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Corrections of order �4R are calculated for the singlet states 1 1S0 and 2 1S0 of the helium atom. The result
for the 1 1S0 state is in slight disagreement with that of Korobov and Yelkhovsky �Phys. Rev. Lett. 87, 193003
�2001��. The results obtained lead to a significant improvement of the transition frequencies between low-lying
levels of the helium atom. In particular theoretical predictions for the 2 1S0-1 1S0 transition are found to be in
disagreement with experimental values.
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I. INTRODUCTION

In this paper we present an approach for obtaining precise
energy levels of light few-electron atoms and perform calcu-
lations for the singlet states 1 1S0 and 2 1S0 of the helium
atom. This approach is based on quantum electrodynamic
�QED� theory and relies on expansion in the fine structure
constant � �1,2�. It allows one to systematically include
nuclear recoil effects, electron self-energy, and vacuum po-
larization. Several calculations have already been performed
for triplet states of helium, the most accurately known being
the fine structure of 2 3PJ, where all corrections up to order
of m�7 have recently been obtained �3,4�. Other examples
include energies of 1 1S0 �5,6�, 2 3S1 �7�, and 2 3P �8�, which
have been obtained up to the order of m�6. For other atoms
like lithium �9� or beryllium �10�, energy levels are less ac-
curately known—namely, up to order m�5—but are still ac-
curate enough to allow the nuclear charge radius to be deter-
mined from isotope shift measurements �11�.

According to QED theory, the expansion of energy levels
in powers of � has the following form:

E��� = E�2� + E�4� + E�5� + E�6� + E�7� + O��8� , �1.1�

where E�n� is a contribution of order m�n and may include
powers of ln �. Each term E�n� can be expressed as an ex-
pectation value of some effective Hamiltonian or in some
cases of a nonlocal operator. E�2��E0 is the eigenvalue of
the nonrelativistic Hamiltonian H0, which for the infinite
nuclear mass is

H0 = �
a
� p�a

2
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b

�
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. �1.2�

E�4� is the expectation value of the Breit-Pauli Hamiltonian
H�4� �12�,
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E�5� is the leading QED contribution, which for singlet states
is �13,14�

E�5� = �
a�b
��164

15
+

14

3
ln �
 �2

m2�3�rab�

−
7m�5

6�
P	 1

�m�rab�3
� + �
a
�19

30
+ ln��−2�

− ln k0
4Z�2

3m2 ��3�ra�� , �1.4�

where

���P	 1

r3
��� � lim
a→0

� d3r�*�r����r��� 1

r3	�r − a�

+ 4��3�r��
 + ln a�
 , �1.5�

with 	 being the step function and 
 the Euler constant.
Equation �1.5� contains the many-electron Bethe logarithm
ln k0 defined by

ln k0 =
��a

p�a�H0 − E0�ln�2�H0 − E0�/m�2��b
p�b�

2�Z���c
�3�rc��

.

�1.6�

The calculation of E�6� is the subject of this work. It can be
represented as

E�6� = �H�6�� + �H�4� 1

�E0 − H0��
H�4�� , �1.7�

where H�6� is the effective Hamiltonian of order m�6. Its
derivation is presented in the following section. Since indi-
vidual terms in above equation are divergent, we follow the
approach of Ref. �5� and use the technique of dimensional
regularization, details of which are presented in Appendix A.
H�4� in the above equation is therefore a Breit-Pauli Hamil-
tonian in d dimensions, the derivation of which is also in-*Electronic address: krp@fuw.edu.pl; www.fuw.edu.pl/̃ krp
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cluded in Sec. II. For the next-order term E�7� we will use an
approximate formula based on hydrogenic values �15�.

II. DERIVATION OF THE EFFECTIVE HAMILTONIAN

To derive the effective Hamiltonian, we follow Ref. �2�,
consider the Dirac equation with electromagnetic field, and
perform a nonrelativistic expansion by the use of the Foldy-
Wouthuysen transformation �see Appendix B for details�:

HFW = eA0 +
�2

2m
−

e

4m
�ijBij −

�4

8m3 −
e

8m2 ��� · E�

+ �ij�Ei,� j�� +
e

16m3 ��ijBij,p2� −
e

16m3 �p� ,�tE� �

+
3e

32m4 ��ijEipj,p2� +
e

128m4†p
2,�p2,A0�‡

−
3e

64m4 �p2,�2A0� +
p6

16m5 , �2.1�

where higher-order terms are neglected. This Hamiltonian
defines an effective nonrelativistic QED theory with La-
grangian

L = �
a

�a
†�i�t − HFW��a + LEM , �2.2�

where LEM is the Lagrangian of the electromagnetic field and
the summation goes over all particles. We consider now the
equal time retarded Green function G=G��r�a�� , t� ; �r�a� , t�,
where by �r�a� we denote the set of coordinates for all par-
ticles of the system. In the absence of time-dependent per-
turbation G=G�t�− t�. The Fourier transform of G in the time
variable t�− t can be written as

G�E� �
1

E − Heff�E�
, �2.3�

which is the definition of the effective Hamiltonian Heff�E�.
In the nonrelativistic case Heff=H0,

H0 =
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, �2.4�

where �Q�� is the d=3−2� extension of the operator Q at
d=3; see Appendix A for details. All the relativistic and
QED corrections resulting from the Lagrangian L can be
represented as

G�E� =
1

E − H0
+

1

E − H0
��E�

1

E − H0

+
1

E − H0
��E�

1

E − H0
��E�

1

E − H0
+ ¯

=
1

E − H0 − ��E�
�

1

E − Heff�E�
, �2.5�

where ��E� is the n-particle irreducible contribution. The
energy level can be interpreted as a pole of G�E� as a func-
tion of E. It is convenient to consider the matrix element of

G between the nonrelativistic wave function corresponding
to this energy level. There is always such a correspondence,
since relativistic and QED effects are small perturbations of
the system. This matrix element is

���G�E���� = ��� 1

E − H0 − ��E�
��� �

1

E − E0 − ��E�
,

�2.6�

where

��E� = �����E���� + �
n�0

�����E���n�
1

E − En
��n���E����

+ ¯ . �2.7�

Having ��E�, the correction to the energy level can be ex-
pressed as

�E = E − E0 = ��E0� + ���E0���E0� + ¯

= �����E0���� + �����E0�
1

�E0 − H0��
��E0����

+ ������E0���������E0���� + ¯ �2.8�

Since the last term in Eq. �2.8� can be neglected up to order
m�6, one can consider only ��E0�. In most cases, the explicit
state dependence of � can be eliminated by the use of com-
mutation relations. The only exception is the so called Bethe
logarithm, which contributes only in order m�5. If we con-
sider this term separately, the operator � gives an effective
Hamiltonian

Heff = H0 + � = H0 + H�4� + H�5� + H�6� + ¯ , �2.9�

from which one can calculate corrections to energy levels.
The calculation of � follows from the Feynman rules for the
Lagrangian in Eq. �2.2�. We will use the photon propagator
in the Coulomb gauge:

G
��k� =�−
1

k�2
, 
 = � = 0,

− 1

k0
2 − k�2 + i�

	�ij −
kikj

k�2 
 , 
 = i,� = j ,�
�2.10�

and consider separately corrections due to exchange of the
Coulomb G00 and the transverse Gij photon. The typical one-
photon exchange contribution between electrons a and b is

�����E0���� = e2� dDk

�2��Di
G
��k����� ja


�k�eik�·r�a

�
1

E0 − H0 − k0 + i�
jb
��− k�e−ik�·r�b���

+ ��� jb

�k�eik�·r�b

1

E0 − H0 − k0 + i�

�ja
��− k�e−ik�·r�a���� , �2.11�

KRZYSZTOF PACHUCKI PHYSICAL REVIEW A 74, 022512 �2006�

022512-2



where D=d+1, � is an eigenstate of H0 and ja

 is the elec-

tromagnetic current for particle a. The first terms of the non-
relativistic expansion of j0 component are obtained from Eq.
�2.1� �terms involving coupling to A0�,

j0�k�� = 1 +
i

4m
�ijkipj −

1

8m2k�2 + ¯ , �2.12�

and of the j� component �terms involving coupling to A� �,

ji�k�� =
pi

m
+

i

2m
� jikj . �2.13�

Most of the calculation is performed in the nonretardation
approximation; namely, one sets k0=0 in the photon propa-
gator G
��k� and j�k�. The retardation corrections are consid-
ered separately. Within this approximation and using the
symmetrization k0↔−k0, the k0 integral is

1

2
� dk0

2�i
� 1

− �E − k0 + i�
+

1

− �E + k0 + i�

 = −

1

2
,

�2.14�

which leads to

�����E0���� = − e2� ddk

�2��dG
��k0 = 0,k�����ja

�k��

�eik�·�r�a−r�b�jb
��− k����� . �2.15�

One recognizes that in the nonrelativistic limit G00 gives the
Coulomb interaction. However, this term is already included
in H0, which means that this nonrelativistic Coulomb inter-
action has to be excluded from the perturbative expansion.
Next-order terms resulting from j0 and j� lead to the Breit-
Pauli Hamiltonian HBP. This includes corrections to the elec-
tric as well as magnetic interactions between electrons and
the nucleus. Corrections to the kinetic energy and electron-
nucleus interaction are obtained from Eq. �2.1� by setting
eA0=−��Z�� /ra��,

�1H�4� = �
a=1,2
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�2.16�

The derivation of electron-electron interactions is as follows.
The j0 component gives relativistic corrections of the form

�2H�4� = e2� ddk
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�2.17�

where r�r12= �r�1−r�2�. We have left out in the above the pure
Coulomb interaction between electrons and neglected higher-
order terms. The j� component gives the following correc-
tions:

�3H�4� = − e2� ddk

�2��d

1

k�2	�ij −
kikj

k�2 
 j1
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The complete relativistic correction H�4� is a sum of Eqs.
�2.16�–�2.18�,

H�4� = �1H�4� + �2H�4� + �3H�4�. �2.19�

Since spin-orbit terms do not lead to divergences in the
second-order matrix element, one can assume for them �=0.
The spin-spin tensor interaction, the second term of Eq.
�2.18�, vanishes for singlet states, as the total spin is zero; see
Eq. �3.29� for the definition of a singlet state in d dimen-
sions. Moreover, as a result of this definition one obtains
�1

ij�2
ij→−d�d−1�, so H�4� becomes

H�4� = HA + HC, �2.20�

HA = −
p1

4

8m3 −
p2

4

8m3 +
�Z�

2m2 �d�r1� +
�Z�

2m2 �d�r2�

−
�

2m2 p1
i ��ij

r
+

rirj

r3 

�

p2
j +

��

m2 �d − 2��d�r� ,

�2.21�

HC =
��� 1 − �� 2�

2
� Z

4m2	 r�1

r1
3 � p�1 −

r�2

r2
3 � p�2


+
1

4m2

r�

r3 � �p�1 + p�2�
 , �2.22�

in agreement with Ref. �6�. Both HA and HC contribute to
E�6� through a second-order contribution—namely,

EA = �HA
1

�E0 − H0��
HA� , �2.23�

EC = �HC
1

E0 − H0
HC� . �2.24�
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Below we derive the higher-order term in the nonrelativ-
istic expansion—namely, the m�6 Hamiltonian, which we
call here the higher-order effective Hamiltonian H�6�. It is
expressed as a sum of various contributions,

H�6� = �
i=0,8

�Hi + HH + HR, �2.25�

which are calculated in the following on the basis of the
Foldy-Wouthuysen Hamiltonian from Eq. �2.1�. A similar
derivation has already been performed for the case d=3 in
Ref. �2�. One can neglect here all spin-orbit terms and tensor
spin-spin interactions, as they vanish for singlet states. �H0 is
the kinetic energy correction, the last term in Eq. �2.1�,

�H0 =
p1

6

16m5 +
p2

6

16m5 . �2.26�

�H1 is a correction due to the ninth and tenth terms in
HFW in Eq. �2.1�. These terms involve only A0, so the non-
retardation approximation is strictly valid here. This correc-
tion �H1 includes the Coulomb interaction between the elec-
tron and the nucleus and between electrons. So if we denote
by V the nonrelativistic interaction potential

V � �−
Z�

r1
−

Z�

r2
+

�

r



�

�2.27�

and, for later use, by Ea the static electric field at the position
of particle a which is produced by the nucleus and the other
particle b,

eE�a � − �aV � �− Z�
r�a

ra
3 + �

r�ab

rab
3 


�

, �2.28�

then �H1 can be written as

�H1 = �
a=1,2

1

128m4†pa
2,�pa

2,V�‡ −
3

64m4 �pa
2,�a

2V� .

�2.29�

�H2 is a correction to the Coulomb interaction between
electrons which comes from the fifth term in HFW Eq.
�2.1�—namely,

−
e

8m2 ��� · E� + �ij�Ei,pj�� . �2.30�

If the interaction of both electrons is modified by this term, it
can be obtained in the nonretardation approximation, Eq.
�2.15�—namely,

�H2 =� ddk

�2��d

4�

k2

1

64m4 �k2 − 2i�1
ijk1

i p1
j �eik�·r��k2 + 2i�2

klkkp2
l �

=
1

64m4�− 4���2�d�r� +
16��

d�d − 1�
�1�2p1

i ���
ij �r���p2

j� ,

�2.31�

where ���
ij �r��� is defined in Eq. �A28� and we use the iden-

tity which is valid for singlet states:

�1
ij�2

kl = �1�2
��ik� jl − �il� jk�

d�d − 1�
, �2.32�

�1�2 � �1
ij�2

ij . �2.33�

�H3 is the correction that comes from seventh term in Eq.
�2.1�:

−
e

16m3 �p� ,�tE� � . �2.34�

To calculate this correction, we have to return to the original
expression for one-photon exchange, Eq. �2.11�. We assume
that particle 1 interacts with the electromagnetic field by this
term, while particle 2 by nonrelativistic coupling eA0, and
obtain

�E3 = − e2� dDk

�2��Di

1

k�2

1

16m3

�	����p�a,k�eik�·r�a�
k0

E0 − H0 − k0 + i�
e−ik�·r�b���

− ���e−ik�·r�b
k0

E0 − H0 − k0 + i�
�p�a,k�eik�·r�a����


+ �1 ↔ 2� . �2.35�

After performing the k0 integral and commuting �H0−E0�
with e−ik�·r�b one expresses this correction in terms of an effec-
tive operator

�H3 = −
1

16m4�p2
2,�p1

2,��

r



�


 . �2.36�

�H4 is the relativistic correction to transverse photon ex-

change. The first electron is coupled to A� by the nonrelativ-
istic term

−
e

m
p� · A� −

e

4m
�ijBij �2.37�

and the second one by the relativistic correction, the fourth
and sixth terms in Eq. �2.1�:

−
1

8m3	�4 −
e

2
��ijBij,p2�
 →

e

8m3�p2,2p� · A� +
1

2
�ijBij� .

�2.38�

It is sufficient to calculate it in the nonretardation approxi-
mation

�H4 =
�

8m3 �2p1
2p1

i + p1
2�1

li�1
l �� p2

j

m
+

1

2m
�2

kj�2
k


�� 1

2r
	�ij +

rirj

r2 


�

+ H.c. + �1 ↔ 2� . �2.39�

It is convenient at this point to introduce a notation for the
vector potential at the position of particle a which is pro-
duced by particle b:

KRZYSZTOF PACHUCKI PHYSICAL REVIEW A 74, 022512 �2006�

022512-4



eAa
i � � �

2rab
	�ij +

rab
i rab
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m
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ki rab
k

rab
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. �2.40�

This correction can then be written as

�H4 = �
a=1,2

e

8m3 �pa
2,2p�a · A� a + �a

ij�a
i Aa

j �

=
�p1

2 + p2
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2
p1

i � �
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	�ij +

rirj
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�

p2
j

+
�p1

2 + p2
2�

8

�1�2

d
4��d�r� . �2.41�

One notices that in the nonretardation approximation any
correction can be simply obtained by replacing the magnetic

field A� by a static field A� a. We will use this fact in further
calculations.

�H5 comes from the coupling

e2

4m2�ijEiAj , �2.42�

which is present in the fifth term in Eq. �2.1�. The resulting

correction is obtained by replacing the fields E� and A� by the
static fields produced by the other electron:

�H5 = �
a

e2

4m2�a
ijEa

i Aa
j = −

Z�2

8m3

�1�2

d
� r�1

r1
3 −

r�2

r2
3


�

� r�

r3

�

+
�2

4m3

�1�2

d
� 1

r4

�

, �2.43�

where �1/r4������1/r���2.
�H6 comes from the coupling

e2

2m
A� 2, �2.44�

which is present in the second term of Eq. �2.1�. Again, in

the nonretardation approximation the A� a field is being re-
placed by the static fields produced by the other electron:

�H6 = �
a

e2

2m2A� a
2 =

�2

8
p1

i 1

r2	�ij + 3
rirj

r2 
p1
j +

�2

8
p1

i 1

r2

�	�ij + 3
rirj

r2 
p1
j +

d − 1

4
��2

r4 

�

,

�2.45�

where one used the identity

�ij�ij = d�d − 1� . �2.46�

�H7 is a retardation correction in the nonrelativistic
single-transverse-photon exchange. To calculate this correc-
tion, we have to again return to the general one-photon ex-
change expression, Eq. �2.11�, and take the transverse part of
the photon propagator:

�E = − e2� dDk

�2��Di

1

�k0�2 − k�2 + i�
	�ij −

kikj

k�2 

���� j1

i �k�eik�·r�1
1

E0 − H0 − k0 + i�
j2
j �− k�e−ik�·r�2���

+ �1 ↔ 2� . �2.47�

We assume that the product j1
i �k� j2

j �−k� contains at most a
single power of k0. This allows one to perform the k0 inte-
gration by encircling the only pole k0= �k�� on the Re�k0��0
complex half plane and obtain

�E = e2� ddk

�2��d2k
	�ij −

kikj

k2 
��� j1
i �k��eik�·r�1

�
1

E0 − H0 − k
j2
j �− k��e−ik�·r�2��� + �1 ↔ 2� ,

�2.48�

where k= �k��. By using the nonrelativistic form of ji and per-
forming the retardation expansion

1

E0 − H0 − k
= −

1

k
+

H0 − E0

k2 −
�H0 − E0�2

k3 + ¯ ,

�2.49�

where the first one contributes to the Breit-Pauli Hamil-
tonian, the second term to E�5�, and the third term gives �E7,

�E7 = − e2� ddk

�2��d2k4	�ij −
kikj

k2 
���	 p1
i

m
+

1

2m
�1

ki�1
k


�eik�·r�1�H0 − E0�2	 p2
j

m
+

1

2m
�2
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l 
e−ik�·r�2���

+ �1 ↔ 2� . �2.50�

This is the most complicated term in the evaluation. After k
integration one obtains

�H7 =
�

16m4

�1�2

d
�p1

2,�p2
2,��

r



�




−
�

8m2��p1
i ,V�� rirj − 3�ijr2

r



�

�V,p2
j �


� + �p1
i ,V�� p2

2

2m
,� rirj − 3�ijr2

r



�

p2

j

+ p1
i �� rirj − 3�ijr2

r



�

,
p1

2

2m

�V,p2

j �

+ p1
i � p2

2

2m
,�� rirj − 3�ijr2

r



�

,
p1

2

2m


p2

j� ,

�2.51�

where ��rirj −3�ijr2� /r�� is defined in Eq. �A26�.
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�H8 is the retardation correction to single-transverse-
photon exchange, where one vertex is nonrelativistic, Eq.
�2.13�, and the second comes from the fifth term in Eq. �2.1�:

−
e

8m2�ij�Ei,pj� . �2.52�

With the help of Eq. �2.48� one obtains the following expres-
sion for �E8:

�E8 = e2� ddk

�2��d	�ij −
kikj

k2 
 i

16m3����1
ik�eik�·r�1,p1

k�

�
1

E0 − H0 − k
	p2

j −
i

2
�2

ljkl
e−ik�·r�2���

+ H.c. + �1 ↔ 2� . �2.53�

In the expansion of 1/ �E0−H0−k� in Eq. �2.49� the first term
vanishes because it cancels out with its Hermitian conjugate
and the second term is a correction of order m�6. After com-
muting �H0−E0� on the left one obtains the effective operator
�H8:

�H8 = �
a

e2

8m2�a
ij�Ea

i ,Aa
j � −

ie

16m3 ��a
ij�pa

i ,Aa
j �,pa

2�

=
�1�2

d
�−

Z�2

8
� r�1

r1
3 −

r�2

r2
3


�

� r�

r3

�

+
1

4
��2

r4 

�



+
1

32
�p1

2,�p1
2,��

r



�


 +

1

32
�p2

2,�p2
2,��

r



�


 .

�2.54�

HH is the high-energy contribution which is given by the
forward three-photon exchange scattering amplitude. It was
calculated for the m�6 correction to the parapositronium
binding energy in �16�. Following �6�, we define a
d-dimensional spin-wave function in analogy to this para-
positronium work �see Eq. �3.29�� and take the result with
reversed sign:

HH = 	−
1

�
+ 4 ln m −

39��3�
�2 +

32

�2 − 6 ln�2� +
7

3

��3

4m2 �d�r� ,

�2.55�

where � is the Riemann zeta function and we follow the
convention that a common factor ��4�����1+���2 is pulled
out from all matrix elements.

HR is a radiative correction and its derivation requires a
separate treatment. This is based on our former work for
helium �17�, and this result has also been obtained in Ref.
�5�. It is a sum of one- and two-loop contributions:

HR = HR1 + HR2,

HR1 =
��Z��2

m2 �427

96
− 2 ln�2�
���3�r1� + �3�r2��

+
�3

m2�6��3�
�2 −

697

27�2 − 8 ln�2� +
1099

72

��3�r� ,

�2.56�

HR2 =
�2�Z��

m2 �−
9��3�
4�2 −

2179

648�2 +
3 ln�2�

2
−

10

27

���3�r1�

+ �3�r2�� +
�3

m2�15��3�
2�2 +

631

54�2 − 5 ln�2� +
29

27

��3�r� ,

�2.57�

At this point we have obtained all contributions of the order
of m�6.

III. ELIMINATION OF SINGULARITIES

The elimination of singularities will be performed in
atomic units, which in d dimensions become little more com-
plicated. The nonrelativistic Hamiltonian in natural units is

H0 =
p�1

2

2m
+

p�2
2

2m
− Z�

C1

r1
1−2� − Z�

C1

r2
1−2� + �

C1

r12
1−2� . �3.1�

Using coordinates in atomic units,

r� → �m��−1/�1+2��r� , �3.2�

it can be written as

H0 = m�1−2��/�1+2���2/�1+2��

�� p�1
2

2
+

p�2
2

2
− Z

C1

r1
1−2� − Z

C1

r2
1−2� +

C1

r12
1−2�
 . �3.3�

If one pulls out the factor m�1−2��/�1+2���2/�1+2�� from H0, then
one will obtain the nonrelativistic Hamiltonian in atomic
units. Similarly for H�6�, the common factor in atomic units,

m�1−10��/�1+2���6/�1+2��, �3.4�

is pulled out from all the terms, which corresponds to the
replacement m→1,�→1. Such a factor will also be pulled
out from HH in Eq. �2.55�, which will lead to the appearance
of logarithmic terms.

We will explore now the power of dimensional regular-
ization. All integrals of the form

� ddk k� � 0 �3.5�

vanish identically by definition. We will use this fact in the
following. Consider the matrix element

����d�r��1

r



�
��� =� ddp1

�2��d���p1� � ddp2

�2��d

�� ddp3

�2��d

4�

�p�2 − p�3�2��p3� ,

�3.6�
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and change the variable p�2=q�2+ p�3; then,

����d�r��1

r



�
��� =� ddp1

�2��d���p1� � ddq2

�2��d

4�

q2
2

�� ddp3

�2��d��p3� = 0. �3.7�

The integral with q2 vanishes, so this matrix element is equal
to 0; similarly,

����d�ra�� 1

ra



�
��� = 0. �3.8�

Let us introduce momenta P� and p� ,

p�1 =
P�

2
+ p� , �3.9�

p�2 =
P�

2
− p� , �3.10�

where pa is a momentum of the electron a, and consider the
matrix element

���p��d�r�p� ��� =� ddP

�2��d�� ddp

�2��d��P� ,p��p��2

= 0.

�3.11�

This is equal to 0 because the integrand ��P� , p��p� is odd in p�
for the singlet states considered here. These matrix elements
and the Schrödinger equation

	P� 2

4
+ p�2 + V
� = E� �3.12�

are used to derive various identities—for example,

��2�d�r�� = − �†p� ,�p� ,�d�r��‡� = − 2��d�r�p2�

= − 2��3�r�	E +
Z

r1
+

Z

r2
−

P� 2

4

� . �3.13�

Similarly,

�Z2

r1
4 


�

� 	�1� Z

r1



�

2

= p�1
Z2

r1
2 p�1 − 2	E +

Z

r2
−

1

r
−

p�2
2

2

Z2

r1
2 − 2� Z

r1



�

3

,

�3.14�

� 1

r4

�

� 	��1

r



�

2

=
1

2
p�1

1

r2 p�1 +
1

2
p�2

1

r2 p�2

− 	E +
Z

r1
+

Z

r2

 1

r2 + �1

r



�

3

. �3.15�

Since the electron-nucleus divergences cancel out algebra-
ically, one does not need the matrix element of �1/r1

3�. How-
ever, �1/r3� is needed and is calculated as follows:

��1

r



�

3� = C1
3� ddr�2�r�r−3+6� = C1

3�2�0���

ddrr−3+6�

+ �
�

d3r�2�r�r−3 = � 1

r3� + ���d�r��	1

�
+ 2
 ,

�3.16�

where �1/r3�� P�1/r3� is defined in Eq. �1.5�. The matrix
elements of 1 /r4 can be obtained from Eq. �3.15�, but it can
also be calculated directly,

�� 1

r4

�
� = C1

2� ddr�2�r����r−1+2���2

= C1
2�− 1 + 2��2�2�0���

ddrr−4+4�

�1 − C2r1+2��2 + �
�

d3r�2�r�r−4

= � 1

r4� + ���d�r��	1

�
− 4
 , �3.17�

where we assume that 1 /� and ln �+
 are dropped. Simi-
larly,

� 1

2r
	�ij +

rirj

r2 


�

�i� j�1

r



�

=
1

r4 + ��d�r�	1

�
− 5
 .

�3.18�

From Eqs. �3.16� and �3.17� one obtains the identity

� 1

r4� = � 1

r3� + p�1
1

2r2 p�1 + p�2
1

2r2 p�2 − 	E +
Z

r1
+

Z

r2

 1

r2

+ 6��3�r� . �3.19�

Other identities which will be used are

4���
ij pipj = − ��2�d�r� −

Z

4
	 r�1

r1
3 −

r�2

r2
3
 ·

r�

r3 +
1

2
� 1

r4

�

,

�3.20�

4���
ij PiPj = PiPj �3rirj − �ijr2�

r5 +
8�

3
�3�r�P2, �3.21�

�p1
2,�p1

2,�1

r



�


 = Z	 r�1

r1
3 −

r�2

r2
3
 ·

r�

r3 − 2� 1

r4

�

+
4

3
��d�r�P2

− PiPj �3rirj − �ijr2�
r5 , �3.22�
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�p2
2,�p1

2,�1

r



�


 = Z	 r�1

r1
3 −

r�2

r2
3
 ·

r�

r3 − 2� 1

r4

�

−
4

3
��d�r�P2

+ PiPj �3rirj − �ijr2�
r5 , �3.23�

p1
2�1

r



�

p2
2 =

1

r
	E +

Z

r1
+

Z

r2

2

−
2

r2	E +
Z

r1
+

Z

r2

 + �1

r



�

3

− P� · p�
1

r
p� · P� , �3.24�

p�1 · p�2�1

r



�

p�1 · p�2 =
1

r
	P2

2
−

Z

r1
−

Z

r2
+

1

r
− E
2

+ ��d�r�	1

�
+ 2
 , �3.25�

P� · p�
1

r
p� · P� = − p�1 � p�2

1

r
p�1 � p�2 −

P4

4r

+
P2

r
	E +

Z

r1
+

Z

r2
−

1

r

 − 2��3�r�P2.

�3.26�

We are now ready to eliminate divergences from matrix ele-
ments of �Hi operators. In the following we make replace-
ment �1�2→−d�d−1�. To show this, we consider matrix el-
ements of spin operators with the helium singlet wave
function in d dimensions. All terms with a single-spin opera-
tor vanish. The spin-spin operators of the form �1

ij�2
ik�� jk /d

−rjrk /r2� vanish because of angular integration. Only opera-
tors of the form �1

ij�2
ijQ fail to vanish, and we use a defini-

tion which was implicitly assumed in Ref. �5�. Namely, we
postulate the existence of the charge conjugation operator C,
such that

C−1 = CT, �3.27�

C�� 2
TC−1 = − �� 1, �3.28�

and singlet states �S are defined by

��S�Q1 � Q2��S� =
1

2
Tr�Q1CQ2

TC−1� . �3.29�

Using this definition one obtains

��S�Q�1
ij�2

ij��S� = − d�d − 1���S�Q��S� , �3.30�

for an arbitrary operator Q.
All �Ei corrections are now transformed as follows. The

first term �E0= ��H0� becomes

�E0 =
1

16
�p1

6 + p2
6� =

1

16
��p1

2 + p2
2�3 − 3p1

2p2
2�p1

2 + p2
2��

=
1

16
�4���1V�2 + ��2V�2� + 8�E − V�3 − 6p1

2�E − V�p2
2

+ 3�p2
2,�p1

2,�1

r



�


� . �3.31�

All singular operators in E0 can be handled by Eqs.
�3.14�–�3.26�, and all the singularities are identified in the
form of �2�0� /�. Next the terms �E1−�E8 are transformed in
a similar way:

�E1 =
1

128
�− 4���1V�2 + ��2V�2� − 2�p2

2,�p1
2,�1

r



�


�

−
3

32
�2	E +

Z − 1

r2

4�Z�3�r1� + 2	E +

Z − 1

r1



�4�Z�3�r2� − 2	E +
Z

r1
+

Z

r2

4�Z�3�r�

− p2
24�Z�3�r1� − p1

24�Z�3�r2�� ,

�E2 = −
�

16
�2�d�r� −

�

16
��

ij PiPj +
�

4
��

ij pipj , �3.32�

�E3 = −
1

16
�p2

2,�p1
2,�1

r



�


 , �3.33�

�E4 = p1
i �E − V�

1

2r
	�ij +

rirj

r2 
p2
j −

1

2
	E +

Z

r1
+

Z

r2

4��3�r�

−
1

2
� 1

2r
	�ij +

rirj

r2 


�

�i� j�1

r



�

, �3.34�

�E5 =
Z

4
	 r�1

r1
3 −

r�2

r2
3
 ·

r�

r3 −
�d − 1�

4
� 1

r4

�

, �3.35�

�E6 =
1

8
p1

i 1

r2	�ij + 3
rirj

r2 
p1
j +

1

8
p2

i 1

r2	�ij + 3
rirj

r2 
p2
j

+
d − 1

4
� 1

r4

�

, �3.36�

�E8 =
Z

4
	 r�1

r1
3 −

r�2

r2
3
 ·

r�

r3 −
�d − 1�

4
� 1

r4

�

−
�d − 1�

32
�p1

2,�p1
2,�1

r



�


 −

�d − 1�
32

��p2
2,�p2

2,�1

r



�


 . �3.37�
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The calculation of the E7 contribution is lengthier, and we
split it into four parts, corresponding to Eq. �2.51�:

�E7 = �E7A + �E7B + �E7C + �E7D. �3.38�

Each part contains singular operators which are handled
similarly to those in Eqs. �3.14�–�3.26�:

�E7A = −
�d − 1�

16
�p2

2,�p1
2,�1

r



�


 , �3.39�

�E7B = − 	Z
r1

i

r1
3 −

ri

r3
	Z
r2

j

r2
3 +

ri

r3
 �rirj − 3�ijr2�
8r

−
�

4
�d�r�	1

�
− 5
 , �3.40�

�E7C = −
Z

8
p2

k r1
i

r1
3	� jk ri

r
− �ik rj

r
− �ij r

k

r
−

rirjrk

r3 
p2
j

+
1

8
p2

j �� jkr2 − 3rjrk�
r4 p2

k −
Z

8
p1

k r2
i

r2
3	� jk ri

r
− �ik rj

r

− �ij r
k

r
−

rirjrk

r3 
p1
j +

1

8
p1

j �� jkr2 − 3rjrk�
r4 p1

k

+
1

4r4 +
�

4
�d�r�	1

�
− 7
 , �3.41�

�E7D =
1

8
p�1 � p�2

1

r
p�1 � p�2 −

1

8
p�1 · p�2�1

r



�

p�1 · p�2

+
1

8
p1

kp2
l 	−

� jlrirk

r3 −
�ikrjrl

r3 + 3
rirjrkrl

r5 
p1
i p2

j .

�3.42�

At this point we have completed the elimination of singulari-
ties from the effective Hamiltonian. It remains to consider,
however, the second-order matrix element EA:

EA = �HA
1

�E0 − H0��
HA� , �3.43�

which requires subtractions of 1 /� singularities. For this we
use the transformation

HA = HA� + �H0 − E0,Q� , �3.44�

Q = −
1

4
� Z

r1
+

Z

r2



�

+
�d − 1�

4
�1

r



�

, �3.45�

so that

EA = EA� + EA� , �3.46�

EA� = �HA�
1

�E0 − H0��
HA�� , �3.47�

EA� = �Q�E0 − H0�Q� + 2�HA��Q� − ��HA,Q�� = X1 + X2 + X3.

�3.48�

EA� is finite in the limit �→0, and

HA� ��� = �−
1

2
�E0 − V�2 − p1

i 1

2r
	�ij +

rirj

r2 
p2
j +

1

4
�� 1

2�� 2
2

−
Z

4

r�1

r1
3 · �� 1 −

Z

4

r�1

r1
3 · �� 1���� , �3.49�

where �� 1
2�� 2

2 is understood as a differentiation of � on the
right-hand side as a function �omitting �3�r��. What remains
is the calculation of Xi terms. The first two are simple:

X1 =
1

32
�Z2

r1
4 +

Z2

r2
4 


�

+
�d − 1�2

16
� 1

r4

�

−
Z

8
	 r�1

r1
3 −

r�2

r2
3
 ·

r�

r3 ,

�3.50�

X2 = 2E�4��−
1

4
	 Z

r1
+

Z

r2

 +

1

2r
� . �3.51�

To calculate X3 we split it again into four parts, correspond-
ingly,

X3 = − 2����−
p1

4

8
−

p2
4

8
+

�Z

2
��d�r1� + �d�r2��

−
1

2
p1

i ��ij

r
+

rirj

r3 

�

p2
j + ��d − 2��d�r��

��−
1

4
� Z

r1
+

Z

r2



�

+
�d − 1�

4
�1

r



�
����

= X3A + X3B + X3C + X3D, �3.52�

and calculate each part separately:

X3A =
1

4
��p1

4 + p2
4�Q� =

1

4
��p1

2 + p2
2�Q�p1

2 + p2
2� +

1

2
†p1

2 + p2
2,�p1

2 + p2
2,Q�‡ − 2p1

2Qp2
2 − †p1

2,�p2
2,Q�‡�

=
1

4
	E + � Z

r1
+

Z

r2



�

− �1

r



�

2	�d − 1��1

r



�

− � Z

r1
+

Z

r2



�

 −

1

8
	�Z2

r1
4 +

Z2

r2
4 


�

+ 2�d − 1�� 1

r4

�

− 3Z	 r�1

r1
3 −

r�2

r2
3
 ·

r�

r3
 +
1

8
p1

2	 Z

r1
+

Z

r2

p2

2 −
�d − 1�

8
p1

2�1

r



�

p2
2 −

�d − 1�
16

�p2
2,�p1

2,�1

r



�


 , �3.53�
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X3B = Z�Z − 2�
�

4
�3�r1�

1

r2
+ Z�Z − 2�

�

4
�3�r2�

1

r1
,

�3.54�

X3C = −
1

4
p1

i 	 Z

r1
+

Z

r2
−

2

r

1

r
	�ij +

rirj

r3 
p2
j

+
�d − 1�

4
� 1

2r
	�ij +

rirj

r2 


�

�i� j�1

r



�

, �3.55�

X3D =
�

2
�3�r�	 Z

r1
+

Z

r2

 . �3.56�

The last term to be considered is HH in Eq. �2.55�. One
transforms it into atomic units by the replacement in Eq.
�3.2� and division by the factor in Eq. �3.4�. As a result one
obtains

HH = 	−
1

�
− 4 ln � −

39��3�
�2 +

32

�2 − 6 ln�2� +
7

3

�

4
�d�r�

= HH� − 	1

�
+ 4 ln �
�

4
�d�r� . �3.57�

At this point we have separated out all singularities. They
always have the form of �2�0� /� and finally cancel between
themselves. The sum of all terms, which is the main result of
this work, is

E�6� = −
E0

3

2
+ �	− E0 +

3

2
p2

2 +
1 − 2Z

r2

Z�

4
�3�r1� + �1 ↔ 2�
 + 	1 −

Z

r1
−

Z

r2
+

P2

3

�

2
�3�r� +

E0
2 + 2E�4�

4r
−

E0

2r2 +
1

4r3

−
E0

2r
	 Z

r1
+

Z

r2

 +

E0

4
	 Z

r1
+

Z

r2

2

−
1

4r2	 Z

r1
+

Z

r2

 −

1

4r
	 Z

r1
+

Z

r2

2

+
Z2

2r1r2
	E0 +

Z

r1
+

Z

r2
−

1

r

 +

Z

32
	 r�1

r1
3 −

r�2

r2
3
 ·

r�

r3

+
Z

4
	 r�1

r1
3 −

r�2

r2
3
 ·

r�

r2 −
Z2

8

r1
i

r1
3

�rirj − 3�ijr2�
r

r2
j

r2
3 + �Z2

8

1

r1
2 p�2

2 +
Z2

8
p�1

1

r1
2 p�1 +

1

2
p�1

1

r2 p�1 + �1 ↔ 2�
 +
1

4
p1

i 	 Z

r1
+

Z

r2

 �rirj + �ijr2�

r3 p2
j

−
1

32
Pi �3rirj − �ijr2�

r5 Pj − �Z

8
p2

k r1
i

r1
3	� jkri

r
−

�ikrj

r
−

�ijrk

r
−

rirjrk

r3 
p2
j + �1 ↔ 2�
 −

E0

8
p1

2p2
2 −

1

4
p1

2	 Z

r1
+

Z

r2

p2

2 +
1

4
p�1

� p�2
1

r
p�1 � p�2 +

1

8
p1

kp2
l 	−

� jlrirk

r3 −
�ikrjrl

r3 + 3
rirjrkrl

r5 
p1
i p2

j + EH� + EA� + EC + ER1 + ER2 − ln�����d�r� , �3.58�

where EH� = �HH� � from Eq. �3.57�, EA� is defined in Eq. �3.47�, EC in Eq. �4.12�, ER1 and ER2 in Eqs. �2.56� and �2.57�,
correspondingly. In addition to various identities in Eqs. �3.19�–�3.26�, we used two further equations

� Z

r1
+

Z

r2
� = � 1

r
� − 2E0, �3.59�

�p1
i �riri + �ijr2�

r3 p2
j� = − 2E�4� − 	E0 +

Z

r1
+

Z

r2
−

1

r

2

+
p1

2p2
2

2
+ �Z��3�r1� + �3�r2�� + 2��3�r� �3.60�

to simplify final expression. The logarithmic term in Eq. �3.58� agrees with that obtained in Ref. �18�. The sum of “soft”
operators �Eq. �3.58� without the last six terms� after �1↔2� simplification becomes

EQ = −
E0

3

2
−

E0Z

8
Q1 +

1

8
Q2 −

Z�2Z − 1�
8

Q3 +
3Z

16
Q4 −

Z

4
Q5 +

1

24
Q6 +

E0
2 + 2E�4�

4
Q7 −

E0

2
Q8 +

1

4
Q9 +

E0Z2

2
Q11 + E0Z2Q12

− E0ZQ13 − Z2Q14 + Z3Q15 −
Z2

2
Q16 −

Z

2
Q17 +

Z

16
Q18 +

Z

2
Q19 −

Z2

8
Q20 +

Z2

4
Q21 +

Z2

4
Q21 +

Z2

4
Q22 + Q23 +

Z

2
Q24 −

1

32
Q25

−
Z

4
Q26 −

E0

8
Q27 −

Z

2
Q28 +

1

4
Q29 +

1

8
Q30, �3.61�

where Qi are defined in Table I.
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IV. NUMERICAL CALCULATIONS
OF MATRIX ELEMENTS

The helium wave function is expanded in a basis set of
exponential functions in the form of �19�

��r1,r2,r� = �
i=1

N

vi�e−�ir1−�ir2−
ir + �r1 ↔ r2�� , �4.1�

where �i, �i, and 
i are generated randomly with conditions

A1 � �i � A2, �i + 
i � � , �4.2�

B1 � �i � B2, �i + 
i � � , �4.3�

C1 � 
i � C2, �i + �i � � . �4.4�

In order to obtain a highly precise wave function following
Korobov �19�, we use a double set of the form �4.1�. Each
parameter Ai, Bi, Ci, and � is determined by energy minimi-
zation, with the condition that ��0, which is necessary for
the normalizability of the wave function. The linear coeffi-

cients vi in Eq. �4.1� form a vector v, which is a solution of
the generalized eigenvalue problem

Hv = ENv , �4.5�

where H is a matrix of the Hamiltonian in this basis set, N is
a normalization �overlap� matrix, and E an eigenvalue, the
energy of the state corresponding to v. For the solution of the
eigenvalue problem with N=100,300,600,900,1200,1500
we use LU decomposition in quadruple and sextuple preci-
sion. As a result we obtain the following nonrelativistic en-
ergies in a.u.:

E0�11S0� = − 2.903 724 377 034 119 592�6� , �4.6�

E0�21S0� = − 2.145 974 046 054 417 311�50� . �4.7�

These values agree with the more accurate result of Korobov
�19� and Drake �20�. The calculation of matrix elements of
nonrelativistic Hamiltonian can be performed with the use of
one formula

1

16�2 � d3r1� d3r2
e−�r1−�r2−
r

r1r2r
=

1

�� + ���� + 
��
 + ��
.

�4.8�

The result with any additional powers of ri in the numerator
can be obtained by differentiation with respect to the corre-
sponding parameter �, �, or 
. The matrix elements of rela-
tivistic corrections involve inverse powers of r1, r2, and r.
These can be obtained by integration with respect to corre-
sponding parameter. This leads to the appearance of logarith-
mic and dilogarithmic functions—for example,

1

16�2 � d3r1� d3r2
e−�r1−�r2−
r

r1r2r2

=
1

�� + ���� + ��
ln	� + 


� + 


 , �4.9�

1

16�2 � d3r1� d3r2
e−�r1−�r2−
r

r1
2r2r2

=
1

2�
��2

6
+

1

2
ln2	� + �

� + 


 + Li2	1 −

� + 


� + �



+ Li2	1 −
� + 


� + 



 . �4.10�

All matrix elements involved in the m�6 correction �see
Table I� can be expressed in terms of rational, logarithmic,
and dilogarithmic functions, as above. The high quality of
the wave function allows us to obtain precise matrix ele-
ments of H�6� operators, and the numerical results are pre-
sented in Table I. Some of these matrix elements have al-
ready been calculated in �21�, and results in Table I are in
agreement with them.

The calculation of second-order corrections EA� and EC is
more complicated. The spin algebra in the second-order ma-
trix element EC is simplified with the help of

TABLE I. Expectation values of operators entering H�6� for the
1S state, r�=r�1−r�2.

Q1=4��3�r1� 22.750 526

Q2=4��3�r� 1.336 375

Q3=4��3�r1� /r2 33.440 565

Q4=4��3�r1�p2
2 49.160 046

Q5=4��3�r� /r1 5.019 714

Q6=4��3�r�P2 18.859 765

Q7=1/r 0.945 818

Q8=1/r2 1.464 771

Q9=1/r3 0.989 274

Q10=1/r4 −3.336 383

Q11=1/r1
2 6.017 409

Q12=1/ �r1r2� 2.708 655

Q13=1/ �r1r� 1.920 944

Q14=1/ �r1r2r� 4.167 175

Q15=1/ �r1
2r2� 9.172 094

Q16=1/ �r1
2r� 8.003 454

Q17=1/ �r1r2� 3.788 791

Q18= �r�1 ·r�� / �r1
3r3� 3.270 472

Q19= �r�1 ·r�� / �r1
3r2� 1.827 027

Q20=r1
i r2

j �rirj −3�ijr2� / �r1
3r2

3r� 0.784 425

Q21= p2
2 /r1

2 14.111 960

Q22= p�1 /r1
2p�1 21.833 598

Q23= p�1 /r2p�1 4.571 652

Q24= p1
i �rirj +�ijr2� / �r1r3�p2

j 0.811 933

Q25= Pi�3rirj −�ijr2� /r5Pj −3.765 488

Q26= p2
kr1

i /r1
3�� jkri /r−�ikrj /r−�ijrk /r−rirjrk /r3�p2

j −0.266 894

Q27= p1
2p2

2 7.133 710

Q28= p1
2 /r1p2

2 37.010 642

Q29= p�1� p�2 /rp�1� p�2 4.004 703

Q30= p1
kp2

l �−� jlrirk /r3−�ikrjrl /r3+3rirjrkrl /r5�p1
i p2

j −1.591 864
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�1S0��1S0� = �S0��S0�	1 −
s�2

2

 , �4.11�

where �r�1 ,r�2 �S0� is the wave function without spin and s�
= ��� 1+�� 2� /2, so that

EC = �S0�C�
1

E0 − H0
C� �S0� , �4.12�

C� =
Z

4
	 r�1

r1
3 � p�1 −

r�2

r2
3 � p�2
 +

1

4

r�

r3 � �p�1 + p�2� . �4.13�

The inversion of the operator E0−H0 in this expression is
performed in a basis set of even parity functions with l=1 of
the form

�� �r1,r2,r� = �
i

vir�1 � r�2�e−�ir1−�ir2−
ir + �r1 ↔ r2��

�4.14�

The values of parameters Ai, Bi, and Ci corresponding to ��

are obtained by minimization of EC, and the results of these
calculations are presented in Table II. The calculation of EA�
is similar to that of EC, but additionally requires a subtraction
of the reference state from the implicit sum over states. We
obtain this by orthogonalization of HA� ��� with respect to
eigenstate with closest to 0 eigenvalue of H−E. This eigen-
value is not exactly equal to 0, because we use a basis set
with different parameters, which are obtained by minimiza-
tion of EA� . The results are presented in Table II. Surprisingly,
the total nonlogarithmic exchange contribution after subtrac-
tion of the He+ value is very small—namely 0.299 063for the
1S state and −0.026 485 for the 2S state. This contribution is
much smaller than the dominating one-loop contribution ER1
which is 43.952 374 and 2.999 959 correspondingly. It is

similar for the triplet states 2 3S1 and 2 3P1 of helium and
means that higher-order corrections can be well approxi-
mated by the one-loop self-energy contribution.

V. SUMMARY

We have derived the complete order-m�6 contribution to
energy levels of singlet states of helium. It is expressed as
the expectation value of the operators in Eq. �3.58�. A simi-
lar, but not identical set of operators have been obtained
previously by Yelkhovsky, Eq. �97� in �6�, and the results
obtained here are in slight disagreement �see Appendix C for
details�. The matrix elements of operators entering Eq. �3.58�
for the ground state of the helium atom are presented in
Table I, and a few of them are in disagreement with the
results presented in Ref. �5�. Because of these discrepancies,
the calculations presented here should be verified before
definite conclusions can be made.

In this work we performed numerical calculations for the
ground 1 1S0 and excited 2 1S0 states, and the results are
presented in Table II. While the calculation of the EQ opera-
tors was quite complicated, their contribution to E�6� is rela-
tively small. The dominating contribution comes from the
one-loop electron self-energy ER1 and is given by Dirac �
functions; see Eq. �2.56�.

The summary of all known contributions to 1 1S0-2 1S0
transition is presented in Table III. The nonrelativistic energy
here, E�2�, is the sum of 
E0 from Eqs. �4.6� and �4.7� with 

being the reduced mass and mass polarization corrections
from Ref. �20�. The relativistic contribution E�4� is taken
from Ref. �25� and includes nuclear recoil. The leading QED
contribution E�5� also includes nuclear recoil �26�, and we
use Bethe logarithms as obtained by Drake and Goldman
�27�. Our value for E�5� is greater by about 12 MHz from that
of Korobov and Yelkhovsky �KY� �5�, which is

TABLE II. Contributions to E�6� for 1S and 2S states of the helium atom. ELG is the logarithmic correc-
tion, last term in Eq. �3.58�.

m�6 He�1 1S� He�2 1S� �E

EQ 15.465 431 12.310 132 −3.155 299

EH� −0.278 403 −0.022 641 0.255 762

EA� −18.495 345�50� −16.280 186�10� 2.215 159�50�
EC −0.392 621 −0.033 790 0.358 831

Subtotal −3.700 937�50� −4.026 485�10� −0.325 547�50�
ER1 141.924 288 100.971 873 −40.952 415

ER2 1.144 012 0.890 559 −0.253 453

ELG 1.643 823 0.133 682 −1.510 141

Total 141.011 185�50� 97.969 630�10� −43.041 555�50�
−ED�He+� 4.000 000 4.000 000 0.000 000

−ER1�He+� −97.971 914 −97.971 914 0.000 000

−ER2�He+� −0.873 699 −0.873 699 0.000 000

E�6��He�-E�6��He+� 46.165 572�50� 3.124 017�10� −43.041 555�50�
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40 483.98�5� MHz, and we do not understand a reason for
this discrepancy. We have not been able to find in the litera-
ture the result of Drake for E�5� as well as separate results for
higher-order terms. However, the total result of Drake �see
Table III� is in agreement with that of Ref. �5�. E�6� is ob-
tained here, and our result is greater by about 25 MHz from
the result in Ref. �5�, which is 834.9�2�. The source of this
deviation is explained in Appendix C. E�7� includes all
electron-nucleus terms of order m�7 which are known from
the hydrogen Lamb shift �15� �one-, two-, and three-loop
contributions� and are extended to helium in the standard
way. Our value is larger by 12 MHz from the result of Ref.
�5�, −84�42�, because we include all �7 terms, not only the
leading ln2���. The current theoretical uncertainty comes
mainly from the approximate treatment of these higher-order
terms. The exact calculation of E�7� is at present very diffi-
cult, due to high complexity in the derivation of H�7�, and
thus limits the accuracy of theoretical predictions. Our final
theoretical predictions are in moderate agreement with the
measurement of Eikema et al. �23� and disagree significantly
with the measurement by Bergeson et al. �24�.

Having the exact formula for m�6 corrections for singlet
and as well as triplet states �28�, it is possible now to im-
prove theoretical predictions for higher excited states of he-
lium, as well as light heliumlike ions. The extension of this
approach to three- and more-electron atoms or molecules is
possible, but not all technical problems in calculating matrix
elements in explicitly correlated basis set have been resolved
yet.
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APPENDIX A: DIMENSIONALLY REGULARIZED QED
OF BOUND STATES

The dimension of space is assumed to be d=3−2�. The
surface area of d-dimensional unit sphere can be obtained by
considering the following integral:

I =� ddke−k�2
. �A1�

In Cartesian coordinates it is a product of d one-dimensional
integrals,

I = �� dke−k2
d

= �d/2, �A2�

while in spherical coordinates it is

I =� d�d�
0

�

dkkd−1e−k2
= �d

1

2
��d/2� . �A3�

From comparison with Eqs. �A2� and �A3� one obtains

�d =
2�d/2

��d/2�
. �A4�

The d-dimensional Laplacian is �2=�i�i. For spherically
symmetric functions f and g,

� ddr�2�f�g = −� ddr � �f� · ��g� = − �d� drrd−1�rf�rg

= �d� dr�r�rd−1�rf�g =� ddrr1−d�r�rd−1�rf�g ,

�A5�

the Laplacian takes the form

�2 = r1−d�rr
d−1�r. �A6�

The photon propagator, and thus the Coulomb interaction,
preserves its form in the momentum representation, while in
the coordinate representation it is

TABLE III. Contributions to 1S and 2S ionization energies of the helium atom in MHz. Physical constants
from �22�, R�=1 097 3731.568 525�73� m−1, �=1/137.035 999 11�46�, �” e=386.159 267 8�26� fm, m� /me

=7294.299 536 3�32�, r�=1.673 fm, c=299 792 458. The uncertainty for E�7� is due to its approximate cal-
culation and is roughly estimated to be about half of E�7�.

��1 1S� ��2 1S� ���2 1S-1 1S�

E�2� −5 945 262 288.61 −960 322 874.90 4 984 939 413.71

E�4� 16 800.32 −11 974.80 −28 75.12

E�5� 40 495.81 2 755.14 −37 740.68

E�6� 861.24 58.28 −802.96

E�7� −72. �36� −4. �2� 68.�34�
EFS 29.58 1.99 −27.59

Theory −5 945 204 174. �36� −960 332 038. �2� 4 984 872 136. �34�
V.K. and A.Y. �5� −5 945 204 223. �42�
Drake �20� −5 945 204 223. �91� −960 332 041. �25� 4 984 872 182. �91�
Expt. �24� −5 945 204 356. �48� −960 332 041.01�15� 4 984 872 315. �48�
Expt. �23� −5 945 204 238. �45� f
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V�r� =� ddk

�2��d

4�

k2 eik�·r� = ��−1/2��1/2 − ��r2�−1 �
C1

r1−2� .

�A7�

The alternative derivation of V�r� which omits the calcula-
tion of Fourier transform is the following. Consider the equa-
tion

�2V�r� = − 4��d�r� . �A8�

If one assumes that V�r� is of the form V�r�=Cr
, then, for
r�0,

r1−d�rr
d−1�r�Cr
� = 0, �A9�

and therefore 
=2−d=2�−1. The coefficient C is obtained
by considering the integral with the trial function f:

4�f�0� = −� ddr�2�V�f =� ddr � �V� · ��f�

= lim
�→0
�

�

drrd−1�d�r�V��r�f�

= lim
�→0

�rd−1�d�r�V�f �r=� − �
�

dr�d�r„r
d−1�r�V�…f�

= lim
�→0

�d�d−1���C�2−d�f��� = �d�2 − d�Cf�0�;

�A10�

therefore,

C � C1 =
4�

�d − 2��d
= ��−1/2��1/2 − �� . �A11�

We are now ready to consider quantum mechanics in d di-
mensions. The nonrelativistic Hamiltonian of hydrogenlike
systems is

H0 =
p�2

2
− Z

C1

r1−2� �A12�

and of heliumlike systems

H0 =
p�1

2

2
+

p�2
2

2
− Z

C1

r1
1−2� − Z

C1

r2
1−2� +

C1

r12
1−2� . �A13�

The solution of stationary Schrödinger equation H0�=E0�
we denote by � and will never refer to its explicit �and
unknown� form in d dimensions. Instead, we will use only
the generalized cusp condition to eliminate various singulari-
ties from matrix elements with relativistic operators. Namely,
we expect that, for small r�r12,

��r� � ��0��1 − Cr
� , �A14�

with some coefficient C and 
 to be obtained from the two-
electron Schrödinger equation around r=0:

�− �2 + V�r����0��1 − Cr
� � E��0��1 − Cr
� .

�A15�

From the cancellation of small r singularities of the left-hand
side of the above equation, one obtains


 = 1 + 2� , �A16�

C � C2 =
1

4
��−1/2��− 1/2 − �� . �A17�

Therefore, the two-electron wave function around r12=0 be-
haves as

��r�1,r�2� � ��r12 = 0��1 − C2r12
1+2�� . �A18�

Apart from the Coulomb potential V�r� in coordinate
space, we need also other functions, which appear in the
calculations of relativistic operators—namely,

V2�r� =� ddk

�2��d

4�

k4 eik�·r�, �A19�

V3�r� =� ddk

�2��d

4�

k6 eik�·r�. �A20�

They can be obtained from the differential equations

− �2V2�r� = V�r� , �A21�

− �2V3�r� = V2�r� , �A22�

with the results

V2�r� = C2r1+2�, �A23�

V3�r� = C3r3+2�, �A24�

with C2 defined in Eq. �A17� and

C3 =
1

32
��−1/2��− 3/2 − �� . �A25�

Using Vi we calculate various integrals involving the photon
propagator in the Coulomb gauge—namely,

� ddk

�2��d

4�

k4 	�ij −
kikj

k2 
eik�·r�

= �ijV2 + �i� jV3

= ��−1/2r−1+2�� 3

16
�ij��− 1/2 − ��r2 +

1

8
��1/2 − ��rirj


� � 1

8r
�rirj − 3�ijr2�


�

, �A26�

� ddk

�2��d

4�

k2 	�ij −
kikj

k2 
eik�·r�

= �ijV + �i� jV2

= ��−1/2r−3+2��1

2
�ij��1/2 − ��r2 + ��3/2 − ��rirj


� � 1

2r3 ��ijr2 + rirj�

�

, �A27�

and
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� ddk

�2��d4�	�ij −
kikj

k2 
eik�·r�

=
�d − 1�

d
�ij4��d�r� + 	�i� j −

�ij

d
�2
V

=
�d − 1�

d
�ij4��d�r� + ��−1/2r−5+2�

��− 2�ij��3/2 − ��r2 + 4��5/2 − ��rirj�

= �2

3
�ij4��3�r� +

1

r5 �3rirj − �ijr2�

�

� ��
ij . �A28�

APPENDIX B: FOLDY-WOUTHUYSEN
TRANSFORMATION IN d DIMENSIONS

The Foldy-Wouthuysen �FW� transformation �2,29� is the
nonrelativistic expansion of the Dirac Hamiltonian in an ex-
ternal electromagnetic field. Here we extend this transforma-
tion to the arbitrary dimension d of space. The Dirac Hamil-
tonian in the external electromagnetic field is

H = �� · �� + �m + eA0, �B1�

where �� = p� −eA� ,

�i = 	 0 �i

�i 0

, � = 	 I 0

0 − I

 , �B2�

and

��i,� j� = 2�ijI . �B3�

The FW transformation S �29� leads to a new Hamiltonian

HFW = eiS�H − i�t�e−iS, �B4�

which decouples the upper and lower components of the
Dirac wave function up to a specified order in the 1/m ex-
pansion. Here we calculate FW Hamiltonian up to terms
which contribute to the m�6 correction to the energy. We use
a convenient form of the Foldy-Wouthuysen operator S,
which can be written as

S = −
i

2m
���� · �� −

1

3m2���� · �� �3 +
1

2m
��� · �� ,eA0 − i�t�

+
�

5m4 ��� · �� �5−
�e

4m2�� · E�̇ +
ie

24m3†�� · �� ,��� · �� ,�� · E� �‡

−
ie

3m3 ���� · �� �2,�� · E� �� . �B5�

The FW Hamiltonian is expanded in a power series in S,

HFW = �
j=0

6

H�j� + ¯ , �B6�

where

H�0� = H ,

H�1� = �iS,H�0� − i�t� ,

H�j� =
1

j
�iS,H�j−1�� for j � 1, �B7�

and higher-order terms in this expansion, denoted by over-
dots, are neglected. The calculations of subsequent commu-
tators is rather tedious but the result simple

HFW = eA0 +
��� · �� �2

2m
−

��� · �� �4

8m3 +
��� · �� �6

16m5

−
ie

8m2 ��� · �� ,�� · E� � −
e

16m3 ��� ,�tE� �

−
ie

128m4 ��� · �� ,†�� · �� ,��� · �� ,�� · E� �‡�

+
ie

16m4 ���� · �� �2,��� · �� ,�� · E� �� . �B8�

There is some arbitrariness in the operator S, which means
that HFW is not unique. The standard approach �29�, which
relies on subsequent use of FW transformations, differs from
this one in d=3 by the transformation S with some additional
even operator.

Our aim here is to obtain the Hamiltonian for further cal-
culations of the m�6 contribution to the energy levels of an
arbitrary light atom. For this one can neglect the vector po-

tential A� in all the terms having m4 and m5 in the denomina-
tor. Moreover, less obviously, one can neglect the term with

�� ·A� �� ·E�̇ and the B� 2 term. It is because they are of second
order in electromagnetic fields which additionally contain
derivatives and thus contribute only at higher orders. After
these simplifications, HFW takes the form

HFW = eA0 +
�2

2m
−

e

4m
�ijBij −

�4

8m3 −
e

8m2 ��� · E�

+ �ij�Ei,� j�� +
e

16m3 ��ijBij,p2� −
e

16m3 �p� ,�tE� �

+
3e

32m4 ��ijEipj,p2� +
e

128m4†p
2,�p2,A0�‡

−
3e

64m4 �p2,�2A0� +
p6

16m5 , �B9�

where

�ij =
1

2i
��i,� j� , �B10�

Bij = �iAj − � jAi, �B11�

Ei = − �iA0 − �tA
i. �B12�
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APPENDIX C: COMPARISON TO FORMER WORKS

A similar, but not identical set of operators in Eq. �3.58�
has been obtained by Yelkhovsky, Eq. �97� in �6�. When his
operators are transformed by using the three equations

� i

r3	 r�

r
· p� −

1

2

� =

1

4
�p�1

1

r2 p�1 + p�2
1

r2 p�2 −
2

r2	E +
Z

r1
+

Z

r2



+ 4��3�r�� , �C1�

� i

r1
3	 r�1

r1
· p�1 + Z
� =

1

2�p�1
1

r1
2 p�1 −

2

r1
2	E +

Z

r1
−

1

r
−

p1
2

2



− 4Z��3�r1�� , �C2�

1

8
p1

kp1
i 	−

� jlrirk

r3 −
�ikrjrl

r3 + 3
rirjrkrl

r5 
p2
l p2

j

=
1

8
p1

kp2
l 	−

� jlrirk

r3 −
�ikrjrl

r3 + 3
rirjrkrl

r5 
p1
i p2

j

−
1

8
Pi3riri − �ijr2

r5 Pj +
�

4
�3�r� −

1

12
��3�r�P2,

�C3�

then almost all operators agree with one exception. The dif-
ference between operators in Eq. �97� of Ref. �6� and that of
ours, Eq. �3.58�, is

� =
1

32
��3�r�P2. �C4�

For this reason we checked the calculation in Ref. �6�. The
derivation of initial operators was very similar to our former
work in �17�. However, the electron-electron Coulomb inter-
action, according to Ref. �5�, involves the term

7��

32m4 �p1
2 + p2

2,��r��� , �C5�

while our calculations in �17� give

6��

32m4 �p1
2 + p2

2,��r��� −
�

16m4�2���r�� . �C6�

The difference between Eqs. �C5� and �C6� for singlet S
states is equal to � from Eq. �C4�, and this term should be
subtracted from Eq. �97� of Ref. �6�. Although in this work
we use a different formalism, we obtain the same result �after
using the Schrödinger equation� as in Ref. �17�; namely, the
sum of our terms VC

eN+VC
ee+�C

−V differs from �H1+�H2
+�H3 by exactly the same term �.

Considering numerical matrix elements, we found that the
results presented in Ref. �5� are not reliable. Most of them
are accurate to only three digits; for example, the matrix
element corresponding to Q28, according to KY, is 36.983,
while our result is 37.010642. Some of them are accurate
only to the first digit; for example, for Q29 KY gives 4
�1.078=4.312 and our result is 4.004703. Some of matrix
elements in Ref. �5� contain misprints in their presentation;
namely, they should include an additional 1 /2 on the left-
hand side, to agree with numerical values and to be consis-
tent with Eq. �97� of Ref. �6�. Most importantly, some matrix
elements from �5� are in error—for example,

� 3i

2r3	 r�

r
· p� −

1

2

� . �C7�

By using integration by parts we transform this matrix ele-
ment to the form

� 3i

2r3	 r�

r
· p� −

1

2

� =

3

4
� 1

r4 −
1

r3 − 4���r�� = − 4.246525,

�C8�

which is in disagreement with the result of �5�—namely,
−0.958. Alternatively, we use the identity in Eq. �3.19� and
obtain the same numerical value as in Eq. �C8�. Another
example is Q26, for which result of �5� is 2�4.749 and our
result from Table I is −0.266 894. In conclusion, the numeri-
cal matrix elements of Ref. �5� should be verified.
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