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Analytic expressions for the width and shift of a photoassociative resonance or an optically induced Fesh-
bach resonance in ultracold collisions are derived using the quasi-classical stationary phase approximation.
This approach for the width is applicable over a wider range of cases than the reflection approximation.
Possible applications for optical Feshbach resonances between ultracold alkaline-earth-metal atoms, such as Ca
and Sr, are discussed. Our approach also applies to photoassociation in gases of heteronuclear alkali-metal
atoms.
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I. INTRODUCTION

The properties of an atomic collision can be modified
when the scattering state is coupled to a bound state �1,2�.
Such a coupling leads to resonant scattering. One example of
resonant scattering is photoassociation in a thermal gas or
Bose condensate of ultracold atoms. In this case, an optical
Feshbach resonance is induced when two ultracold atoms
collide in the presence of laser radiation of a fixed frequency
and are coupled by the light to an excited bound state of the
corresponding dimer molecule. This coupling, which
changes the amplitude and the phase of the scattering wave
function, can be controlled by varying the intensity and fre-
quency of the laser radiation.

In photoassociation of trapped ultracold gases, the change
of the amplitude of the scattering wave function can be ob-
served as a loss of atoms from the trap. Measurement of this
trap loss as a function of the excitation frequency is known
as photoassociative spectroscopy �PAS�. In PAS, the excited
molecular bound state spontaneously decays to a product
state, which in many cases is lost from the trap. This kind of
spectroscopy has been an important tool in investigating
properties of ultracold gases �3–7�.

An important parameter characterizing ultracold colli-
sions is the scattering length. It determines, for example, the
stability of a Bose condensate. A resonant change of the scat-
tering wave function directly affects the scattering length.
Fedichev et al. �8� developed the idea of manipulating the
scattering length by optically induced Feshbach resonances.
This idea has been elaborated on �9,10� and implemented
experimentally �11–13�.

Optical Feshbach resonances have mainly been investi-
gated for ultracold alkali-metal gases with a strongly allowed
electronic transition. If the alkali-metal atoms in the collision
are of the same species, the long-range interaction of the
excited electronic molecular state formed from one ground
and one excited state atom is the resonant dipole interaction,
which varies as 1 /R3 at large interatomic separations R. The
van der Waals interaction between two scattering ground
state atoms has a much shorter range, varying as 1/R6. This
difference in the long-range potential, and consequently, the

large difference in the character of the ground and excited
state wave function can be exploited in developing quasi-
classical approximations for the optical Feshbach reso-
nances. In particular, the analytic reflection approximation
�RA� for the light-induced width and shift of the resonances
has been successfully used �10,14,15�. If the alkali-metal at-
oms in the collision are of different species, however, their
long-range interaction in the excited state is 1 /R6 rather than
1/R3 and the reflection approximation cannot be expected to
be valid.

Another group of systems which are receiving growing
experimental �16,17� and theoretical �18,19� interest are
ultra-cold alkaline-earth-metal atoms. These species, as well
as others with similar electronic structure and very narrow
intercombination lines, offer opportunities for new experi-
ments �20–24� that are very different from those that are
possible with alkali-metal atoms. Very recently photoassocia-
tion near narrow intercombination lines has been measured
in Sr �25� and Yb �26�. The interest in atoms such as Ca or Sr
is driven, in part, by prospects for new optical-frequency
clocks �27,28�. Furthermore, optical Feshbach resonances
near an intercombination line hold the promise for practical
optical control of ground state scattering properties in ultra-
cold atomic gases �29�. This is especially significant for al-
kaline earth metal atoms, which do not have magnetically
tunable ground state Feshbach resonances like alkali-metal
atoms. Because of the very weak resonant dipole contribu-
tion to the excited state potential, the quasi-classical descrip-
tion based on the reflection approximation is not valid for
intercombination line transitions. Consequently, it is neces-
sary to seek improved approximations for estimating optical
Feshbach resonance properties.

The main goal of this work is to determine if suitable
analytical expressions for the width and shift of an optical
Feshbach resonance can be developed that are not restricted
to the reflection approximation. To do this we start from a
phase-amplitude representation of the wave function and in-
troduce the stationary phase approximation to obtain more
general approximate quasi-classical formulas than given by
the reflection approximation. The applicability of these ex-
pressions is discussed and illustrated by comparison to the
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exact results of quantum mechanical calculations on model
systems simulating ultracold collisions of strontium or cal-
cium. We show that the formula for the width provides an
adequate improved approximation when the reflection ap-
proximation fails, whereas the formula for the shift is
generally not adequate. Consequently, accurate shifts need to
be calculated numerically using a complete theoretical
expression.

II. OPTICALLY INDUCED FESHBACH RESONANCE

Optical Feshbach resonances and the closely related pho-
toassociation process are well described theoretically �8–10�.
In this paper, we explore the analytical expressions obtained
in Ref. �10� but use the notation of Ref. �19�.

Let us focus on the scattering properties of two colliding
ground state atoms, labeled g, in the presence of laser radia-
tion. The laser frequency is tuned close to resonance, allow-
ing the formation of the excited molecular bound state la-
beled e, which can spontaneously decay to a product state
labeled p. The decay of the excited bound state e is described
by the width �pe. The coupling between the ground scatter-
ing state g and the excited bound state e due to the presence
of light is described by the stimulated width �eg��r , I�, which
depends on the relative kinetic energy �r and the light inten-
sity I. The scattering matrix can be expressed analytically
�10�, and the matrix element describing elastic scattering in
the ground state g is

Sgg = e2i�g

� + �r − Eeg − �e −
i��eg − �pe�

2

� + �r − Eeg − �e +
i��eg + �pe�

2

, �1�

where �= ��−EA, �e=Ee−EA, Ee is the energy of an iso-
lated excited molecular bound level, EA is energy of one
ground state and one excited state atom, � is the frequency
of the light driving the transition, and �g is the elastic-
scattering phase shift in state g in the absence of light. The
shift in the resonance position caused by the light is
Eeg��r , I�. Even at ultralow temperatures on the order of mi-
crodegrees Kelvin Doppler broadening and photon recoil can
be a significant factor for a narrow resonance with a width of
a few kilohertz or less. To include these effects the collision
energy �r in Eq. �1� should be replaced by �r+�D−Erec,mol,
where �D is the Doppler shift and Erec,mol is the energy of the
molecule recoiling from a single photon �19�.

It is convenient to define a complex scattering length A
�9�, which characterizes the variation of the elastic scattering
S-matrix element with kr as kr→0,

Sgg = exp�− 2iA��,I�kr� , �2�

where kr=�2��r /� and � is the reduced mass of colliding
atoms. The length A can be written as

A��,I� = a��,I� − ib��,I� , �3�

where the real part

a��,I� = lim
kr→0

−
Im�Sgg�

2kr
�4�

is the scattering length modified by the laser radiation and
the imaginary part

b��,I� = lim
kr→0

1 − �Sgg�2

4kr
�5�

describes inelastic events in the collision. This inelasticity
implies a loss of ground state atoms during the collision. The
imaginary part of the complex scattering length is closely
related to the atom loss rate coefficient

lim
kr→0

K��,I� = lim
kr→0

	�

�kr
�1 − �Sgg�2� =

4	�

�
b��,I� . �6�

This formulation highlights the modification of basic scatter-
ing properties �the scattering length and inelastic collision
rate� due to presence of laser radiation.

Following Ref. �10�, the terms on the right-hand side of
Eqs. �4� and �5� can be written as

−
Im�Sgg�

2kr
= −

sin�2�g�
2kr

�� + �r − Eeg − �e�2 +
��pe

2 − �eg
2 �

4

�� + �r − Eeg − �e�2 +
��pe + �eg�2

4

+
cos�2�g�

2kr

�eg�� + �r − Eeg − �e�

�� + �r − Eeg − �e�2 +
��pe + �eg�2

4

�7�

and

1 − �Sgg�2

4kr
=

1

4kr

�pe�eg

�� + �r − Eeg − �e�2 +
��pe + �eg�2

4

. �8�

Taking the kr→0 limit of Eq. �7� the scattering length is

a��,I� = abg +
1

2

��eg

kr
��� − Eeg − �e�

�� − Eeg − �e�2 +
�pe

2

4

�9�

This limit is obtained by using the kr→0 Wigner threshold
behavior in Ref. �10� of the elastic phase shift �g	kr, the
stimulated width �eg	kr, and the stimulated shift
Eeg	constant for an s-wave collision �10�. The ground-state
s-wave scattering length in the absence of light, the back-
ground scattering length, is

abg = − lim
kr→0

�g

kr
. �10�

The scattering length Eq. �9� is the sum of the background
scattering length and a length due to the light coupling. The
latter length has a dispersive form. Equation �9� has been
verified experimentally �11,12�. The imaginary part of the
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complex scattering length describing atom loss can be writ-
ten in the form of a Lorentz distribution

b��,I� =
1

4

�pe��eg

kr
�

�� − Eeg − �e�2 +
�pe

2

4

. �11�

It should be emphasized that the description of collisions
in terms of an energy-independent quantity, the complex
scattering length, is possible only if the collision energy is
sufficiently small. If the thermal spread in collision energy �r
is large compared to the natural line width �pe, or if there is
energy-dependent power broadening where �eg is larger than
�pe for some �r, it is necessary to use the full expressions in
Eq. �1� or �8� to calculate elastic collision rates or photoas-
sociation line shapes. Since kBT /h=21 kHz for T=1 �K,
where kB is Boltzmann’s constant, this situation could apply
for photoassociation lines near the intercombination transi-
tion of cold alkaline-earth-metal atoms. In any case, the key
quantities for characterizing the collision are the stimulated
width �eg��r , I� and shift Eeg��r , I�. We now turn our atten-
tion to their determination.

III. STIMULATED WIDTH AND SHIFT OF THE
RESONANCE

Bohn and Julienne �10� give the following expressions for
the stimulated width �eg��r , I� and shift Eeg��r , I�:

�eg��r,I� = 2	�Veg
las�2
�

0




dR�e�R�fg�R�
2

, �12�

Eeg��r,I� = 2	�Veg
las�2�

0




dR�e�R�gg�R��
0

R

dR��e�R��fg�R�� ,

�13�

where the optical coupling term �Veg
las�2 is proportional to the

laser intensity. The unit normalized excited-state vibrational
wave function, �e�R�, is a solution of the Schrödinger equa-
tion with excited state potential Ve�R�. The energy-
normalized scattering wave functions fg�R� and gg�R�, are
the regular and irregular solution of the Schrödinger equation
with ground state potential Vg�R� and energy �r, respectively.
The s-wave functions fg�R� and gg�R� have the following
form at large R:

fg�R� =� 2�

	�2kr
sin�krR + �g� , �14�

gg�R� = −� 2�

	�2kr
cos�krR + �g� . �15�

It is convenient to rewrite Eqs. �12� and �13� in the form

�eg��r,I� = �A
3

4	

I�A
3

c
f rotfFC

� ��r� , �16�

Eeg��r,I� = �A
3

4	

I�A
3

c
f rotfFC

E ��r� , �17�

which emphasizes the dependence on the laser intensity I,
the natural decay width of the atomic transition �A, and the
wavelength of the atomic transition �A. The bound-free
Franck-Condon factor fFC

� per unit energy is

fFC
� ��r� = 
�

0




dR�e�R�fg�R�
2

�18�

and fFC
E is

fFC
E ��r� = �

0




dR�e�R�gg�R��
0

R

dR��e�R��fg�R�� . �19�

Finally, c is speed of light and f rot is a dimensionless rota-
tional line strength factor of order unity.

The light-induced shift can also be calculated using Fano
theory �1� of a bound state coupled to a continuum. In such
an approach, fFC

E ��r� can be written as �30�

fFC
E ��r� =

1

2	
� �

0




d�
fFC

� ���
�r − �

+
1

2	
�

g

fge

�r − Eg
�20�

where � denotes a principal part integral over all collision
energies, and the sum is over all bound states of the ground
electronic potential. The quantity fge is the bound-bound
Franck-Condon factor

fge = 
�
0




dR�g�R��e�R�
2

, �21�

where �g�R� is an unit normalized ground state vibrational
wave function with energy Eg assuming that the potential
energy of two separated ground state atoms is zero.

It follows from Eq. �20� that the shift can either be posi-
tive or negative as �r→0, since the contribution of the prin-
cipal part integral and the sum have opposite signs. If the
first term is larger, the shift will be negative, whereas if the
second term is larger, the shift will be positive.

IV. STATIONARY PHASE APPROXIMATION

This section describes the evaluation of the Franck-
Condon factors defined by Eqs. �18� and �19� using the sta-
tionary phase approximation. The derivation generalizes the
reflection approximation given in Ref. �10�. It is convenient
to start the derivation by defining the function

fe�R� = �e�R�� �n

�Ee
, �22�

where �n /�Ee is the density of vibrational levels in the ex-
cited potential. Following Milne’s approach �31,32�, we can
now write the regular and irregular wave functions of both
ground and excited state in the phase-amplitude form

f i�R� =� 2�

	�2
i�R� sin��i�R�� �23�
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gi�R� = −� 2�

	�2�i�R� cos��i�R�� , �24�

where the index i is g for the ground and e for the excited
state, and 
i�R� and �i�R� ��i�R� and �i�R�� denote the am-
plitude and phase of the regular �irregular� wave functions,
respectively. The nonlinear Milne equations �see Refs.
�31,32�� can then be solved to find the exact solution of the
Schrödinger equation. In general, the amplitude is a slowly
varying function of R, while the phase varies by multiple
units of 	, depending on the depth of the R-dependent
molecular potential Vi�R�. Note that �e�R�=�e�R� and

e�R�=�e�R� for R→
.

The Franck-Condon factor for the stimulated width, Eq.
�18�, is then

fFC
� = � �Ee

�n
�� 2�

	�2�2

�Ieg�2, �25�

where

Ieg = �
0




dR
e�R�
g�R� sin��e�R�� sin��g�R�� . �26�

If we neglect the contribution from the fast oscillating term
cos��g�R�+�e�R�� in Ieg, the integral equals

Ieg 

1

2
�

0




dR
e�R�
g�R� cos��g�R� − �e�R�� , �27�

and can be evaluated by the stationary phase method. The
stationary phase method finds that the main contribution to
the integral comes from the radial region, where the phase is
stationary, i.e., �

�R ��g�R�−�e�R��=0. An analytical expres-
sion for the integral then crucially relies on an accurate ap-
proximation of the phases �g�R� and �e�R� and, thus, the
stationary phase point.

The phase of the excited state bound state wave function
is well approximated by the semiclassical Wentzel-Kramers-
Brillouin �WKB� approximation. In fact, we have
�e�R�=−	 /4−��e�R ,Rt� for R�Rt, where Rt is the
classical outer turning point defined as the largest internu-
clear separation where the local wave number ke�R�
=�2���e−Ve�R�� /�2 is zero and ��e�R ,Rt�=�R

RtdR�ke�R��.
The WKB approximation for the amplitude is 
e�R�
=1/�ke�R� when R�Rt.

A similar semi-classical approximation for �g�R� of the
scattering solutions at ultracold collision energies cannot be
used. For collision energies that lie within the Wigner thresh-
old regime, there is always a range of internuclear separa-
tions where the WKB approximation breaks down. For van
der Waals potentials for which the long-range form is
−C6 /R6, this happens near R
0.5�2�C6 /�2�1/4 �5�. Hence,
we must use the exact quantum mechanical value for �g�R�.
Even though the precise value of the ground state phase can-
not be determined by the WKB approximation, its deriva-
tives are nonetheless well approximated by this approxima-
tion. That is, for example, ��g /�R
kg�R�, where kg�R�
=�2���r−Vg�R�� /�2 is the local wave number of the ground

state potential. Similarly, the second derivative of �g�R� is
proportional to �Vg /�R. We call this approximation of �g�R�
“quasi-classical,” as it improves on the semiclassical WKB
approximation.

It follows from the approximate expressions for �g�R� and
�e�R� that the stationary phase point is equal to the well-
known Condon point Rc, defined as the largest internuclear
separation at which ke�Rc�=kg�Rc� and that Rc�Rt. Finally,
the phase difference around the Condon point is

�g�R� − �e�R� 
 b0 + b1�R − Rc� +
b2

2
�R − Rc�2, �28�

where

b0 = �g�Rc� + ��e�Rc,Rt� +
	

4
, �29�

b1 
 0, �30�

b2 

�Dc

�2ke�Rc�
, �31�

and we have used that ke�Rc�=kg�Rc� and

Dc = 
 �Ve

�R



Rc

− 
 �Vg

�R



Rc

. �32�

The quasi-classical stationary phase approximation of the
integral Eq. �26� now gives �10�

Ieg 

1

2
�

0




dR
e�R�
g�R� cos�b0 +
b2

2
�R − Rc�2�



1

2

e�Rc�
g�Rc��2	

b2
cos�b0 +

	

4
�


 −� 	�2

2�Dc

g�Rc� sin��g�Rc� + ��e�Rc,Rt�� . �33�

for positive Dc and b2. The second line in Eq. �33� follows
from evaluating the integral after assuming that the two 

factors are slowly varying and can be replaced by their val-
ues at R=Rc.

The stationary phase approximation is expected to be
valid if the quadratic expansion of Eq. �28� applies, in other
words, if Dc is sufficiently large that higher order corrections
are small. A large Dc implies very different ground and ex-
cited state potentials. Equation �33� is similar to that
obtained in Ref. �10� and differs only in the definition of b0
and Dc. That is, b0=�g�Rc�+	 /4 is replaced by
b0=�g�Rc�+��e�Rc ,Rt�+	 /4, and Dc=�Ve /�R�Rc

is re-
placed by Dc=�Ve /�R�Rc

−�Vg /�R�Rc
. Finally, we obtain

fFC
� 


�Ee

�n

1

Dc
�fg�Rc��2
 sin��g�Rc� + ��e�Rc,Rt��

sin��g�Rc��

2

.

�34�

This expression reduces to that for the reflection approxima-
tion �10� by equating Rc=Rt.
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Similar to the definition in Eq. �25�, the shift in Eq. �19�
can be written as

fFC
E = � �Ee

�n
�� 2�

	�2�2

Jeg, �35�

where the integral Jeg is

Jeg 
 − �
0




dR
e�R��g�R� sin��e�R�� cos��g�R��

� �
0

R

dR�
e�R��
g�R�� sin��e�R��� sin��g�R��� .

�36�

Using the semiclassical stationary phase approximation, we
find

Jeg 
 −
1

2

	�2

2�Dc

g�Rc��g�Rc�sin��g�Rc� + ��e�Rc,Rt��

�cos��g�Rc� + ��e�Rc,Rt�� . �37�

and thus

fFC
E 


1

2

�Ee

�n

1

Dc
fg�Rc�gg�Rc�

sin��g�Rc� + ��e�Rc,Rt��
sin��g�Rc��

�
cos��g�Rc� + ��e�Rc,Rt��

cos��g�Rc��
. �38�

When Rc=Rt, Eq. �38� simplifies to the corresponding ex-
pression in Ref. �10�.

V. RESULTS

We have carried out model calculations for strontium and
calcium in order to investigate the ability of the stationary
phase approximation to determine the width and shift of pho-
toassociation resonances near the intercombination line of an
alkaline-earth atom. The expressions given in the former sec-
tion work well in the cases where the reflection approxima-
tion is applicable. Therefore, our tests are focused on cases in
which reflection approximation breaks down. First, we inves-
tigate the case of Sr, for which the excited state potential
Ve�R� for large R is described by combination of the van der
Waals potential and a weak resonant dipole interaction. Sec-
ond, we investigate the case of Ca for which the excited state
potential for large R is described by the van der Waals po-
tential with the dispersion coefficient close to that in the
excited state.

A. Strontium

The short-range form of the potentials Vg�R� and Ve�R�
for the strontium dimer is insufficiently known to predict the
background scattering length of Vg�R� or the binding energy
of weakly bound states of Ve�R�. However, the density of
excited state levels, �Ee /�n, is predominantly governed by
the long-range behavior of Ve�R�. Since photoassociative
spectroscopy is sensitive to weakly bound and the spatially

extended excited state levels, it is sufficient to construct
model potentials for both ground and excited state with the
correct long-range behavior.

We model the excited state by a Lennard-Jones potential
plus a resonant dipole-dipole interaction

Ve�R� =
C12

�e�

R12 −
C6

�e�

R6 +
C3

�e�

R3 , �39�

where the values of the parameters are chosen to model the
shallow 3�u potential �or more precisely the 0u

+ potential
correlating to the 3P1+ 1S0 limit� �33�. In fact,

C3
�e� = −

3

2

�

�A
� �A

2	
�3

, �40�

where �A is the lifetime of the excited atomic 3P1 state and
�A is the wavelength of a photon resonant with the transition
from the atomic excited state to the 1S0 ground state. We
have used �A=689 nm, �A=21.46 �s �compare to Ref. �34��
and the van der Waals coefficient of the excited state
C6

�e�=3512.8 Eha0
6, which reproduce experimental spectra of

0u
+ bound obtained for strontium �25�. Here the atomic

unit of length is the Bohr radius a0=0.052 917 72 nm
and the atomic unit of energy is the Hartree energy Eh

=4.359 744�10−18 J. The C12
�e�coefficient is determined from

the relation C12
�e�= �C6

�e��2 / �4D�e��, where the depth of the po-
tential D�e� is chosen to be D�e� /h=55 082.5 GHz.

The interaction of two ground state strontium atoms is
described by the Lennard-Jones potential

Vg�R� =
C12

�g�

R12 −
C6

�g�

R6 . �41�

We use C6
�g�=3170 Eha0

6 from the accurate calculations of
Ref. �35�. Moreover, C12

�g�= �C6
�g��2 / �4De

�g�� with De
�g� /h

=32 200 GHz to reproduce roughly the same potential depth
as �33� and, more importantly, such that for the 88Sr isotope
the scattering length of Vg�R� is small and positive with
abg=4 a0. A recent experimental determination �36� shows
that the scattering length for this system has a value between
−1 a0 and 13 a0.

We begin our analysis of the validity of our stationary
phase approximation with a calculation of the Franck-
Condon factor Eq. �18� for the width of the photoassociative
line. We do this using numerical wave functions of the ex-
cited bound states �e�R� and the scattering ground state fg�R�
at energy �r /kB=1 �K. The bound and scattering wave func-
tions have been calculated using the Numerov method �37�.
For the purpose of testing various approximations, the rota-
tional energy in the excited bound state as well as multichan-
nel coupling are neglected �19�. The ground scattering calcu-
lation is carried for s-waves for which the rotational energy
is zero. Figure 1 shows the exact ��e � � fFC

� �filled circles� as
a function of the binding energy �e of each of the last 14
bound states of Ve�R�. We plot this dimensionless product of
the Franck-Condon factor and the binding energy in all fig-
ures of this paper in order to reduce the range of variation on
the vertical axis of the figures.
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The exact results are compared to those from approximate
analytical formulas from the quasi-classical approach dis-
cussed above. These analytical formulas are continuous func-
tions of �e and, consequently, can be shown as curves in the
figures. The first approximation is the original reflection ap-
proximation �RA� labeled as “RA �Dc only for ground
state�.” In this approximation, Franck-Condon factors can be
calculated from Eq. �34� with Rt=Rc, so that the phase dif-
ference ��e�Rc ,Rt�=0, and the slope of Vg�R� is negligible
compared to the slope of Ve�R� at the Condon point, i.e.,
Dc=�Ve /�R�Rc

. A second approximation is the reflection ap-
proximation with Rt=Rc but now with the complete Dc,
which includes the contribution due to the finite slope of the
ground state potential. It is labeled as “RA �Dc for ground
and excited state�.” Finally, the third and most accurate ap-
proximation is given by Eq. �34�, which takes into account
the phase difference between the turning and Condon point
and the slopes of both the ground and excited state poten-
tials. This third approximation is labeled as the “Stationary
phase approximation.” For all three approximations, the
wave function fg�R�is obtained from the exact numerical
scattering solution of the Schrödinger equation of the ground
state potential. The phase �g�R� was determined from the
nodal pattern of fg�R� and Eq. �23�.

Figure 1 shows that the exact results agree well with re-
sults from Eq. �34� for all binding energies. The two versions
of the reflection approximation, however, are only applicable
for the last few bound states. These latter bound states have
large Condon and outer turning points, where the resonant
dipole-dipole interaction is large compared to the van der
Waals potential. Hence, the calculations show that the phase
difference ��e accrued between the turning and Condon
point must to be taken into account to correctly estimate the
stimulated width of a photoassociation resonance in stron-
tium near the intercombination transition. The magnitude of
this phase difference can be estimated using the WKB ap-
proximation.

Next, we calculate Eq. �19�, a factor defining the light-
induced shift. To do this we use both regular and irregular

solutions of the Schrödinger equation in the ground scatter-
ing state at �r /kB=1 �K. The exact values of ��e � � fFC

E for
bound states with binding energies �e are shown as filled
circles in Fig. 2 for positive shifts and in Fig. 3 for negative
shifts. Alternatively, fFC

E can be evaluated using the Fano
expression of Eq. �20� and, in fact, we find that for the two
most weakly bound states fFC

E is completely determined by
the principal-part term of Eq. �20�. Although Eqs. �19� and
�20� are equivalent, it is difficult to get convergence using
Eq. �20� because it requires integration over a large range of
collision energies.

The exact numerically calculated values of fFC
E can be

compared to results from the three approximate analytical
formulas as in the discussion of the width of the PA reso-
nances. Figure 3 shows that the exact results are reasonably
well approximated by the quasi-classical stationary phase
model when the reflection approximation is valid. For more

FIG. 1. �Color online� The dimensionless quantity ��e � fFC
� ,

which is proportional to the light-induced width of a photoassocia-
tion line of Sr, as a function of �e. The calculation is for s-wave
collisions at an energy of �r /kB=1 �K assuming a background
scattering length of abg=4 a0.

FIG. 2. �Color online� The dimensionless quantity ��e � fFC
E ,

which is proportional to the light-induced shift of a photoassocia-
tion line of Sr, as a function of �e. Only bound states with positive
shifts are shown. The ground state potential and scattering energy is
as in Fig. 1.

FIG. 3. �Color online� The dimensionless quantity ��e � fFC
E ,

which is proportional to the light-induced shift of a photoassocia-
tion line of Sr, as a function of �e. Only bound states with negative
shifts are shown. The ground state potential and scattering energy is
as in Fig. 1.

CIURYŁO, TIESINGA, AND JULIENNE PHYSICAL REVIEW A 74, 022710 �2006�

022710-6



deeply bound states shown in both Figs. 2 and 3, however,
none of the three approximate models reproduce the exact
calculation of the integrals in Eq. �19�.

Thus far, we have only considered s-wave scattering. The
light also couples d-wave scattering states to the same ex-
cited bound state of the 0u

+ molecular potential �19�. This
d-wave ground scattering state is a solution of the potential
Vg�R�+6�2 / �2�R2�. The d-wave Franck-Condon factor for
the width is typically negligible compared to the s-wave
Franck-Condon factor for temperatures in the microdegrees
Kelvin range. On the other hand, however, the shift due to
coupling of the excited state to d-wave collisions can be
significant. Consequently, we have carried out calculations of
the d-wave contributions to the shift. They are shown in
Figs. 2 and 3, assuming that the s-wave and d-scattering
states are coupled to the same excited bound state. The
d-wave shifts can have a similar size as the s-wave shifts.

In order to illustrate typical magnitudes, Table I lists the
exact s-wave and d-wave width �eg and shift Eeg at a single
laser intensity and collision energy for the last five bound
states below threshold. It must be emphasized that these re-
sults should not be directly compared to experiments, since
only a single channel model of the excited bound states is
used, and the rotational energy in the excited state is ne-
glected. Nevertheless, the calculation illustrates the expected
order of magnitude of the parameters.

Optical control of strontium scattering properties and,
thus, control of the scattering length, Eq. �9�, is well charac-
terized by the optical length �9,29�

lopt =
�eg

2kr�pe
. �42�

An optical length that is large compared to abg indicates that
control will be feasible. Table I lists lopt for I=1 W/cm2. We
have assumed that �pe=2�A, where �A=7.5 kHz for the in-
tercombination line of strontium, and that it is the same for
all the bound states. From the Table I, it follows that lopt is
large compared to the background scattering length of 88Sr.
In the first experimental demonstration of optical control of
the scattering length in a rubidium Bose-Einstein condensate
�12�, an optical length as large as 100 a0 was reached. How-
ever, for rubidium the laser power was a few hundred times
bigger than that used to calculate lopt in Table I and optically

induced losses associated with on-resonant driving of the
rubidium excited state only allowed the scattering length to
be changed for a very short time. Strontium is much more
attractive in this regard, in that lopt is large enough that losses
could be suppressed by detuning from resonance while still
allowing optical control for much longer time intervals at
reasonable laser intensity �25�. A similar situation can also be
expected in ytterbium, which has been shown to undergo
Bose-Einstein condensation �20�. Clearly species with inter-
combination line transitions are promising candidates for op-
tical control of degenerate quantum gases; for example, see
Ref. �38�.

B. Calcium

The interaction potentials of calcium are like in strontium
insufficiently well known to be predictive. Hence, we are
forced to use model potentials. In this case, however, the
contribution of the resonant dipole-dipole interaction in the
excited state is negligible because of the long lifetime of the
3P1 atomic state. Therefore, we use C3

�e�=0 and both ground
and excited state potentials are Lennard-Jones potential. For
the excited state Ve�R� models the 3�u potential of Ca
�39,40�, with C6

�e�=2462 Eha0
6 �19,41� and De

�e� /h
=44075 GHz. The ground state potential has C6

�g�=2081 Eha0
6

as determined by Allard et al. �42� and De
�g� /h

=31 848.4 GHz is chosen to get a relatively large positive
scattering length abg=390 a0 �42�. Note that the difference
between ground and excited state van der Waals coefficients
is almost two times smaller for calcium than for strontium.

Figure 4 shows the width of a photoassociation line near
the Ca intercombination transition. Results for the exact ex-
pression as well as the quasi-classical estimates are shown. It
is clear that the stationary phase approximation is not as
accurate as for Sr. This is mainly because the ground and
excited states have a similar van der Waals potentials. The
assumptions needed by a stationary phase approximation fail
for such a case.

TABLE I. The light-induced width �eg, shift Eeg, and the optical
length lopt for near-threshold optical Feshbach resonances for stron-
tium model potentials at a laser intensity I=1 W/cm2 and collision
energy �r /kB=1 �K.

�e /h
�GHz�

�eg /h �MHz� Eeg /h �MHz�

lopt /a0s-wave d-wave s-wave d-wave

−3.592 0.0002 1.9�10−10 +0.0016 +0.0044 11

−1.167 0.0017 1.2�10−9 −0.0034 +0.0135 79

−0.264 0.0008 2.2�10−10 +0.0097 +0.0499 36

−0.038 0.2346 2.5�10−7 −1.0161 −0.1691 1.1�104

−0.003 6.2059 2.7�10−4 −9.7463 −1.1867 2.9�105

FIG. 4. �Color online� The dimensionless quantity ��e � fFC
� ,

which is proportional to the light-induced width of a photoassocia-
tion line of Ca, as a function of �e. The calculation is for s-wave
collisions at an energy of �r /kB=1 �K assuming a background
scattering length of abg=390 a0.
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We have also carried out calculations of the Franck-
Condon factors for the light-induced shift. The results of
these calculations are presented in Fig. 5. For our calcium
potentials, the exact shift is always positive. It turns out to be
a consequence of the large bound-bound contribution to the
shift in the Fano expression Eq. �20�. This is in agreement
with results obtained previously �19�.

A comparison of the exact results to the quasi-classical
approximation is again far from perfect. Nevertheless, the
quasi-classical expression allows us to give bounds on the
shift. It also confirms that for our Ca potentials the shift for
s-wave collisions is positive. The quasi-classical approxima-
tion only predicts a negative shift for narrow binding-energy
regions. No bound states of Ve�R� occur for such binding
energies.

VI. DISCUSSION

The calculations for calcium shows that even the im-
proved expression for the light-induced width shows some
discrepancies compared to the exact results. This is a mani-
festation of the well-known fact that the stationary phase
approximation breaks down when the potentials in the
ground and excited states are too similar, as in the test case in
which the difference between C6

�e� and C6
�g� is not more than

20%. However, even in this case, the stationary phase ap-
proximation, Eq. �34� correctly predicts the nodes of the
Franck-Condon factor fFC

� , whereas the reflection approxima-
tions incorrectly predicts the nodal positions over the inves-
tigated detuning range.

The stationary phase approximation for the light-induced
width gives good results if there is even a small addition of
resonance dipole interaction in the excited state. It was
clearly demonstrated by the strontium example, for which
the approximation in Eq. �34� agrees with the exact results
for the full detuning range investigated. By contrast, the or-
dinary reflection approximation breaks down for levels with

binding energies larger than 0.1 GHz, where the van der
Waals interaction start to dominate. The stationary phase ap-
proximation also becomes better as the difference between
dispersion coefficients in the ground and excited state in-
creases. We have tested this with the calcium example by
changing C6

�e�. It was found that for C6
�e��3C6

�g�, the light-
induced widths calculated exactly and with the stationary
phase approximation compare to similar good quality, as that
shown for the strontium example.

The situation is different in the case of the light-induced
shift. The expression, Eq. �38�, does not give better results
than the ordinary reflection approximation. Some explana-
tion of this fact can be found, taking into account that Eq.
�38� very well approximates the following integral

1

2
�

0




dR�e�R�gg�R��
0




dR��e�R��fg�R�� . �43�

instead of Eq. �19�. This integral in the general case differs
from Eq. �19�. Therefore, we get no agreement between the
results calculated from the exact Eq. �19� and the approxi-
mation Eq. �38�. On the other hand, for conditions where the
reflection approximation can be applied, the integral given
by Eq. �43� well approximates Eq. �19�, and the exact results
can be described by the analytical expressions discussed
above.

Clearly, Eq. �34� has a wider range of applicability than
the ordinary reflection approximation in describing the
Franck-Condon factor needed for the light-induced width.
We have shown that this improved approximation can be
applied to a system where the reflection approximation fails,
in which the interaction in the excited state is described by
the combination of the van der Waals potential and a weak
resonance interaction. Besides Sr, this approximation could
find applications for Ba, Yb, and other systems with similar
electronic structure. Moreover, Eq. �34� will give good re-
sults when the ratio of C6

�e� and C6
�g� is order of a few or

greater. While the reflection approximation does not work
well for such a case, the stationary phase approximation
gives good results. As an example, a large range of disper-
sion coefficients can be found in various mixtures of two
different alkali-metal species �43�. It was found for such sys-
tems �44� that reflection approximation predictions �45� dis-
agree with exact calculations.

VII. CONCLUSION

Although the reflection approximation is useful for calcu-
lating light-induced shifts and widths of photoassociation
lines for systems where the excited state potential is domi-
nated by a long-range resonant dipole-dipole interaction, we
have shown that this approximation fails when both the
ground and excited states have similar long-range behavior.
We use approximate model potentials to investigate exten-
sions of the quasi-classical stationary phase approximation to
situations where both the ground and excited state potentials
are predominately determined by a van der Waals interaction.

Our results demonstrate that the light-induced width of
the photoassociation resonance can be well described by the

FIG. 5. �Color online� The dimensionless quantity ��e � fFC
E ,

which is proportional to the light-induced shift of a photoassocia-
tion line of Ca, as a function of �e. For our calcium potentials the
shift for the bound states of Ve�R� is positive. For the approximate
calculations only positive fFC

E are shown. The ground state potential
and scattering energy is as in Fig. 4.
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stationary phase approximation over a much wider range of
conditions than the reflection approximation. However, the
stationary phase approximation does not work as well if the
potentials in ground and excited states are similar. This is the
case, for example, if the long-range potentials in both ground
and excited states have the same Cq /Rq form and the Cq
coefficients have similar values. The quasi-classical expres-
sions do not offer any advantage over the reflection approxi-
mation for the light-induced shift. Although the conclusions
are based on models for the intercombination transitions in
alkaline-earth-metal systems, we expect them to apply
equally well to allowed transition of mixtures of two differ-

ent alkali-metal species, since these systems are also charac-
terized by van der Waals potentials for the ground and ex-
cited state.
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