecular pressure broadening theory �7�. It is unified in the
sense that on one hand in the impact limit valid for the core
of the line it yields the Lorentzian shape with width �full
width at half maximum �FWHM�� � and the shift � identical
to those resulting from the impact theory and on the other
hand for far wings it yields the quasistatic profile. It should
be emphasized, however, that the separation between impact
and quasistatic �or core and far-wing� regions is relative to
both the environment and the specific characteristics of a
given line.

The Lorentzian profile is a characteristic feature of the
impact model which assumes that the transition amplitudes

are dominated by the region of very large interatomic sepa-
rations R�R→��, and this permits us to express the width
and shift parameters in terms of the scattering phase shifts
for the upper and lower levels of the radiating atom in a close
analogy to both quantum-mechanical and semiclassical for-
mulas for the total cross section in elastic scattering of mo-
lecular beams. Beyond the impact core—i.e., for frequencies
in the far wings which correspond to smaller values of
R—the impact approximation fails completely and, in par-
ticular, it cannot explain the origin of the so-called rainbow
satellite bands which may appear in the form of diffuse
maxima on line wings. It was shown �7,22–26� that such
satellites arise whenever the difference �V�R�=V��R�
−V��R� of interatomic potentials V��R� and V��R� for the
upper and lower levels of the radiating atom, respectively,
has an extremum. This represents an analogy with the fa-
mous rainbow effect in the elastic scattering which takes
place when the classical deflection function possesses an ex-
tremum �27–29�. Although the possibility of the formation of
rainbow satellites in the core and near-wing regions cannot
be, in principle, excluded from consideration, usually they
were experimentally detected for many atomic systems at far
line wings �7,23–26�. Since in the present work we are con-
cerned with the profiles in the line core and near wings, the
rainbow effects will not be discussed here.

The use of the LIF method in our recent studies on the
Cd–rare-gas-atom systems �15,16,19� and, in particular, the
high resolution, high signal to noise ratio, and negligible
instrumental function enabled us to record deviations of the
experimental profiles from the ordinary Voigt profile �VP�
which represents a convolution of the Lorentzian and Dop-
pler profiles. Two examples of experimental profiles of the
326.1-nm 114Cd line are shown in Fig. 1�a� for the case of
perturbation by Xe at pressure 203 Torr �temperature T

FIG. 1. �Color online� The shape of the 114Cd
326.1-nm line perturbed by xenon at pressure
203 Torr and by neon at pressure 292 Torr: �A�
and �B� experimental points together with the
best-fit profiles �solid curves�, �C� and �D�
weighted differences Du��̃� between experimental
points and fitted Voigt profiles �VP�, and �E� and
�F� weighted differences between experimental
points and speed-dependent asymmetric Voigt
profile �SDAVP� and asymmetric Voigt profile
�AVP�, respectively.
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=724 K�, and in Fig. 1�b� for perturbation by Ne at pressure
292 Torr �T=724 K�. The evidence that our experimental
profiles are asymmetric is demonstrated in Fig. 1�c� for
Cd-Xe and in Fig. 1�d� for Cd-Ne, where we have plotted the
residuals representing the weighted differences between the
experimental shape and the ordinary VP used to fit the data.
In both Figs. 1�c� and 1�d� we can see systematic departures
of residuals from zero that be regarded as a manifestation of
the line asymmetry. The plots in Figs. 1�c� and 1�d� clearly
indicate red asymmetry for Cd-Xe and blue asymmetry for
Cd-Ne. The blue asymmetry was also found for the 326.1-
nm 114Cd line perturbed by He while the red asymmetry
apart from Xe was also observed for the cases of perturbation
by Ar and Kr �15,16,19�.

A careful analysis performed in Refs. �15,16� showed that
for Cd-Ne and Cd-He the experimental profiles can be fitted
well to the asymmetric Voigt profile �AVP� which represents
convolution of the Doppler distribution with a sum of the
Lorentzian and dispersion profiles. Figure 1�f� shows the
plots of weighted differences between the experimental pro-
file and the AVP for Cd-Ne. It is seen that the differences are
spread uniformly about zero which confirms the good quality
of the AVP fit. We should note, however, that as was reported
in Ref. �19� for Cd-Xe the experimental profiles cannot be
fitted sufficiently well to AVP due to the large value of the
mass of the Xe atom. The best fit in this case was obtained
for the speed-dependent asymmetric Voigt profile �SDAVP�
which accounts for the correlation between the Doppler and
pressure broadening. The good quality of the SDAVP fit for
Cd-Xe is demonstrated by the uniform spread of residuals in
Fig. 1�e�. The main conclusion which can be drawn from
studies reported in Ref. �19� is that in case of perturbation by
a heavy atom such as Xe characterized by a large value of
the polarizability the inclusion of speed-dependent effects
and the finite duration of collision is sufficient to interpret
the observed red asymmetry on the basis of a purely attrac-
tive van der Waals potential. That is not the case for the
broadening by low-polarizability atoms such as He and Ne
for which speed-dependent effects play a marginal role while
the theoretical collision duration asymmetry is much smaller
than that observed in experiment.

III. UNIFIED QUASIMOLECULAR MODEL

We start with the UFC formula for the intensity distribu-
tion I��� in the pressure broadened line—namely �7�,

I��� =
1

�

N����
�2 + ��/2�2 , �1�

where N is the density number of perturbers, � is the fre-
quency displacement from the impact-shifted line center,

� = 	 − 	0 − � , �2�

and 	0 is the unperturbed frequency of the line. In Eq. �1�,
���� is the frequency-dependent pressure-broadening rate
which can be expressed in terms of the free-free Franck-
Condon factors, or squares of overlap integrals Hl���, in the
following way:

���� =� �


�ki
�
l=0

�

�2l + 1��Hl����2� . �3�

Here l is the orbital quantum number of the relative motion,
� is the reduced mass of the radiating and perturbing atoms,
and the symbol 	¯
 indicates the average over initial wave
vectors ki, or initial energies Ei=
2ki

2 /2�. In Eq. �3�, Hl��� is
given by

Hl��� = �2�
�Al��� , �4�

where

Al��� = �
0

�

�i
�l��R�� f

�l��R�dR �5�

is the overlap integral of the energy-normalized radial wave
functions �i

�l��R� and � f
�l��R� of the perturber with angular

momentum l for the initial �i� and final �f� levels of the
radiating atom, respectively �R is the separation between ra-
diating and perturbing atoms�.

The traditional analysis of the intensity distribution in the
core region corresponding to small values � of frequency
displacements assumes the validity of the impact approxima-
tion in which the collisions are treated as instantaneous so
that the collision duration time is assumed to be negligibly
short. This is equivalent to the assumption that the essential
contribution to the overlap integral in Eq. �5� comes from the
encounter of the radiating atoms with the perturbers which
are incident at very large interatomic separations �R→��.
Such perturbers are only slightly deflected by the tail of the
interaction potential Vi�R� in the initial state so that their
local wave number kl�R�,

kl�R� = 
2�


2 �Ei − Vi�R�� −
l�l + 1�

R2 �1/2

, �6�

can be replaced by the free motion wave number ki=kl���
and the overlap integral Hl��� may then be evaluated assum-
ing the radial wave functions in Eq. �5� to be given by their
asymptotic forms for �R→��. Thus in the impact limit one
obtains �7�

Hl��� � Hl
��� = �2 sin�
l� − 
l�� , �7�

where 
l� and 
l� are the scattering phase shifts for the upper
and lower levels of the radiating atom, respectively. After
substitution into Eq. �3� we obtain, for the impact pressure-
broadening rate,

���� � ���� =
�

2
=� 2�


�ki
�
l=0

�

�2l + 1�sin2�
l� − 
l��� , �8�

where �=� /N is the pressure-broadening coefficient. The
resulting line shape, Eq. �1�, has then the Lorentzian form

IL��� =
�

2�

1

�2 + ��/2�2 , �9�

as predicted first by Sobelman �30� and Baranger �31� in
their quantum-mechanical impact theory.
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To improve upon the Lorentzian shape the overlap inte-
gral in Eq. �5� can be evaluated using the JWKB wave func-
tions and for small � an expansion of Hl��� in powers of �
can be made following Ref. �7�:

Hl
������ = �2 sin�
l� − 
l�� + �2�al, �10�

where al is the frequency-independent factor which in the
classical-path approximation can be expressed as a function
al=a�b� of the impact parameter b in the following way �7�:

a�b� =
1



�

0

�

dt�V„R�t�…t sin� 1



�

0

t

�V„R�t��…dt�� .

�11�

Here the interatomic distance R=R�t�= �b2+v2t2�1/2 is ex-
pressed as a function of time t and the impact parameter, and
v=
ki /� is the initial velocity. Deriving Eq. �11� we have
replaced the sum over angular momenta l by an integral over
b. Equation �3� yields then, for the asymptotic pressure-
broadening rate,

���� � ������� =
�

2
+ �� , �12�

where the coefficient � can be calculated using an expression
derived in Ref. �7�:

� =�8�v�
0

�

ba�b�sin�
��b� − 
��b��db� , �13�

where 
l�=
��b� and 
l�=
��b� are the scattering phase shifts
for the upper and lower levels of the radiating atom, respec-
tively, expressed as functions of the impact parameter b. In
Eq. �11� the difference potential �V(R�t�)=V�(R�t�)
−V�(R�t�) depends on both t and b. By substitution of Eq.
�12� into Eq. �1� we obtain an asymmetric line shape

I��� � ICD��� =
1

�

�/2 + N��

�2 + ��/2�2 , �14�

which is the sum of the Lorentzian and dispersion profiles. It
describes the intensity distribution in the core and near-wing
regions on both the red ���0� and blue ���0� side of the
line. Following Kristensen et al. �32� the profile ICD��� will
be referred to as the asymmetric Lorentzian profile. The mag-
nitude � in Eq. �14� can be regarded as a measure of the line
shape asymmetry, and for the van der Waals potentials it can
be expressed in terms of the collision duration �CD� time
and therefore � is usually referred to as the collision-time
asymmetry coefficient �2,7–12,15,16,19�. It should be noted
that the sign of � calculated on the basis of Eq. �12� is the
same as the sign of the pressure shift ��� of the line calcu-
lated in the framework of the impact approximation.

As seen from Eqs. �11� and �13� a crucial role in the
production of the line shape asymmetry is played by the
function �V�R� describing the dependence of the potential
difference upon the interatomic separation R. In many cases
a curve representing �V�R� looks like the plot shown in Fig.
2. The intensity distribution given by Eq. �14� is valid for
small values �—i.e., in the core of the line—and is produced

by those phase shifts, averaged over impact parameters,
which are dominated by the interaction potentials at very
large separations �R→�� leading to small perturbations of
the atomic states. Contrary to that, the large values � of the
frequency displacement located on the far line wings corre-
spond to large perturbations of the upper and lower states of
the radiating atom caused by its interaction with the per-
turber at small separations R. As noted first by Jabłoński
�33�, who used the JWKB wave functions, the dominant con-
tribution to the overlap integral Hl��� for large � comes from
the region of stationary phase—i.e., from the region of R
situated in the vicinity of Condon points Rc defined as solu-
tions of the equation


� = �V�Rc� , �15�

which permits us to express � as a function of the interatomic
separation R. This means that the negative region ��
=�V�R� /
�0� of the plot shown in Fig. 2 which is associ-
ated with predominance of the attraction corresponds to the
red wing of the line, whereas the positive region associated
with domination of the repulsive interactions corresponds to
the blue wing ���0�. We should note that in the case of
difference potentials of the type shown in Fig. 1 for a given
value � of the frequency displacement located on the red side
of the line there are two Condon points associated with at-
tractive forces: the outermost attractive Condon point R1 and
the inner attractive Condon point R2. Contrary to that, for the
blue side there is only one Condon point R3 to be referred to
as the inner repulsive Condon point because it corresponds to
the repulsive branch of �V�R�. If R1 and R2 are very close
each other—i.e., in the neighborhood of the interatomic
separation R0 at which �V�R� has a minimum—the overlap
integral in Eq. �5� can be evaluated by the method of Sando
and Wormhoudt �22� used to calculate the shape of the rain-
bow satellite bands associated with extrema of difference po-
tentials �7,22–25� in an analogy to the Ford-Wheeler theory

FIG. 2. �Color online� Plot of the difference potential �V�R�.
Notations explained in the text.
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of rainbow scattering �27–29�. In the case when �V�R� has a
minimum in the attractive region ���0� as in Fig. 2, the
rainbow satellite is located on the red wing of the line at the
frequency �s=−� with respect to the line peak, where � de-
notes the depth of the attractive well of �V�R�. The main
features of the rainbow satellites seem to be well understood
�7,22–26�, and we are not concerned with them here. In the
present work we are dealing with the core and very-near-
wing regions of the line only, so our discussion will be re-
stricted to small values of �.

The interpretations of all experimental studies on asym-
metry of atomic spectral line shapes performed in the last
years employed the asymmetric Lorentzian, Eq. �14�, in
which the non-Lorentzian behavior in the core region was
related to the collision-time asymmetry. It should be empha-
sized that Eq. �14� itself can be related to the Fourier trans-
form of the asymptotic form of the correlation function in the
scattering limit and is applicable in the central part of the line
both on the red ���0� and blue ���0� sides of the line. In
the following section we shall show that in some cases, es-
pecially those for which the repulsive interactions are strong
enough, the transitions between repulsive branches of poten-
tial curves that give rise to positive values of frequency dis-
placement may significantly contribute to the overlap inte-
gral in the blue side of the line even for very small �. As
indicated in Fig. 2 it may happen for such transitions that the
inner repulsive Condon point R3 is near the classical turning
point Rt of the initial state defined as such value of inter-
atomic separation for which the local wave number in Eq. �6�
vanishes: kl�Rt�=0.

Let Hl
�3���� denote the contribution to the overlap integral

coming from the transitions that occur near R3�Rt. The total
overlap integral Hl��� for ��0 can thus be written approxi-
mately as the sum of Hl

�3���� and the asymptotic extended
impact term Hl

������:

Hl��� � Hl
�3���� + Hl

������ , �16�

where Hl
������ is given by Eq. �10�. With this Hl��� one ob-

tains from Eq. �3� the following formula for the broadening
rate on the blue side of the line for small �:

���� =� �


�ki
�
l=0

�

�2l + 1��Hl
�3���� + Hl

�������2�
= ������� + ��3���� + ��3,����� , �17�

where

��3���� =� �


�ki
�
l=0

�

�2l + 1��Hl
�3�����2� �18�

is the broadening rate associated with the inner repulsive
Condon point R3, ������� is given by Eq. �12�, and

��3,����� =� 2�


�ki
�
l=0

�

�2l + 1��Hl
�3����Hl

�������� �19�

is an interference term which accounts for contributions due
to interference between transition amplitudes associated with

inner repulsive Condon points R3 and those related to the
scattering effects that occur at very large interatomic separa-
tions �R→��. This term is difficult to evaluate numerically.
One can expect, however, that its contribution to the result-
ing broadening rate is negligible, and therefore in the follow-
ing section this term will be omitted.

IV. QUASISTATIC BROADENING IN THE NEAR BLUE
WING

The JWKB wave functions used in Ref. �7� to derive the
asymmetric Lorentzian formula for the broadening rate, Eq.
�12�, fail when Condon points are near the classical turning
points because their amplitude becomes infinite in the vicin-
ity of Rt. To overcome this difficulty Bieniek �34� proposed
to use the uniform JWKB wave functions expressed in terms
of homogeneous Airy functions in such a way that for R
�Rt they attain the form of the exact solution of the
Schrödinger equation and for R�Rt they become identical to
the ordinary JWKB wave functions. In Ref. �35� the uniform
JWKB wave functions were applied to evaluate the overlap
integrals Hl

�3����, Eq. �5�, associated with the inner repulsive
Condon points R3, producing positive frequency displace-
ments ���0� as a result of transitions between repulsive
branches of potential curves. It was shown that Hl

�3���� can
be written in the form of a sum of a nonclassical term de-
scribing contributions due to effects originated in the classi-
cally inaccessible region �R�Rt� and a term which accounts
for the contributions to the overlap integral coming from the
classically accessible region �R�Rt�. Since the nonclassical
term was shown to be given by the Airy function of the
positive argument, it is expected to decay exponentially and
therefore its role in most cases is negligible. If this term is
ignored, then Hl

�3���� can be approximately written in the
form resulting from the Jabłoński �33� derivation based on
the ordinary JWKB wave functions:

Hl
�3���� = 2�� ��

�kl�R3���1/2

cos��l�R3���d�V�R�
dR

�
R3

−1/2

,

�20�

where �l�R3� is the phase-shift difference at R3 between up-
per and lower states. As indicated by Mies �36� the cosine
factor may be responsible for quantum oscillations which,
however, tend to vanish after the thermal averaging is per-
formed. Combining Eqs. �20� and �18�, making use of the
random phase approximation with 2 cos2 �l�R3�=1, and per-
forming the Maxwellian averaging over initial wave vectors
ki one obtains for the broadening rate �3��� associated with
repulsive branches of potential curves the following expres-
sion:

��3���� = 4�2
R3
2�d�V�R�

dR
�

R3

−1

�2 exp�−
Vi�R3�

kBT
� , �21�

where kB is the Boltzmann constant. Hereafter the broaden-
ing rate �3��� given by Eq. �21� will be referred to as the
quasistatic broadening rate since it can be derived directly in
the framework of the quasistatic model �7,23,37�. To derive
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Eq. �21� we have replaced the sum in Eq. �18� by an integral
over l. Traditionally the quasistatic theory was used to inter-
pret the shapes of far wings of the line �23,37�. Nevertheless,
we shall show in the following section that quasistatic con-
tributions can at times be significant also in the central part
of the line on its blue side.

In order to estimate the influence of quasistatic broaden-
ing rate ��3���� associated with repulsive branches of poten-
tial curves on the intensity distribution in the core region let
us describe the difference potential �V�R� by the Lennard-
Jones model potential

�V�R� = 
��C12

R12 −
�C6

R6 � �22�

or

�V�R� = 4�
���

R
�12

− ��

R
�6� , �23�

where �C12=4��12 and �C6=4��6. For R=� we have
�V���=0 and �=0. The Lennard-Jones potential is used in
this paper to illustrate the procedure, but the method is ap-
plicable to any potential. For the blue side ���0� of the line
there is only one root of Eq. �15�, which is only the inner
repulsive Condon point R3 given by

R3 = �2�

�
�1/6

���1 +
�

�
− 1�1/6

. �24�

Let us note that for �→0 we have R3→�. Substitution of the
above expressions into Eq. �21� yields the following formula
for the quasistatic broadening rate for the blue side:

��3���� =
�2

6
�2�C6�f���exp�−

Vi�R3�
kBT

� , �25�

where the function f��� is given by

f��� =
��1 + �/� − 1�3/2

�1 + �/�
. �26�

Let us note that in the limit �→0 we have f���→0. This
means that in the limit �→0 the quasistatic broadening rate
��3����→0 and the intensity in the peak of the line becomes
equal to I�0�=2/�� in full accordance with that resulting
from the purely impact—i.e., the Lorentzian line shape.
Combining Eqs. �12�, �17�, and �25� we obtain the following
formula for the resulting broadening rate on the blue side of
the line ���0�:

�blue��� =
�

2
+ �� + �3��� =

�

2
+ �� +

�2

6
�2�C6�f��� ,

�27�

where we have assumed that Vi�R3��kBT. Substitution of
Eq. �27� into Eq. �1� yields for the intensity distribution
Iblue��� in the near blue wing the following formula:

Iblue��� = ICD��� + IQS��� , �28�

where ICD��� is the asymmetric Lorentzian, Eq. �14�, and

IQS��� =
N�

6

�2�C6�f���
�2 + ��/2�2 �29�

is the quasistatic profile. It should be noted that for frequen-
cies located at the extreme far blue wing such that � /��1
the function f��� behaves like �1/4 and then IQS�����−5/4 in
accordance with the quasistatic shape resulting from Eq. �21�
for the purely repulsive potential �R−12. On the red side of
the line the total broadening rate �red��� is

�red��� =
�

2
+ �� , �30�

so that according to Eq. �1� the resulting intensity distribu-
tion Ired��� on the near red wing is simply identical to the
asymmetric Lorentzian:

Ired��� = ICD��� , �31�

As seen from Eqs. �28� and �31�, ��3���� leads to an increase
of the intensity on the blue side in comparison to that on the
red one. This means that the quasistatic broadening rate
gives rise to an additional asymmetry on the blue side which
is superimposed on the collision-time asymmetry.

V. ASYMMETRY FACTORS FOR THE CADMIUM
INTERCOMBINATION LINE PERTURBED BY

RARE GASES

In order to estimate the role of the quasistatic contribu-
tions in the formation of asymmetric line shapes in the core
region we have calculated the asymmetry factors for the case
of the Cd intercombination 326.1-nm-line �5 3P1-5 1S0� per-
turbed by rare gases. We have modeled the difference poten-
tial �V�R� for the Cd+rare-gas-atom systems by the
Lennard-Jones function, Eq. �23�. The values of the con-
stants �C6, �C12, �, and � calculated using a method due to
Hindmarsh et al. �38� are listed in Table I.

It is seen that the depths � of the difference potentials for
Cd-He and Cd-Ne are much smaller that those for Cd-Ar,
Cd-Kr, and Cd-Xe. In their experiments on the effects caused
by He and Ne on the 326.1-nm Cd intercombination line
Bielski et al. �16� have found the blue asymmetry but the
redshift ���0� of this line both for perturbation by He and
by Ne. The experimental values of the pressure broadening
��� and pressure shift �
=� /N� coefficients as well as the
collision-time asymmetry coefficient � determined in Ref.

TABLE I. The values of 
�C6 �in units 10−67 J cm6� and 
�C12

�in units 10−109 J cm12� force constants of the Lennard-Jones
potential.


�C6 
�C12 
� �cm−1� � �nm�

Cd-He 10.22 0.33 0.40 0.564

Cd-Ne 19.78 0.59 0.835 0.557

Cd-Ar 82.07 1.67 5.08 0.522

Cd-Kr 122.39 2.50 7.54 0.523

Cd-Xe 202.15 4.27 12.05 0.526
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�16� are listed in Table II, where they are compared with
theoretical values calculated on the basis of the Lennard-
Jones potential with force constants given in Table I.

Theoretical values of � and 
 are calculated in the frame-
work of the Lindholm-Foley classical impact theory using a
formalism due to Hindmarsh et al. �38�. The values of the
collision-time asymmetry coefficient � were calculated from
Eq. �13�. As seen from Table II both for Cd-He and Cd-Ne
the calculations yielded the blue asymmetry ���0�. On the
other hand, for Cd-Ne the calculated shift is towards the red
�
�0�, in agreement with experiment, but for Cd-He the
calculated shift is towards the blue �
�0� while the red one
was observed �16�.

The absolute values of both the experimental and calcu-
lated pressure shift coefficients are very small, and this fact
seems to corroborate a suggestion that for Cd-He and Cd-Ne
repulsion effects may play a crucial role. Following this sug-
gestion we have performed calculations of the profiles of the
326.1-nm Cd line perturbed by all rare gases using Eqs. �28�
and �31� with the Lennard-Jones force constants listed in
Table I. Two examples of calculated profiles are shown in
Fig. 3 for Cd-Ne �at neon pressure 440 Torr� and in Fig. 4
for Cd-Xe �at pressure 440 Torr�. The differences between
Iblue��� or Ired��� and the Lorentzian profile which are also
plotted in Figs. 3 and 4 clearly demonstrate the importance
of the quasistatic contribution on the blue side for the case of
broadening by Ne. Similar results were obtained for Cd-He.
Contrary to that seen in Fig. 4, for Cd-Xe the quasistatic
contributions play a completely negligible role in the core
region. Identical results were obtained for Cd-Ar and Cd-Kr.
It should be noted, however, that for heavy perturbers such
as Ar, Kr, and Xe the quasistatic contributions are dominant
at extreme far wings which are not considered here.

Let us define now the frequency-dependent asymmetry
factor A��� as

A��� =
I��� − IL���

IL���
, �32�

where IL��� denotes the Lorentzian profile, Eq. �9�.

In the case when only the dispersion correction due to the
effect of collision duration is taken into account the line total
shape I��� can be approximated by the asymmetric Lorentz-
ian profile ICD��� given by Eq. �14� and then the collision-
time asymmetry factor A���=ACD��� can be written as

TABLE II. The values of the pressure broadening �, shift 
 �in units 10−20 cm−1/ �atom cm−3�� and
asymmetry � �in units 10−21/ �atom cm−3�� coefficients of the 326.1-nm 114Cd line calculated �Calc.� for the
Lennard-Jones potential together with experimental �Expt.� values. Numbers in parentheses are the values of
standard uncertainty.

Perturber

Expt. Calc.

� 
 � � 
 �

Cd-He 1.155 −0.031 0.62 1.046 0.047 0.086

�0.034� �0.009� �0.34�
Cd-Ne 0.715 −0.090 0.17 0.735 −0.062 0.065

�0.004� �0.005� �0.07�
Cd-Ar 1.060 −0.387 −0.30 0.933 −0.474 −0.383

�0.006� �0.004� �0.05�
Cd-Kr 1.147 −0.338 −1.00 1.169 −0.536 −1.054

�0.011� �0.005� �0.07�
Cd-Xe 1.257 −0.348 −1.08 1.488 −0.547 −1.94

�0.006� �0.002� �0.07�

FIG. 3. �Color online� Plots of the calculated profile I��� for the
326.1-nm Cd line perturbed by neon at pressure 440 Torr together
with the D��� differences between Iblue��� or Ired��� and the Lorent-
zian profile.
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ACD��� =
2

�
�� . �33�

This means that in this case the asymmetry factor is lin-
early dependent on the frequency displacement �. Equation
�33� is applicable both on the red and blue sides of the line.
However, for the red side the collision-duration effect is, in
the model assumed in this work, the only cause of the asym-
metry and thus the total asymmetry factor Ared��� on the red
side is

Ared��� = ACD��� . �34�

On the blue side of the line the total profile is given by
Eq. �28� so that the resulting asymmetry factor for ��0 may
be written as

Ablue��� = ACD��� + AQS��� , �35�

where

AQS��� =
2�2

6�
�2�C6�f��� �36�

is the quasistatic asymmetry factor.
Using the force constants from Table I we have calculated

the quasistatic asymmetry factors AQS��� for the blue side of
the 326.1-nm Cd line perturbed by all rare gases. The results
of these calculations are plotted in Fig. 5 for frequency dis-

placements � up to 0.5 cm−1 from the maximum of the Cd
intercombination line. As can be seen the quasistatic asym-
metry factor increases with decreasing values of the polariz-
ability of the perturbing atom. In particular, the quasistatic
contribution to the asymmetry appears to be very large for
light perturbers �He and Ne� characterized by small values of
the polarizability. In order to get more insight into the prob-
lem of the influence of quasistatic effects on the production
of line shape asymmetry in the core region in Figs. 6 and 7
we have plotted the total asymmetry factors �CD+QS� cal-
culated from Eq. �35� as well as collision-time asymmetry
factors ACD��� for the red ���0� and the blue ���0� sides
of the 326.1-nm line and the quasistatic asymmetry factors
AQS��� for the blue side of this line perturbed by Ne and Xe.
In case of broadening by He the plots are similar to those in
Fig. 6 while for Ar and Kr they are similar to those shown in
Fig. 7.

VI. CONCLUSION

The comparison with experimental asymmetry factors de-
termined on the basis of measurements reported in Refs.
�15,16� shows that for Cd-He and Cd-Ne the inclusion of
quasistatic broadening effects is necessary to explain the blue
asymmetry induced by low-polarizability perturbers for
which the transitions associated with repulsive parts of po-
tential curves play a dominant role. Traditionally, such tran-
sitions have been taken into account to interpret the intensity
distribution for very large positive frequency displacements �
situated at the far blue wing of the line. Figures 5–7 indicate,
however, that in the case of a perturbation by He and Ne they
may also be important for very small frequency displace-
ments � lying in the near-blue-wing and core regions of the

FIG. 4. �Color online� Plots of the calculated profile I��� for the
326.1-nm Cd line perturbed by xenon at pressure 440 Torr together
with the D��� differences between Iblue��� or Ired��� and the Lorent-
zian profile.

FIG. 5. �Color online� Quasistatic asymmetry factors AQS��� for
the blue side of the 326.1-nm Cd line perturbed by all rare gases.
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326.1-nm Cd line. The main conclusion of the present
work—that the quasistatic model can explain the broadening
effects caused by He and Ne on the 326.1-nm Cd line—may
become a source of some controversy since it is usually be-
lieved that quasistatic theory is valid for sufficiently heavy
perturbers only. Doubts about the applicability of the quasi-
static model for systems of small reduced mass have been
expressed in the literature many times �cf. �39��. We should
note, however, that quantum-mechanical calculations per-
formed by Herman and Sando �40� for Li-He and Na-He
systems have shown that at far wings the quasistatic profile
agrees with the quantum-mechanical one. Moreover, Kogan
and Lisitsa �41� and Rang and Voslamber �42� have shown
that even the perturbers as light as electrons in plasmas give
rise to quasistatic broadening at far wings of Stark-
broadened hydrogen lines. However, they are meaningful

only for low-temperature plasmas and broad hydrogen lines.
As seen from Figs. 4 and 7 for heavier perturbing gases

�Ar, Kr, Xe� characterized by larger values of polarizability
the quasistatic asymmetry factors AQS��� in the core region
of the 326.1-nm Cd line are of less importance in comparison
to the collision-time asymmetry factor ACD���. For heavy
perturbers, however, the correlation between the collisional
broadening and thermal motion of the emitter may contribute
significantly to the asymmetry in the core region
�2,13,14,19�. On the other hand, for such perturbers the qua-
sistatic effects are usually observed at far line wings
�25,26,37�.
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