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Third-order relativistic many-body perturbation theory �MBPT� is applied to obtain energies of ions with
two valence electrons in the no virtual-pair approximation �NVPA�. A total of 302 third-order Goldstone
diagrams are organized into 12 one-body and 23 two-body terms. Only third-order two-body terms and
diagrams are presented in this paper, owing to the fact that the one-body terms are identical to the previously
studied third-order terms in monovalent ions. Dominant classes of diagrams are identified. The model potential
is the Dirac-Hartree-Fock potential VN−2, and B-spline basis functions in a cavity of finite radius are employed
in the numerical calculations. The Breit interaction is taken into account through the second order of pertur-
bation theory, and the lowest-order Lamb shift is also evaluated. Sample calculations are performed for
berylliumlike ions with Z=4–7, and for the magnesiumlike ion P IV. The third-order excitation energies are in
excellent agreement with measurement with an accuracy at 0.2% level for the cases considered. Comparisons
are made with second-order MBPT results, and with other calculations. The third-order energy correction is
shown to be significant, improving the previous second-order calculations by an order of magnitude.
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I. INTRODUCTION

The development of relativistic many-body perturbation
theory �MBPT� in recent decades has been motivated in part
by the need for accurate theoretical amplitudes of parity non-
conserving �PNC� transitions in heavy monovalent atoms
such as cesium and francium. Applications of the theoretical
methods developed to treat atomic PNC transitions include
support of atomic clock development, tests of QED in preci-
sion spectroscopy of highly stripped ions, searches for time
variation in the fine-structure constant, and provision of
precise astrophysical data.

Although nonrelativistic studies �1–7� and relativistic HF
calculations �8–10� for divalent atoms and ions have been
done for many years, only recently have relativistic many-
body calculations been reported. As examples, we note that
all-order relativistic MBPT calculations for transitions in be-
rylliumlike ions with Z=26 and 42 were carried out by
Lindroth and Hvarfner �11�, while large-scale configuration-
interaction �CI� calculations for transitions in C III were per-
formed by Chen et al. �12�. Relativistic many-body calcula-
tions for magnesiumlike ions include the CI calculations of

states in the n=3 complex by Chen and Cheng �13�, and the
combined CI-MBPT calculations of excitation energies in
Mg I by Savukov and Johnson �14�.

Second-order relativistic MBPT was applied to Be-like
ions by Safronova et al. �15�, and energies were found to be
accurate at the 2% level. In this paper, we extend relativistic
MBPT for divalent atoms and ions to third order. We give a
detailed treatment of the two-body terms here; the one-body
terms are identical to those for monovalent systems, and are
discussed in detail by Blundell et al. �16�. The long-range
goal of the present research is to extend the relativistic
singles-doubles coupled-cluster �SDCC� formalism to atoms
and ions with two valence electrons. The present calculations
permit us to identify and evaluate those third-order terms
missing from the SDCC expansion.

II. THEORETICAL METHOD

The model potential for our MBPT calculation is the
Dirac-Hartree-Fock �DHF� potential VN−2. The N-electron
Hamiltonian is partitioned in the standard way into an unper-
turbed Hamiltonian H0 and a perturbation V�H=H0+V�:

H0 = �
i

�iai
†ai, �1�

V = − �
ij

uijai
†aj +

1

2�
ijkl

vijklai
†aj

†alak, �2�

where �i is the energy eigenvalue of the one-electron DHF
equation, and vijkl=gijkl+bijkl is the Coulomb-Breit matrix
element
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vijkl =� � dr1dr2�1/r12 + b12��i
†�r1�� j

†�r2��k�r1��l�r2� .

�3�

The Breit interaction is given by

b12 = −
1

2r12
��1 · �2 +

��1 · r12���2 · r12�
r12

2 � . �4�

In the no virtual-pair approximation, the excitations are
limited to positive-energy eigenstates of H �17–20�.

The eigenstates of a divalent system having angular
momentum �J ,M� are described by the coupled states

	�vw�JM
 = ��vw� �
mvmw

�jvjw,mvmw	JM
av
†aw

† 	0
 , �5�

where 	0
 represents the ground state of the ionic core, and
��vw� is the normalization constant

��vw� = � 1 for v � w

1/2 for v = w
� . �6�

Here v and w specify one-electron states with quantum num-
bers �nv , lv , jv ,mv� and �nw , lw , jw ,mw�. We also adopt the no-
tation that states in parentheses are independent of magnetic
quantum numbers. The model space P is defined by the set
of total angular-momentum states �5�; the model-space
projection operator is

P = �
JM

�v�w�

	�vw�JM
��vw�JM	 . �7�

The orthogonal-space operator Q is simply 1−P.
The wave operator �, which maps states in the model

space onto exact eigenstates of the many-electron Hamil-
tonian, is found by solving the generalized Bloch equation
�21�

��,H0�P = �V� − �PV��P . �8�

The effective Hamiltonian is given in terms of the wave
operator

Heff = PH0P + PV�P . �9�

Effective Hamiltonian

We find the configuration-weight vector by diagonalizing
the first-order approximation to the effective Hamiltonian
Heff

�1�= PH0P+ PVP using total angular-momentum eigen-
states �5� as a basis. Higher-order energies are obtained by
operating the effective Hamiltonian of the corresponding or-
der on the configuration-weight vector. For simplicity, matrix
elements of the effective Hamiltonian are given for the un-
coupled states, 	vw
�av

†aw
† 	0
 and 	v�w�
. The multiplica-

tions of Clebsch-Gordan coefficients and the summations
over magnetic quantum numbers are carried out during an-
gular decomposition. To obtain explicit expressions for ma-
trix elements, we make use of the Brueckner-Goldstone dia-
grammatic expansion given in Lindgren and Morrison �21�.

In third order, each matrix element consists of 12 one-body
and 23 two-body terms. They represent a total of 84 one-
body and 218 two-body Goldstone diagrams. Only the two-
body part of the third-order perturbation is discussed here as
the one-body part and complete second-order results are al-
ready presented in Refs. �15� and �16�. We give the expres-
sion for the two-body Coulomb part of the third-order cor-
rection below:

Z = �
abcd

gcdwvgabcdg̃w�v�ab

��ab − �v�w����cd − �v�w��
,

S1 = �
abcm

gacmwg̃mbacg̃v�w�vb

��bv − �v�w����acv − �mv�w��

��1 + �v ↔ w,v� ↔ w��� + c.c.,

S2 = �
abcm

g̃abwmg̃mcbvg̃v�w�ca

��ac − �v�w����abv − �mv�w��

��1 + �v ↔ w,v� ↔ w��� + c.c.,

S3 = �
abcm

gabwmg̃w�cabg̃v�mvc

��cv − �mv����abv − �mv�w��

��1 − �v ↔ w���1 − �v� ↔ w��� + c.c.,

S4 = �
abcm

g̃abwmg̃v�cvbg̃w�mac

��ac − �mw����abv − �mv�w��

��1 − �v ↔ w���1 − �v� ↔ w��� ,

D1 = − �
abmn

gabmng̃mnwbg̃v�w�va

��bw − �mn���av − �v�w��

��1 + �v ↔ w,v� ↔ w��� + c.c.,

D2 = �
abmn

�
gabmngmnvwg̃v�w�ab

�nabvw − �mnv�w��
� 1

��vw − �mn�
+

1

��ab − �v�w��
�

+ c.c.,

D3 = − �
abmn

�
g̃abmngw�nabg̃v�mvw

��abvw − �mnv�w��
� 1

��ab − �nw��
+

1

��vw − �mv��
�

��1 + �v ↔ w,v� ↔ w��� + c.c.,

D4 = �
abmn

g̃abmng̃w�nwbg̃v�mva

��bw − �nw����av − �mv��
�1 − �v ↔ w�� + c.c.,

D5 = − �
abmn

g̃w�amng̃nbawg̃v�mvb

��avw − �mnv����bv − �mv��

��1 − �v ↔ w���1 − �v� ↔ w��� + c.c.,
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D6 = �
abmn

g̃w�amng̃nbvwg̃v�mab

��avw − �mnv����ab − �mv��

��1 + �v ↔ w,v� ↔ w��� + c.c.,

D7 = − �
abmn

g̃abmwg̃w�mbng̃v�nva

��abv − �mv�w����av − �nv��

��1 − �v ↔ w���1 − �v� ↔ w��� + c.c.,

D8 = �
abmn

g̃w�bwng̃nabmg̃v�mva

��bv − �nv����av − �mv��

��1 − �v ↔ w���1 − �v� ↔ w��� ,

D9 = − �
abmn

gabwmg̃v�mvng̃w�nab

��abv − �mv�w����ab − �nw��

��1 − �v ↔ w���1 − �v� ↔ w��� ,

D10 = − �
abmn

gw�bmng̃v�avbg̃mnwa

��bvw − �mnv����aw − �mn�

��1 − �v ↔ w���1 − �v� ↔ w��� ,

T1 = �
amnr

�
gw�anmg̃mnarg̃v�rvw

��avw − �mnv����vw − �rv��

��1 + �v ↔ w,v� ↔ w��� + c.c.,

T2 = �
amnr

gw�amng̃mnwrg̃v�rva

��avw − �mnv����av − �rv��

��1 − �v ↔ w���1 − �v� ↔ w��� + c.c.,

T3 = �
amnr

�
g̃w�anrg̃v�rmag̃mnvw

��avw − �nrv����vw − �mn�

��1 + �v ↔ w,v� ↔ w��� + c.c.,

T4 = �
amnr

g̃w�arng̃v�nvmg̃rmwa

��avw − �nrv����aw − �mr�

��1 − �v ↔ w���1 − �v� ↔ w��� ,

Q = �
mnrs

�
gv�w�rsgrsmng̃mnvw

�nvw − �rs���vw − �mn�
,

B1 = − �
amnx

g̃w�amngn maxg̃v�xvw

��avw − �mnv����ax − �mn�

��1 + �v ↔ w,v� ↔ w��� ,

B2 = − �
amxy

g̃v�axmg̃w�myag̃xyvw

��avw − �mxw����ay − �mw��

��1 + �v ↔ w,v� ↔ w��� ,

B3 = − �
mnxy

�
gv�w�mngmnxyg̃xyvw

�nvw − �mn���xy − �mn�
,

where gijkl is the Coulomb matrix element and
g̃ijkl�gijkl−gijlk. The notation �ijkl��i+� j +�k+�l, etc., for
the sum of one-electron energies has also been used. The
third-order terms are arranged by the number of excited
states in the sums over intermediate states. Zero, single,
double, triple, quadruple excited-state terms are designated
by the letters Z, S, D, T, Q. Terms associated with backwards
�folded� diagrams are designated by B. Backwards diagrams
are unique for open-shell systems and exist only in the third
or higher order of MBPT. The summation indices �a ,b ,c ,d�
refer to core states, �m ,n ,r ,s� refer to excited states and, in
backwards diagrams, indices �x ,y� refer to valence states.
The states x and y are restricted to the model space. In
the above equations, the notation �1+ �v↔w�� indicates
that the formula to the left of the parentheses is to be evalu-
ated twice, first as indicated in the formula, then with v and
w interchanged. The resulting two terms are to be added. The
notation �v↔w ,v�↔w�� indicates that v is to be replaced
by w and v� by w�. Finally, the notation �1− �v↔w���1
− �v�↔w��� is interpreted as �1− �v↔w�− �v�↔w��
+ �v↔w ,v�↔w���. The primes above the summation signs
indicate many-body excited states belonging to the orthogo-
nal space Q—that is, summations over m, n, r, s are re-
stricted in such a way that one never obtains an energy factor
��vw¯−�v�w�¯� in the denominator corresponding solely to a
rearrangement among valence states. This restriction applies
only to the term with the denominator factor ��vw−�mn� in
D2, and to the term with the denominator factor ��vw−�mv��
in D3. The c.c. denotes complex conjugate. The conjugate
diagrams are obtained by a reflection through a horizontal
axis, with the initial and final states switched �vw�↔ �v�w��.
Direct diagrams of the two-body terms are shown in Fig. 1.
Technically, there are subtle changes in energy denominators
in going from the term presented to its c.c. counterpart.
These changes can be deduced by redrawing the diagram
upside down, and reading off the new denominators.

In D1 and D4 �but not in D2 and D3�, we have combined
diagrams associated with double excitations that have the
same numerators, but different denominators, using the
formula

1

�A + B�A
+

1

�A + B�B
=

1

AB
. �10�

Diagrams D1−D4 are special in the sense that two orderings
are possible. The ambiguous vertices are labeled by crosses
in the diagrams. Many of the third-order terms in the two-
body part have external exchanges and complex conjugates,
so each diagram illustrated in Fig. 1 has from one to eight
variants. The largest fraction of computer time is spent on
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evaluating the term Q, and most of the remainder is spent on
repetitive evaluation of terms Dk, Tk and their variants. An-
gular decompositions of the direct terms are listed in the
Appendix.

III. APPLICATION AND DISCUSSION

As a first illustration, we apply the theory described above
to obtain energies of the ground state and excited states in
the n=2 complex for Be-like ions. In Table I, we give a
detailed breakdown of the contributions from first-, second-,
and third-order perturbation theory, together with corrections
from the Breit interaction and the Lamb shift, for excitation
energies of �2s2p�3P0,1,2 states of Be-like ions. The experi-
mental energies are taken from the NIST database for atomic
spectroscopy �22�. Energies E�0+1� represent the lowest-order
energies, including the Breit correction. Lowest-order Lamb
shifts ELamb are obtained following the method described in

Z S1 S2

S3 S4 D1

D2 D3 D4

D5
D6 D7

D8 D9 D10

T1 T2 T3

T4 Q B1

B2 B3

FIG. 1. Third-order Goldstone diagrams �two-body part�.

TABLE I. Comparisons of third-order energies �cm−1� of the
triplet �2s2p�3P states of Be-like ions Z=4–7 with measurements
are given, illustrating the rapid �1/Z2� decrease of the residual cor-
relation corrections with increasing Z. A breakdown of contribu-
tions to the energy from Coulomb and Breit correlation corrections
and the Lamb shift is given.

Z 4 5 6 7

�2s2p�3P0

E�0+1� 23607.9 39116.7 54204.5 69072.2

E�2� −3114.3 −2583.2 −2344.0 −2201.5

B�2� −1.7 −3.7 −6.7 −10.5

E�3� 473.5 598.0 412.9 294.9

ELamb −0.9 −3.3 −8.4 −17.7

Etot 20964.6 37124.4 52258.4 67137.3

Eexpt 21978.3 37336.7 52367.1 67209.2

�E −1014 −212 −109 −72

�2s2p�3P1

E�0+1� 23607.4 39120.2 54223.4 69127.7

E�2� −3113.9 −2582.2 −2342.2 −2198.6

B�2� −0.6 −1.7 −3.3 −5.6

E�3� 473.4 597.8 412.7 294.7

ELamb −0.9 −3.2 −8.3 −17.5

Etot 20965.5 37130.9 52282.3 67200.7

Eexpt 21978.9 37342.4 52390.8 67272.3

�E −1013 −212 −109 −72

�2s2p�3P2

E�0+1� 23608.2 39132.6 54272.9 69260.8

E�2� −3113.0 −2580.1 −2338.4 −2192.6

B�2� 0.4 0.5 0.4 0.0

E�3� 473.2 597.4 412.3 294.1

ELamb −0.8 −3.2 −8.2 −17.1

Etot 20968.0 37147.3 52339.1 67345.2

Eexpt 21981.3 37358.3 52447.1 67416.3

�E −1013 −211 −108 −71
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Ref. �23�. We find that the residual differences between
calculated and measured energies �E decrease rapidly with
increasing Z. This is expected since MBPT converges
better for charged ions than for neutral atoms. In fact, for
highly charged ions, correlations are expected to decrease
approximately as Z2−n, where n is the order of perturbation
theory �24�. On the other hand, QED effects �Lamb shifts�
become more important along an isoelectronic sequence. The
results in Table I confirm both of these trends. Theoretical
excitation energies of all levels in the n=2 complex for Be-
like N �N IV� are presented in Table II, and are seen to be in
agreement with measurement to parts in 104.

As a more involved example, we give a complete break-
down of contributions to energies of low-lying states in the
n=3 complex for the Mg-like ion P IV in Table III. For both
N IV and P IV, correlations are seen to account for about 5%
of the total energies. For Be-like ions, the third-order corre-
lation energies are only 15–20 % of those of the second or-
der, which in turn are an order of magnitude smaller than the
corresponding DHF energies. The Breit correction B�2�,
which is obtained by linearizing the second-order matrix el-
ements in Breit interaction, is also small for such lightly
charged ions.

Our calculations for Be-like ions are able to produce re-
sults accurate to order of ten cm−1. This shows that the third-
order energy correction is very important for divalent ions.
By comparison, the second-order excitation energies of Sa-
fronova et al. �15� for N IV agree with measurement at the
level of a few hundred cm−1. It should be noted that results
from the CI+MBPT method �14� mentioned in the Introduc-
tion are consistently more accurate than the present third-
order results. However, the CI+MBPT approach contains a
free parameter in the energy denominators that is adjusted to
give optimized energies. In contrast, our MBPT calculation
is completely ab initio. For the C III ion, the large-scale CI
calculations of Chen et al. �12� mentioned in the Introduction
also give transition energies accurate to better than a hundred
cm−1 on average. Those large-scale CI calculations are also
ab initio, and have about the same accuracy as the present
calculations for states in C III.

For the P IV ion, our results are in good agreement with
experiment, the average discrepancy being several hundred
cm−1. Chaudhuri et al. �25� employed an effective valence
shell Hamiltonian to calculate energies of Mg-like ions and
obtained results for P IV having a discrepancy of about a
thousand cm−1, which is somewhat larger, but comparable to
the accuracy of the third-order calculations.

It is worthwhile to analyze the results in terms of dia-
grams. The relative contributions of the third-order two-body
terms for the ground-state energy of a typical member in the

Be sequence and the ion P IV are summarized in Tables IV
and V. Dominant classes of diagrams are Q and B3. This
is understandable since Q are quadruple excited-state dia-
grams and involve no core excitations. This class of dia-
grams is entirely due to valence-valence correlation effects;
they are expected to be large because of the strong repulsion
of the outer valence electrons. Class B3 are backwards dia-
grams, which are characteristic of open-shell systems. As
shown in Fig. 1, this class is also associated solely with

TABLE II. Third-order energies �cm−1� of states in the n=2 complex of the Be-like ion N IV, including corrections for the Breit
interaction and the Lamb shift.

3P0
o 3P1

o 3P2
o 1P1

o 3P0
e 3P1

e 3P2
e 1D2

e 1S0
e

Etot 67137.3 67200.7 67345.2 130764.1 175499.4 175572.8 175699.0 188899.9 235421.9

Eexpt 67209.2 67272.3 67416.3 130693.9 175535.4 175608.1 175732.9 188882.5 235369.3

�E −72 −72 −71 70 −36 −35 −34 17 53

TABLE III. Comparison with measurement of theoretical ener-
gies �cm−1� of some of the low-lying states in the n=3 complex of
the Mg-like ion P IV, including a breakdown of contributions from
Coulomb and Breit correlation corrections and the Lamb shift.

�3s3p�3P0 �3s3p�3P1 �3s3p�3P2

E�0+1� 67021.3 67242.9 67696.5

E�2� 110.3 116.0 130.1

B�2� −0.9 0.3 1.3

E�3� 807.4 807.6 807.6

ELamb −21.1 −20.9 −20.5

Etot 67917.1 68146.0 68615.0

Eexpt 67918.0 68146.5 68615.2

�E −0.9 −0.5 −0.2

�3s3p�1P1 �3p2�1D2 �3p2�3P0

E�0+1� 120479.5 180554.7 165971.6

E�2� −20906.0 −61699.8 −2027.7

B�2� −15.8 −8.4 −5.2

E�3� 6470.7 48769.6 1089.6

ELamb −20.7 −43.6 −44.0

Etot 106007.7 167572.4 164984.3

Eexpt 105190.4 166144.0 164941.4

�E 817 1428 43

�3p2�3P1 �3p2�3P2 �3p2�1S0

E�0+1� 166200.8 166633.3 212201.4

E�2� −2013.9 −2008.1 −23060.7

B�2� −4.8 −2.7 −24.6

E�3� 1087.9 1077.3 5810.7

ELamb −43.8 −43.4 −41.3

Etot 165226.1 165656.5 194885.6

Eexpt 165185.4 165654.0 194591.8

�E 41 3 294
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valence-valence correlation. The two classes Q and B3 tend
to cancel each other as there is an extra phase of −1 associ-
ated with backwards diagrams. It is interesting to note that
even after subtraction of the contributions from Q and B3,
their difference is still larger than the contribution from any
other class of diagrams for C III.

IV. CONCLUSION

The accuracy of our third-order calculations is at 0.2%
level for weakly charged ions of both Be and Mg isoelec-
tronic sequences. This level of accuracy is comparable or
superior to the two ab initio methods mentioned in Sec. III.
A complete third-order calculation is important to understand
the relative importance of different contributions to energies
of divalent systems. The folded diagrams as well as the qua-
druple excited-state diagrams are significant. The dominant
role of these two classes of diagrams is attributed to the
strong correlation of the two valence electrons. This conclu-
sion is useful for workers developing mixed CI-MBPT meth-
ods which include dominant third-order diagrams. It is also
helpful for researchers setting up SDCC calculations as they
try to classify and account for the contributions from the
third-order diagrams associated with omitted triple excita-
tions. Although one might expect a complete fourth-order
calculation for divalent systems to improve the accuracy of
the present calculations still further, it is unlikely that such a
complex calculation will be carried out in the near future.
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APPENDIX

Angular decompositions of direct terms for the third-order
two-body Coulomb part are presented:

Z = �
L1L2L3

abcd

XL1
�cdwv�XL2

�abcd�ZL3
�w�v�ab�

��ab − �v�w����cd − �v�w��

��− 1�J+L1+L2+L3+ja+jb+jc+jd+jw�+jv

�� J jc jd

L1 jv jw
�� ja jb J

jd jc L2
�� J ja jb

L3 jv� jw�
� ,

S1 =
1

�w� �
LL�

abcm

XL�acmw�ZL�mbac�ZL��v�w�vb�

��bv − �v�w����acv − �mv�w��

��− 1�J+L�+ja+jb+jc+jm+jw�+jv� jbjw

1

�L�� J jv� jw�

L� jb jv
� ,

S2 = �
LL�

abcm

ZL�abwm�ZL�mcbv�ZL��v�w�ca�

��ac − �v�w����abv − �mv�w��

��− 1�1+L�+ja+jb+jc+jm+jw�+jv
1

�L��J ja jc

L jv jw
�

�� J jc ja

L� jw� jv�
� ,

TABLE IV. Relative contributions of third-order two-body terms for C III.

Term �%� Term �%� Term �%� Term �%� Term �%�

Z 0.1 D1 −0.2 D6 0.0 T1 4.2 B1 −0.8

S1 0.1 D2 0.4 D7 0.0 T2 −0.3 B2 −0.1

S2 −0.4 D3 −1.6 D8 0.3 T3 −0.5 B3 −46.1

S3 −0.1 D4 0.1 D9 −0.1 T4 2.0

S4 0.4 D5 0.2 D10 −1.0 Q 41.2

TABLE V. Relative contributions of third-order two-body terms for P IV.

Term �%� Term �%� Term �%� Term �%� Term �%�

Z 0.1 D1 −0.4 D6 −0.1 T1 9.4 B1 −3.9

S1 0.4 D2 0.3 D7 −0.3 T2 0.1 B2 −0.7

S2 −0.3 D3 −3.6 D8 0.1 T3 2.1 B3 −29.2

S3 0.2 D4 0.6 D9 −0.5 T4 10.2

S4 1.4 D5 −1.1 D10 −5.0 Q 29.9
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S3 = �
L1L2L3

abcm

XL1
�abwm�ZL2

�w�cab�ZL3
�v�mvc�

��cv − �mv����abv − �mv�w��

��− 1�J+jv+jw�L1 L2 L3

jc jm jb
�

�� jw jw� L3

L2 L1 ja
�� J jv� jw�

L3 jw jv
� ,

S4 = �
L1L2L3

abcm

ZL1
�abwm�ZL2

�v�cvb�ZL3
�w�mac�

��ac − �mw����abv − �mv�w��

��− 1�J+L1+L2+L3+jv+jw� J jv� jw�

L2 jw jv
�

�� jw jw� L2

L3 L1 ja
��L1 L2 L3

jc jm jb
� ,

D1 = −
1

�w� �
LL�

abmn

XL�abmn�ZL�mnwb�ZL��v�w�va�

��bw − �mn���av − �v�w��

��− 1�J+L�+ja+jb+jm+jn+jw�+jv

�� jajw

1

�L�� J jv� jw�

L� ja jv
� ,

D2 = �
L1L2L3

abmn

�
XL1

�abmn�XL2
�mnvw�ZL3

�v�w�ab�

��abvw − �mnv�w��

�� 1

��vw − �mn�
+

1

��ab − �v�w��
�

��− 1�J+L1+L2+L3+ja+jb+jm+jn+jw�+jv

�� ja jb J

jn jm L1
�� J jm jn

L2 jw jv
�� J ja jb

L3 jw� jv�
� ,

D3 = −
1

�w�� �
LL�

abmn

�
ZL�abmn�XL�w�nab�ZL��v�mvw�

��abvw − �mnv�w��

�� 1

��ab − �nw��
+

1

��vw − �mv��
�

��− 1�J+L�+ja+jb+jm+jn+jw�+jv

�� jmjw�

1

�L�� J jv� jm

L� jw jv
� ,

D4 = �
L

abmn

ZL�abmn�ZL�w�nwb�ZL�v�mva�
��bw − �nw����av − �mv��

��− 1�J+L+ja+jb+jm+jn+jw�+jv

�
1

�L�2�J jw� jv�

L jv jw
� ,

D5 = − �
LL�

abmn

ZL�w�amn�ZL�nbaw�ZL��v�mvb�

��avw − �mnv����bv − �mv��

��− 1�J+1+L+ja+jb+jm+jn+jw�+jv

�
1

�L�� J jv� jw�

L� jw jv
�� jw� jw L�

jb jm L
� ,

D6 = �
L1L2L3

abmn

ZL1
�w�amn�ZL2

�nbvw�ZL3
�v�mab�

��avw − �mnv����ab − �mv��

��− 1�1+L1+L2+L3+jv�+jv

�� J jn jb

L2 jw jv
�� J jn jb

jw� L1 jm

jv� ja L3
� ,

D7 = − �
L1L2L3

abmn

ZL1
�abmw�ZL2

�w�mbn�ZL3
�v�nva�

��abv − �mv�w����av − �nv��

��− 1�J+L1+L2+L3+jv+jw�L1 L2 L3

jn ja jm
�

�� jw jw� L3

L2 L1 jb
�� J jv� jw�

L3 jw jv
� ,

D8 = �
L

abmn

ZL�w�bwn�ZL�nabm�ZL�v�mva�
��bv − �nv����av − �mv��

��− 1�J+L+ja+jb+jm+jn+jw�+jv

�
1

�L�2�J jw� jv�

L jv jw
� ,

D9 = − �
L1L2L3

abmn

XL1
�abwm�ZL2

�v�mvn�ZL3
�w�nab�

��abv − �mv�w����ab − �nw��

��− 1�J+jv+jw�L1 L2 L3

jn jb jm
�

�� jw jw� L2

L3 L1 ja
�� J jv� jw�

L2 jw jv
� ,
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D10 = − �
L1L2L3

abmn

XL1
�w�bmn�ZL2

�v�avb�ZL3
�mnwa�

��bvw − �mnv����aw − �mn�

��− 1�J+jv+jw�L1 L2 L3

ja jn jb
�

�� jw� jw L2

L3 L1 jm
�� J jv� jw�

L2 jw jv
� ,

T1 =
1

�w�� �
LL�

amnr

�
XL�w�anm�ZL�mnar�ZL��v�rvw�

��avw − �mnv����vw − �rv��

��− 1�J+1+L�+ja+jm+jn+jv � � jrjw�

1

�L�� J jv� jw�

L� jw jv
� ,

T2 = �
L1L2L3

amnr

XL1
�w�amn�ZL2

�mnwr�ZL3
�v�rva�

��avw − �mnv����av − �rv��

��− 1�J+jv+jw�L1 L2 L3

jr ja jn
�

�� jw� jw L3

L2 L1 jm
�� J jv� jw�

L3 jw jv
� ,

T3 = �
LL�

amnr

�
ZL�w�anr�ZL�v�rma�ZL��mnvw�

��avw − �nrv����vw − �mn�

��− 1�1+L�+ja+jm+jn+jr+jw�+jv

�
1

�L��J jn jm

L jv� jw�
�� J jm jn

L� jw jv
� ,

T4 = �
L1L2L3

amnr

ZL1
�w�arn�ZL2

�v�nvm�ZL3
�rmwa�

��avw − �nrv����aw − �mr�

��− 1�J+L1+L2+L3+jv+jw�L1 L2 L3

jm ja jn
�

�� jw� jw L2

L3 L1 jr
�� J jv� jw�

L2 jw jv
� ,

Q = �
L1L2L3

mnrs

�
XL1

�v�w�rs�XL2
�rsmn�ZL3

�mnvw�

��vw − �rs���vw − �mn�

��− 1�J+L1+L2+L3+jm+jn+jr+js+jw�+jv

�� J jr js

L1 jw� jv�
�� jr js J

jn jm L2
�� J jm jn

L3 jw jv
� ,

B1 = −
1

�w�� �
LL�

amnx

ZL�w�amn�XL�n max�ZL��v�xvw�

��avw − �mnv����ax − �mn�

��− 1�J+1+L�+ja+jm+jn+jv

�� jxjw�

1

�L�� J jv� jw�

L� jw jv
� ,

B2 = − �
LL�

amxy

ZL�v�axm�ZL�w�mya�ZL��xyvw�

��avw − �mxw����ay − �mw��

��− 1�1+L�+ja+jm+jx+jy+jw�+jv

�
1

�L��J jx jy

L jw� jv�
�� J jx jy

L� jw jv
� ,

B3 = − �
L1L2L3

mnxy

�
XL1

�v�w�mn�XL2
�mnxy�ZL3

�xyvw�

��vw − �mn���xy − �mn�

��− 1�J+L1+L2+L3+jm+jn+jx+jy+jw�+jv

�� J jm jn

L1 jw� jv�
�� jm jn J

jy jx L2
�� J jx jy

L3 jw jv
� .

The effective interaction strength,

XL�ijkl� = �− 1�L�i�CL�k
�j�CL�l
RL�ijkl� , �A1�

is independent of magnetic quantum numbers. The reduced
matrix element of the CL tensor is

�i�CL�k
 = �− 1� ji+1/2�i��k�� ji jk L

−
1

2

1

2
0 �	e�li,lk,L� ,

�A2�

where �i��2ji+1 is the occupation number of shell i, and

	e�li,lk,L� = �1 if li + lk + L is even

0 if li + lk + L is odd.
� �A3�

The Slater integral RL�ijkl� is

RL�ijkl� = �
0


 �
0




dr1dr2
r�

L

r�
L+1 �Pi�r1�Pk�r1� + Qi�r1�Qk�r1��

� �Pj�r2�Pl�r2� + Qj�r2�Ql�r2�� . �A4�

The quantity ZL�ijkl� is defined by �with �L��2L+1�

ZL�ijkl� � XL�ijkl� + �L��
L�
� j j jl L

ji jk L�
�XL��ijlk� .

�A5�
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