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The radial matrix elements connecting the ionic Ba+6s ground state to low-lying excited 6p and 5d states
can be extracted from the K splittings of the bound 6sn� states in much the same way that ionic polarizabilities
are extracted from the separations between � states. We develop an expression for the K splitting by a pair of
expansions which allows us to compare the contributions of different ionic states. This comparison confirms
that all but the lowest two may be safely ignored. Finally, we extract the radial Ba+ matrix elements
�6s�r�6p�=4.03�12� and �6s�r2�5d�=9.76�29� from the experimentally obtained K splittings.
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I. INTRODUCTION

Deriving the properties of ions from spectroscopy of the
neutral species is an idea which originated with Mayer and
Mayer, who suggested that ionic polarizabilities could be ex-
tracted from the spectra of neutral Rydberg atoms �1�. The
essence of the idea is that the difference between the energy
of an n� state of a nonhydrogenic atom from the hydrogen
n� energy is due to the fact that the field from the electron
polarizes the ionic core, leading to a measureable energy
shift. Here n and � are the principal and orbital angular mo-
mentum quantum numbers of the Rydberg electron, and we
use atomic units, unless specified otherwise. The polarization
model is a valuable tool, and polarization analyses have been
applied to the Rydberg states of many atoms and molecules,
as recently reviewed by Lundeen �2�.

While polarizabilities are important properties, it is fre-
quently useful to know specific transition matrix elements
between the ground state of an ion and low-lying states. For
example, in the case of Ba+, which we shall consider
throughout this paper, the dipole and quadrupole matrix ele-
ments which connect the Ba+ ground 6s state to the 6p and
5d states are of particular interest. The former is useful as an
optical diagnostic tool �3�, and the latter is important both as
a clock transition and for parity violation experiments �4,5�.
A parity violation signal originates in a cross term between a
normal 6s-5d quadrupole amplitude and a parity-violating
amplitude. The 6s-5d quadrupole matrix element is also im-
portant in extracting the polarizability of the ground-state
Ba+ ion from the bound Ba Rydberg energy levels. As shown
by Snow et al. it is necessary to separate the effects of the
ionic 5d state from higher nd states when using the core
polarization model to obtain polarizabilities from the inter-
vals between different bound 6sn� states �6�. Because of the
large nonadiabatic corrections to the Ba+ ground-state polar-
izability from the 5d states, which stem from the proximity
of the 6s and 5d ionic states, this state must be treated sepa-
rately. The accuracy of the quadrupole polarizability of the
Ba+ 6s ion extracted in this way depends on accurate knowl-
edge of the 6s-5d matrix element. Since the Ba+ 6s-6p tran-
sitions are strongly allowed transitions, it is straightforward
to obtain the Ba+ 6s-6p matrix elements by using standard

optical measurements �7�. The quadrupole 6s-5d transition is
extremely weak, and to date the only measurements of the
Ba+ quadrupole 6s-5d matrix elements have come from mea-
surements of the natural radiative lifetimes of the 5d3/2 and
5d5/2 states in Ba+ using ion traps �8,9�. From the lifetimes
the 6s-5d quadrupole matrix element can be extracted; how-
ever, these experiments are very challenging because the life-
times of these states are several tens of seconds. In both the
quadrupole and dipole cases, though, calculations of the ma-
trix elements can be checked for consistency by comparison
to the observed polarizabilities.

Here we describe a method for extracting the Ba+ 6s-6p
and 6s-5d dipole and quadrupole matrix elements from ob-
served K splittings of the Ba Rydberg 6sn� states. Crucial to
this approach is the ability to experimentally measure these
intervals very accurately. These measurements have been
made using microwave spectroscopy to an accuracy of a few
MHz �10�, and they can be improved. We also expect that the
K splittings are less affected by stray electric fields, which
are present during any experiment, than are the intervals be-
tween different � states since different � states are expected
to have different Stark shifts whereas different K states of the
same � should have similar Stark shifts.

The method used to extract the matrix elements from the
K splittings is based on the use of a nonadiabatic effect
which arises in the polarization of the Ba+ core by the Ryd-
berg electron. Specifically, it is based on the splittings of the
bound Ba 6sn� Rydberg levels, which we term the K split-
tings. These splittings were first interpreted by Snow et al.
who termed them indirect spin orbit splittings �11�. Although
nonadiabatic effects are generally viewed as a nuisance, as
we shall demonstrate, they can be used to extract this pair of
matrix elements in much the same way that the dipole and
quadrupole polarizabilities are presently extracted from the
separations between the n� Rydberg levels �12�.

This paper is organized in the following way. We first
present the familiar core polarization expression for the po-
larization shift of the Ba 6sn� states, followed by the second-
order perturbation theory expression from which it comes.
The second-order perturbation theory expression is presumed
to be exact and is later used as the basis for numerical cal-
culations. We then expand the perturbation theory expression
using first the adiabatic expansion in the ratio of the Rydberg
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to ion energy followed by an expansion in the ratio of the
spin-orbit energy of an excited ionic state to its ion energy
without the spin-orbit interaction—i.e., the weighted average
of its term energies. In the resulting expression the terms
corresponding to the adiabatic core polarization, the nonadia-
batic correction and the K splitting are readily identified. It is
in the use of the second expansion that this derivation differs
from that provided by Snow et al. �11�. The derivation pre-
sented here has the advantage that higher-order spin-orbit
corrections can be easily obtained. However, using either
approach, the result is the same to first order; the K splitting
is proportional to the spin-orbit energy of the excited ionic
state and comes entirely from the nonadiabatic effects. Com-
paring the estimated contributions to the K splittings from
different ionic states demonstrates why the isolated pair of
6s-6p and 6s-5d matrix elements can be extracted from the
K splittings. We present, in addition, an alternative approxi-
mate approach to the adiabatic expansion, which provides
qualitatively better results. Finally, we compare the approxi-
mate approaches to the direct use of the perturbation theory
expression and extract the 6s-6p and 6s-5d matrix elements
from the observed K splittings.

II. POLARIZATION MODEL

In atoms and molecules the energies of the Rydberg states
differ from hydrogenic energies due to the fact that the ionic
core is not a point charge, but a charge distribution which
can have permanent and induced electric multipole moments.
An anisotropic core can have both, but an isotropic core can
only have induced moments. In Rydberg states with an iso-
tropic ionic core the Rydberg energy levels differ from the
hydrogenic energies due to penetration and polarization of
the core by the Rydberg electron. For high-� states core pen-
etration is negligible and the energy shift is due entirely to
core polarization. The energies of the high-� Rydberg states
can be predicted from the polarizabilities of the core, or the
Rydberg state intervals of the atom can be used to determine
the polarizabilities of the ion. This notion was first proposed
by Mayer and Mayer, who expressed the polarization shift
Pn� of an n� Rydberg state as �1�

Pn� = −
1

2
�d�r−4�n� −

1

2
�q�r−6�n�, �1�

where �d and �q are the dipole and quadrupole polarizabil-
ities of the ion and �r−4� and �r−6� are expectation values for
hydrogenic wave functions. Implicit in Eq. �1� is the assump-
tion that the Rydberg electron has the same effect as a static
field and gradient.

As pointed out by Van Vleck and Whitelaw, Eq. �1� is a
limiting case of a perturbation theory expression for the
second-order energy shifts due to electric multipole interac-
tions between the bound Rydberg states and states converg-
ing to excited states of the ionic core �13�. In these terms Eq.
�1� is equivalent to the assumption that the spread of the
relevant Rydberg electron energies around the excited ionic

states is vanishingly small. This approximation is excellent
for atoms with closed-shell ionic cores, such as Na and Cs, in
which the excited states of the ionic cores have energies in
excess of 10 eV, but it is not adequate for atoms with low-
lying ionic states, such as Ba and Sr. In other words, the
approximation fails for ions which have optically accessible
excited states. Unfortunately, these are precisely the ions
likely to be used in applications. In cases in which the energy
range spanned by the outer electron Rydberg states is not
zero but small compared to the ionic energy separations it is
possible to make an expansion in terms of the ratio of Ryd-
berg energy to the ion energy, and this approach, the adia-
batic expansion method, has been used to describe the Ryd-
berg states of nonhydrogenic atoms and molecules. This
approach has been developed extensively by Drachman �14�
to describe He and used to construct a model potential by
Laughlin �15�. In this approach Eq. �1� is the leading term
and there are nonadiabatic corrections. The nonadiabatic cor-
rections shift the energy of an n� Rydberg state from the
value given by Eq. �1�, complicating the extraction of the
ionic polarizabilities from the observed energy levels. What
is surprising is that, as first pointed out by Snow et al. �11�,
they also lead to large K splittings of the Ba Rydberg 6sn�
states, even when the core is isotropic. It is these splittings
which enable us to extract the Ba+ 6s-6p and 6s-5d dipole
and quadrupole matrix elements. We term these splittings the
K splittings, K being the vector sum of the core’s angular
momentum and the orbital angular momentum of the Ryd-
berg electron.

We assume that we have a two valence electron atom, Ba
to be specific, with one electron in a high-� state outside an
ionic core. We assume � to be high enough that core penetra-
tion does not occur, in which case the two electrons are dis-
tinguishable and exchange can be ignored. The Hamiltonian
for this system is given by

H = −
�i

2

2
−

�o
2

2
− f�ri� −

�1�
ro

+ �
k=0

ri
k

ro
k+1Pk�cos �io� , �2�

where r̄i and r̄o are the radial positions of the core and Ryd-
berg electrons, respectively. The potential f�ri� accounts for
the non-Coulombic potential seen by the inner electron at
small ri, and f�ri�→−2/ri as ri→�. Pk is a Legendre poly-
nomial, and �io is the angle between r̄i and r̄o. If we ignore
the multipole expansion of Eq. �2�, the Schrödinger equation
may be separated, and the solutions are products of Ba+ and
hydrogen wave functions

� = �Ba � �n�, �3�

with the energies

W = WBa+ −
1

2n2 . �4�

The Ba+ ion exhibits obvious fine structure and is character-
ized by its total angular momentum j̄=�i+si. To the total
angular momentum of the core we add the Rydberg elec-
tron’s orbital angular momentum �o to produce K. Explicitly,
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K̄= j̄+�o. We ignore the spin of the Rydberg electron. For
simplicity in notation we shall use � for �o.

The energies of the Ba states relative to the Ba+ 6s1/2 state
are given by

Wn,�,K = −
1

2n2 + Pn,�,K, �5�

where Pn,�,K is given by

Pn,�,K

= �
k,ni,�i,j,n�,��

	
6s1/2n�K	 ri
kC1

�k� · C2
�k�

ro
k+1 	ni�i jn���K�	2

W6s1/2n� − Wni�ijn���
,

�6�

where Ci
�k� is Edmonds’ C tensor �16�. The sums over ni and

n� implicitly include the continua as well as the discrete
states. Equation �6� is equivalent to the expressions given by
Van Vleck and Whitelaw but expressed in a more modern
notation. Similar expressions have been given by Pruvost
et al. in their calculations of the splittings of Rydberg states
converging to the anisotropic Ba+ 6p3/2 and 6d5/2 ionic cores
�17�. The angular parts of these matrix elements can be
readily evaluated following Edmonds �16�, and we rewrite
Eq. �6� as

Pn,�,K = �
k,ni,�i,j,n�,��

�6s�ri
k�ni�i�2CkKj���

2 
n�	 1

ro
k+1	n����2

W6s1/2
− Wni�ij

− Wn�n���
.

�7�

Here Wn�n��� is the difference in binding energies of an n�
and an n��� electron. In Eq. �7� the ri

k and 1
ro

k+1 matrix ele-

ments are purely radial, and the angular factor CkKj���
2 is

given by

CkKj���
2 = ��s1/2�K�C1

�k� · C2
�k���i j��K��2

= �KK��1/2, j���,����0,k�	�K � 1/2

k j ��


��1/2 0 1/2

k j k
��� K �

0 0 0
��k K 0

0 0 0
�	2

,

�8�

where �a ,a��= �2a+1��2a�+1�. We have used the fact that
li=k for these matrix elements.

The most important terms in the multipole expansion are
the dipole and quadrupole terms k=1 and 2. Parity and an-
gular momentum conservation impose the constraints that,
for k=1, ��=�±1 and, for k=2, ��=�; �±2. Although Eq.
�7� is obtained from perturbation theory, except in cases in
which there are overlapping coupled Rydberg series converg-
ing to different limits, it should be more than adequate for
our purpose. The case of overlapping series is best treated
using coupled-channel approaches �18,19�. The K splittings
are given by

Kn� = Pn���+1/2� − Pn���−1/2�. �9�

Using the dipole and quadrupole terms of Eq. �7� it is a
straightforward matter to calculate Pn�K directly by numeri-
cal calculation of the radial matrix elements, and this is often
the best approach. However, substantial insight results from
developing approximations to Eq. �7�. To guide us in this
exercise it is useful to examine plots of the energy ranges
spanned by the Rydberg matrix elements of Eq. �7�. As an
example, we plot in Figs. 1 and 2 the squared 1

ro
2 matrix

elements of Eq. �7� which connect the Ba 6s18h states to the
6p1/2n�g and 6p1/2n�i states associated with the Ba+ 6p1/2

core and the squared 1
ro

3 matrix elements which connect the
Ba 6s18h states to the 5d3/2n�f , n�h, and n�k states. The
values shown are calculated by numerical integration using
hydrogenic wave functions �10,20,21�. In plotting Figs. 1
and 2 we have followed the convention of Fano and Cooper
�22� and normalized each squared bound matrix element per
unit energy by multiplying the squared matrix elements con-
necting the 6s18h state to a bound 6p1/2 or 5d3/2n��� state by
n�3 and plotting them as blocks 1/n�3 wide. The locations of
the ionic 6p1/2 and 5d3/2 states are shown for reference. The
Rydberg matrix elements associated with all npj and ndj ion
states are identical to those shown for the ionic 6p1/2 and
5d3/2 states, only shifted in energy.

From Fig. 1 it is apparent that the 6s1/2nh states are
coupled to 6p1/2n�i states of n��n and to continuum 6p1/2	�i
states, while they are coupled to 6p1/2n�g states of n�
n, in

FIG. 1. Energy distribution of the squared matrix element per
unit energy ��18h� 1

ro
2 �n���2 which enters into the dipole interaction

between the 6snhK states and 6pn�K states. The Ba+ 6s1/2 energy is
taken to be zero. The matrix elements are plotted per unit energy so
that the area of the curve is the squared matrix element. Since there
are no 6p1/2n�i K=9/2 states, the 6snh K=9/2 state is coupled
only to the 6p1/2n�g states. In contrast, the 6s1/2nh K=11/2 state is
only coupled to the 6p1/2n�i states. This difference causes the K
splitting. The matrix elements plotted here are ��18h� 1

ro
2 �ng��2

�dashed line� and ��18h� 1
ro

2 �ni��2 �solid line�. The arrows represent

W̄1n���, the average shift of the matrix elements from the energy of
the 6p1/2n� state for n=18 and �=5.
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fact, predominantly to the 6p1/25g state. The quadrupole cou-
plings between the 6s1/2nh states and 5d3/2n�k states is en-
tirely in the 5d3/2	�k continuum; the coupling to the 5d3/2n�h
states is to states of n� slightly in excess of and n, the cou-
pling to the 5d3/2n�f states is to states of n�
n, primarily to
the 5d3/24f state, which lies below the 6s1/2 limit and, in fact,
below the 6s18h state. Inspecting Figs. 1 and 2 we can see
that in this case an adiabatic approximation is not likely to be
good, especially for the quadrupole polarizability, since the
energy range spanned by the Rydberg matrix elements sub-
stantially exceeds the ionic 6s1/2 to 5dj splitting.

Figures 1 and 2 also suggest the origin of the K splitting
of the 6s1/2nh states. Consider a Ba 6s1/2nh K=9/2 state.
Since there are no 6p1/2n�i K=9/2 states, it is coupled to the
6p1/2n�g states, which lie below the 6p1/2 limit, as shown by
Fig. 1. In contrast, the 6s1/2nh K=11/2 state is only coupled
to the 6p1/2n�i states, which are predominantly above the
6p1/2 limit. Similar arguments apply to the quadrupole cou-
plings. In both cases the energy denominators of Eq. �7� are
smaller for the K=9/2 state than for the K=11/2 state, and,
as a result, its energy is further depressed by the second-
order interaction of Eq. �7�. The origin of the K splittings is
similar to the origin of the ac Stark shifts responsible for the
temperature-dependent shift of the ground-state hyperfine
clock frequency �23,24�. Snow et al. attributed the K split-
ting to admixtures of the fine-structure splitting into the Ba+

6s core, which is simply a different manifestation of the
same phenomenon.

The adiabatic approximation consists of expanding Eq.
�7� in terms of the ratio of Rydberg energy to the core
energy—i.e.,

1

W6s1/2
− Wni�ij

− Wn�n���
=

1

W6s1/2
− Wni�ij

� �1 +
Wn�n���

W6s1/2
− Wni�ij

+ ¯ � .

�10�

We can rewrite Eq. �7� to first order in the expansion as

Pn,�,K = �
k,ni,�i,j,n�,��

�6s�ri
k�ni�i�2

W6s1/2
− Wni�ij

� �
n�,��

�CkKj���
2 
n�	 1

ro
k+1	n����2

��1 +

1

2n2 −
1

2n�2

W6s1/2
− Wni�ij

�� . �11�

What we have loosely termed the Rydberg energy is

Wn�n��� =
1

2n2 −
1

2n�2 . �12�

In Figs. 1 and 2, W18hn�l� is the difference in energy from the
6p1/2 18h or 5d3/2 18h states.

The utility of the adiabatic approximation stems from the
fact that the sums over n� of the squared matrix elements of

1
ro

k+1 can be written as hydrogenic expectation values, for
which closed form expressions exist. We use completeness,
or the fact that �13�

�
n�

��n����rk�n���2 = �r2k�n� �13�

for any �� and the fact that �13�

�
n�

��n����rk+1�n���2� 1

2n2 −
1

2n�2�
=

1

2
��k + 1�2 − ��� + 1� + ����� + 1���r2k�n�. �14�

As suggested by Eq. �14�, the adiabatic expansion is ex-
pressed in terms of expectation values of ascending even
inverse powers of ro �22�. Since expressions for these have
been given in closed form �14,25�, this technique is quite
powerful. Alternatively, we can use Eq. �14� to define the

average shift W̄kn��� of the center of gravity of each of the
squared 1

ro
2 and 1

ro
3 matrix elements shown in Figs. 1 and 2

from the ionic energy separation. Explicitly,

FIG. 2. Energy distribution of the squared matrix element per
unit energy ��18h� 1

ro
3 �n���2 which enters into the quadrupole inter-

action between the 6snhK states and 5dn�K states. The Ba+ 6s1/2

energy is taken to be zero. The matrix elements are plotted per unit
energy so that the area of the curve is the squared matrix element.
Since there are no 5d3/2n�k K=9/2 states, the 6snh K=9/2 state is
coupled only to the 5d3/2n�h and 5d3/2n�f states. In contrast, the
6s1/2nh K=11/2 state is only coupled to the 5d3/2n�h and 5d3/2n�i
states. This difference causes the K splitting. The matrix elements
plotted here are ��18h� 1

ro
3 �nf��2 �solid line�, ��18h� 1

ro
3 �nh��2 �dotted

line�, and ��18h� 1
ro

3 �nk��2 �dashed line�. The arrows represent W̄2n���,
the average shift of the matrix elements from the energy of the
5d3/2n� state for n=18 and �=5.
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W̄kn��� =
��k + 1�2 − ��� + 1� + ����� + 1���r2k�n�

2�r2k+2�n�

. �15�

W̄kn��� represents the extent of the nonadiabatic effects. In

Fig. 1 we show W̄kn��� for k=1, n=18, l=5, and ��=4 and 6,
which are negative and positive, respectively. In general,

W̄kn���
0 if ��
� and W̄kn����0 if ����. Using Eqs.
�13�–�15�, we can rewrite Eq. �11� as

Pn,�,K = �
k,ni,�i,j

�6s�ri
k�ni�i�2

W6s1/2
− Wni�ij


 1

ro
2k�

n�

���
��

CkKj���
2 + �

��

CkKj���
2 W̄kn���

W6s1/2
− Wni�ij

� . �16�

There are no longer sums over n�, so Eq. �16� requires no
numerical evaluation of matrix elements.

We now express the ionic energy as

Wni�ij
= Wni�i

+ �ni�i
Sj , �17�

where Wni�i
is the energy of the center of gravity of the ionic

ni�i j state and �ni�ij
its fine-structure splitting, with

Sj =
2�i · si

2�i + 1
=

j�j + 1� − �i��i + 1� − 3/4

2�i + 1
. �18�

We can then expand the energy in terms of the ionic
splitting—i.e.,

1

W6s1/2
− Wni�ij

=
1

W6s1/2
− Wni�i

� �1 +
�ni�i

Sj

W6s1/2
− Wni�i

+ ¯ � .

�19�

Now we can write Eq. �16� as

Pn,�,K = �
k,ni,�i

�6s�ri
k�ni�i�2

W6s − Wni�i


 1

ro
2k+2�

n�

���
j,��

CkKj���
2

+ �
j,��

CkKj���
2

�ni�i
Sj

W6s − Wni�i

+ �
j,��

CkKj���
2 W̄kn���

W6s − Wni�i

+ 2�
j,��

CkKj���
2

�ni�i
SjW̄kn���

�W6s − Wni�i
�2 � . �20�

Of the terms in the square brackets of Eq. �20�, the first is the
adiabatic core polarization, the second vanishes, the third is
the nonadiabatic correction, which only depends on n and �,
but not on K, and the fourth is the K splitting, which is
evidently proportional to the ionic fine structure and to the
average energy of the Rydberg electron matrix elements

W̄kn���. If we explicitly write the k sum of Eq. �20�, keeping
only the dipole and quadrupole terms, we can simplify the
angular factors using

�
��

C1Kj���
2 =

1

3
�21�

and

�
��

C2Kj���
2 =

1

5
�22�

for any values of K, j, and �. It is also not difficult to
demonstrate that

�
��

C1Kj���
2 W̄1n��� =

�ro
−6�n�

�ro
−4�n�

, �23�

�
��

C2Kj���
2 W̄2n��� =

3

2

�ro
−8�n�

�ro
−6�n�

, �24�

�
j,��

C1Kj���
2

�ni�i
SjW̄1n��� =

2

9

�� · si�K�ro
−6�n�

�ro
−4�n�

, �25�

and that

�
j,��

C2Kj���
2

�ni�i
SjW̄2n��� =

6

25

�� · si�K�ro
−8�n�

�ro
−6�n�

, �26�

where �� ·si�K=�+1/2=� /2 and �� ·si�K=�−1/2=−��+1� /2. We
can now reexpress Eq. �20� as

Pn,�,K = �
ni

�6s�r�nip�2

�W6s − Wnip
�
�ro

−4�n��1

3
+

�ro
−6�n�

�W6s − Wnip
��ro

−4�n�

+
4

9

�nip
�� · si�K�ro

−6�n�

�W6s − Wnip
�2�ro

−4�n�
� + �

ni

�6s�r2�nid�2

�W6s − Wnid
�
�ro

−6�n�

� �1

5
+

3

2

�ro
−8�n�

�W6s − Wnid
��ro

−6�n�

+
12

25

�nid
�� · si�K�ro

−8�n�

�W6s − Wnid
�2�ro

−6�n�
� . �27�

In this form it is apparent that the first terms in the brackets
are the adiabatic polarizability terms of Eq. �1�. They corre-

spond to W̄kn���=0. The second terms are the nonadiabatic
corrections in the absence of ionic fine structure. The third
terms in each of the square brackets produce the K splittings.
We can also rewrite Eq. �1� in the form commonly used for
the adiabatic expansion. Explicitly,

Pn,�,K = −
1

2
��1�r−4�n� − 61�r−6�n��1 + �1��

−
1

2
��2�r−6�n� − 152�r−8�n��1 + �2�� , �28�

where

�1 =
2

3�
ni

�6s�r�nip�2

�W6s − Wnip
�

, �29�
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�2 =
2

5�
ni

�6s�r2�nid�2

�W6s − Wnid
�

, �30�

1 =
1

3�
ni

�6s�r�nip�2

�W6s − Wnip
�2 , �31�

2 =
1

5�
ni

�6s�r2�nid�2

�W6s − Wnid
�2 , �32�

�1 =
4

27�
ni

�6s�r�nip�2�nip
�� · si�K

�W6s − Wnip
�3 , �33�

and

�2 =
8

125�
ni

�6s�r2�nid�2�nid
�� · si�K

�W6s − Wnid
�3 . �34�

Here �i are the polarizabilities, i are the first nonadiabatic
corrections, and �i produce the K splittings. Writing the equa-
tion in the form of Eq. �28� makes it apparent that the K
splittings are an entirely nonadiabatic effect.

Focusing on the third terms in each of the square brackets
in Eq. �27� we can write the K splitting as

Kn� = Dn� + Qn�, �35�

where

Dn� =
2

9�
ni

�6s�r�nip�2�r−6�n��nip

�W6s − Wnip
�3 �2� + 1� �36a�

and

Qn� =
6

25�
ni

�6s�r2�nid�2�r−8�n��nid

�W6s − Wnid
�3 �2� + 1� . �36b�

Here Dn� and Qn� are the dipole and quadrupole contribu-
tions to the K splittings, respectively. Equations �36a� and
�36b� are the same as those obtained by Snow et al.

From Eqs. �36a� and �36b� it is evident that the contribu-
tion of a Ba+ ionic state n��� to the K splitting is proportional
to its fine-structure splitting and inversely proportional to the
cube of its term energy �energy above the ground 6s state�. It
is this dependence which allows us to ignore all ion states
but the 6p and 5d states. From the oscillator strengths �26�,
term energies, and fine-structure splittings �27� of the Ba+ np
states we calculate the relative magnitudes of the terms in
Eq. �36a� due to the 6p, 7p, 8p, and 9p states to be 1:3.3
�10−4 :1.85�10−5 :2.87�10−6, with an asymptotic n−6 scal-
ing. Similarly, the terms of Eq. �36b� due to the 5d, 6d, 7d,
and 8d states are in the ratio of 1 :3.84�10−4 :2.94
�10−5 :4.12�10−6, with an asymptotic n−6 scaling.

The adiabatic expansion converges rapidly for the contri-
butions from n��� ionic states above the Ba+ 6p and 5d
states. Thus, whether we use the adiabatic expansion of Eq.
�27� or Eq. �7� itself, to calculate Kn� to 0.1% we can ignore
all the ionic states lying above the 6p state and express the K
splittings in terms of only the 6s-6p and 6s-5d matrix ele-
ments. As a result, even if we do not use the adiabatic ex-

pansion approach we can write the K splittings as

Kn� = �6s�r�6p�2�6pn� + �6s�r2�5d�2�5dn�. �37�

If we use the adiabatic expansion method we can express
�6pn� and �5dn� in terms of Eqs. �36a� and �36b�. Explicitly,

�6pn� =
2�2� + 1��r−6�n��6p

9�W6s − W6p�3 �38a�

and

�5dn� =
6�2� + 1��r−8�n��5d

25�W6s − W5d�3 . �38b�

Equation �37� has the same form as Eq. �1�, and it may be
used to extract values for the ionic matrix elements �6s�r�6p�
and �6s�r2�5d� in the same way that Eq. �1� is used to extract
ionic polarizabilities. Equation �37� is always valid, but Eqs.
�38a� and �38b� are only valid if the nonadiabatic corrections
are not too large, and we now consider approaches which
will work in cases in which this condition is not met. One
approach is the direct use of Eq. �7� to calculate �6pn� and
�5dn�. While this approach requires the explicit calculation of
the 1/ro

2 and 1/ro
3 matrix elements, it does not introduce any

approximations. Consequently, it is, in general, the best
approach. In this case we can express �6pn� and �5dn� as
follows:

�6pn� = �
jn���

�C1 ��+1/2� j���
2 − C1 ��−1/2� j���

2 �
n�	 1

ro
2	n����2

W6s1/2
− W6pj

− Wn�n���
,

�39�

where j=1/2 and 3/2 and ��=�±1, and the n� sum implic-
itly includes the continuum. Similarly,

�5dn� = �
jn���

�C2 ��+1/2� j���
2 − C2 ��−1/2� j���

2 �
n�	 1

ro
3	n����2

W6s1/2
− W5dj

− Wn�n���
,

�40�

where j=3/2 and 5/2 and ��=�, �±2. Again the n� sum
implicitly includes the continuum. Equations �39� and �40�
are simply differences of the coefficients of the squared 6s-
6p and 6s-5d matrix elements of Eq. �7�.

If we consider how the adiabatic expansion fails, we are
led to an alternative approximation, first proposed by Van
Vleck and Whitelaw. Inspection of Eqs. �15� and �16� sug-
gests that the nonadiabatic correction and K splittings are

likely to be dominated by the largest values of �W̄kn����,
which are from ���� states so that W̄kn��� is always posi-
tive. For example, for the 18h state shown in Figs. 1 and 2
the dominant contributions are from the 6p1/2	�i and 5d3/2	�k
continua. However, when the Rydberg energy spread is not
small compared to the ionic separation, it is the ��
� states
which have the largest effect since they have the smallest
energy denominators in Eq. �7�. The adiabatic approximation
does not take this fact into account properly, at least not to
first order. A better approach is to replace 1

2n2 − 1
2n�2 in Eq. �7�
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by its average value W̄kn���, given by Eq. �15� and shown in
Figs. 1 and 2. We can rewrite Eq. �7� as

Pn,�,K = �
k,ni,�i,j

�6s�ri
k�ni�i�2
 1

ro
2k+2�

n�

� ��
��

CkKj���
2

W6s1/2
− Wni�ij

W̄kn���
� . �41�

As we shall see, Eq. �41� provides better results than does
the adiabatic expansion method. To use the Van Vleck
method to extract the 6s-6p and 6s-5d matrix elements from
the expression for the K splittings we need the expression for
�6pn� and �5dn� analogous to those of Eqs. �38a�, �38b�, �39�,
and �40�. From Eq. �41� it is straightforward to derive them.
Explicitly,

�6pn� = 
 1

ro
4�

n�
��

j��

�C1 ��+1/2� j���
2 − C1 ��−1/2� j���

2 �

W6s1/2
− W6pj

− W̄n�n���
� ,

�42�

where j=1/2 and 3/2 and ��=�±1, and

�5dn� = 
 1

ro
6�

n�
��

j��

�C2 ��+1/2� j���
2 − C2 ��−1/2� j���

2 �

W6s1/2
− W5dj

− W̄n�n���
� ,

�43�

where j=3/2 and 5/2 and ��=�, �±2. In the next section we
compare the results obtained by using these three different
ways of obtaining �6pn� and �5dn�.

III. ASSESSMENT OF THE VALIDITY OF THE
ADIABATIC EXPANSION

The expansion for Kn� given in Eqs. �38a� and �38b� is
based on the adiabatic expansion, and to estimate its accu-
racy we need a measure of the convergence of the expansion.
A visual measure is the ratio of the extent of the matrix
elements of Figs. 1 and 2 to the ionic energy spacings. A
more quantitative measure is the ratio of successive terms in
the expansion. For this we use the first two terms in each of
the square brackets of Eq. �16� using only the 6p and 5d
states in the ni�i summations. These ratios are

RDn� =
3�r−6�n�

�W6s − W6p��r−4�n�

�44�

and

RQn� =
15�r−8�n�

2�W6s − W5d��r−6�n�

. �45�

In Table I we present RD18� and RQ18� for the Ba 6s18�
states. Since the largest value of RD18� is less than 0.12, we
can expect that the dipole contributions to K to be within this
fractional error. However, RQ18h�1 for the 18h state, RQ18i
�1, and RQ18k=0.37, so it appears unlikely that the use of
Eqs. �38�, obtained by the adiabatic approximation, is going

to lead to good values for �6s�r�6p� and �6s�r2�5d�.
The Van Vleck approach, given by Eq. �42�, does not in

itself provide an estimate of its accuracy, so we compare the
result obtained by using it to the result of numerical calcula-
tions based on Eq. �7�, which contains no approximations
beyond those of perturbation theory. In the numerical calcu-
lations we have used hydrogenic wave functions and ener-
gies except for the 5dnf states. For these states we have used
hydrogenic wave functions but have used a quantum defect
of 0.05 to represent the energies of the f states more accu-
rately. Specifically, in Fig. 3 we present the dipole and quad-
rupole energy shifts of the unsplit Ba 6s18� states due to the
couplings to Rydberg states converging to the 6p and 5d
states of the ion. In Fig. 4 we show the dipole, quadrupole,
and total K splittings of the Ba 6s18� states. The radial ma-
trix elements we used are �6s�r�6p�=4.25 and �6s�r2�5d�
=12.53. While the calculated shifts in Fig. 3 are not quite the
same as the entire polarization shifts, they provide a better
test of the approximations. We present the shifts calculated
using the adiabatic expansion method as well, including the

TABLE I. Ratios of first adiabatic correction terms to adiabatic
polarization shifts.

Dipole
RDn�

Quadrupole
RQn�

6s18h 0.117 1.920

6s18i 0.055 0.799

6s18k 0.029 0.393

FIG. 3. The dipole �open markers� and quadrupole �solid mark-
ers� contributions to the average polarization energy shift for the
6s18� states, P18�, without inclusion of K splitting for �=5, �=6,
and �=7. The shifts have been calculated using numerical evalua-
tion of Eq. �7� ���, the Van Vleck model ��� from Eq. �42�, and the
adiabatic model ��� from Eq. �17�. It is apparent that the dipole
shift is represented to better than 15% in all cases by any of the
methods. However, the quadrupole shift is not represented accu-
rately by the approximations except for �=7.
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first two terms of the square brackets of Eq. �16�. From Figs.
3 and 4 it is evident that, although the dipole terms are rea-
sonably accurate, the quadrupole terms are not. In the latter
case, only for the 18k state are both approximations reason-
ably good, which is somewhat surprising given the size of
RQ18k. For the 18i state the Van Vleck approximation is rea-
sonable, and for the 18h state neither approximation is good,
although the Van Vleck approximation is better, and when
lower nh states are examined, we find that it reflects the
perturbing effect of the low-lying 5d4f state. It is perhaps
surprising to note that the adiabatic expansion converges ap-
propriately only for ��7. Our conclusions regarding the
range of validity of the adiabatic method are the same as
those reached by Snow et al.

IV. EXTRACTION OF THE MATRIX ELEMENTS

The dipole and quadrupole matrix elements are easily ex-
tracted from the experimentally measured K splittings if we
rewrite Eq. �37� as

Kn�
expt

�6pn�

= �6s�r�6p�2 + �6s�r2�5d�2 �5dn�

�6pn�

, �46�

where Kn�
expt is the experimentally observed splitting.

Equation �46� is of the same form as that used to extract
the dipole and quadrupole polarizabilities using Eq. �1� from
�� intervals. Now, however, the slope and the intercept are
the 6s-5d and 6s-6p matrix elements �12,28�. Equation �46�

neglects the spin-orbit interaction responsible for the K split-
tings observed in helium given by �6�

Kn�
SO =

− �2

n3��� + 1�
, �47�

where � is the fine-structure constant. Equation �47� has a
negative sign because it splits the states opposite to that of
Eq. �46�. Although this splitting is much smaller than the
observed splitting, it is enough to change the extracted ma-
trix elements. We account for this additional splitting by sub-
tracting it from the experimentally observed splitting—i.e.,

Kn�
expt − Kn�

SO

�6pn�

= �6s�r�6p�2 + �6s�r2�5d�2 �5dn�

�6pn�

. �48�

In cases where the adiabatic expansion of Eq. �20� con-
verges appropriately, we can use the analytic forms of Eqs.
�38a� and �38b� for �6pn� and �5dn�. Otherwise, it is neces-
sary to use those computed from Eqs. �42� and �43� or Eqs.
�39� and �40�. Regardless of how � is obtained, Eq. �48�
leads to a linear plot with a slope of �6s�r2�5d�2 and intercept
�6s�r�6p�2 if the calculation of � is valid. In Fig. 5 we show
a plot obtained in this way using the experimental splittings
measured by Gallagher et al. �10� and Snow et al. �6�. In this
plot we have obtained � through direct numerical evaluation
of Eq. �7� because of the failures of both Eqs. �20� and �42�.
We have assigned twice the uncertainty to the K splittings of
the nk states measured by Gallagher et al. since these data do
not have the expected 1/n3 scaling. It is impossible to con-
struct reasonable plots in which � is obtained using the adia-
batic approach of Eqs. �38a� and �38b� or using the technique
suggested by Van Vleck, Eq. �42�. Figure 5 leads to the fol-
lowing values, �6s�r�6p�=4.03�12� and �6s�r2�5d�=9.76�29�.
In Table II we compare the values we obtained to those de-

FIG. 4. Dipole �marker�, quadrupole ���, and total ��� K split-
ting terms for the 6s18� states. The splittings have been calculated
using numerical evaluation of Eq. �7� ���, the Van Vleck model ���
from Eq. �42�, and the adiabatic model ��� from Eq. �27�. As in
Fig. 3, any of the methods produce an accurate estimation of the
splitting in the dipole case for any � state. However, the quadrupole
splitting is only represented accurately by the approximations for
�=7. The solid horizontal lines represent the experimentally ob-
served K splitting.

FIG. 5. The measured K splittings using Eq. �48� with � calcu-
lated numerically. The line fitting the data yields �6s�r�6p�=4.03
from the y intercept and �6s�r2�5d�=9.76 form the slope. The nk
experimental splittings observed by Gallagher et al. have been
given twice the uncertainty of the other measurements because they
appear to be mutually inconsistent.
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rived from other theoretical and experimental results. The
values of �6s�r�6p� range from 3.99 to 4.10 and are in good
agreement with our value. The values for �6s�r2�5d� range
from 10.55 to 14.12 and are in fair agreement with our value.

V. CONCLUSION

Analysis of the K splittings, which are due to the non-
adiabatic core polarization and the spin-orbit splitting of the
ion, allows the extraction of the 6s-6p dipole and 6s-5d
quadrupole matrix elements of Ba+. This approach turns the
nonadiabatic effect, generally thought to be a nuisance, into a
useful tool. The method can be improved in several ways.
The first is better numerical calculations of the matrix ele-
ments. The second is taking into account the finer details of
the atomic structure. For example, we have here completely
ignored the spin of the Rydberg electron. Finally, the experi-
mental data for the highest � states are not very accurate and
could be improved.

ACKNOWLEDGMENTS

This work has been supported by the Chemical Sciences,
Geosciences and Biosciences Division, Office of Basic En-
ergy Sciences, Office of Science, U.S. Department of Energy.
It is a pleasure to acknowledge useful discussions with R. R.
Jones and S.R. Lundeen in the course of this work.

�1� J. E. Mayer and M. G. Mayer, Phys. Rev. 43, 605 �1933�.
�2� S. R. Lundeen, in Advances in Atomic, Molecular and Optical

Physics, edited by P. Berman and C. Lin �Elsevier Academic
Press, San Diego, 2005�, Vol. 52.

�3� Hans R. Griem, Principles of Plasma Spectroscopy �Cam-
bridge University Press, Cambridge, England, 1997�.

�4� W. H. Oskay, W. M. Itano, and J. C. Bergquist, Phys. Rev.
Lett. 94, 163001 �2005�.

�5� T. W. Koerber, M. Schacht, W. Nagourney, and E. N. Fortson,
J. Phys. B 36, 637 �2003�.

�6� E. L. Snow, M. A. Gearba, R. A. Komara, S. R. Lundeen, and
W. G. Sturrus, Phys. Rev. A 71, 022510 �2005�.

�7� A. Gallagher, Phys. Rev. 157, 24 �1967�.
�8� N. Yu, W. Nagourney, and H. Dehmelt, Phys. Rev. Lett. 78,

4898 �1997�.
�9� W. Nagourney, J. Sandberg, and H. Dehmelt, Phys. Rev. Lett.

56, 2797 �1986�.
�10� T. F. Gallagher, R. Kachru, and N. H. Tran, Phys. Rev. A 26,

2611 �1982�.
�11� E. L. Snow, R. A. Komara, M. A. Gearba, and S. R. Lundeen,

Phys. Rev. A 68, 022510 �2003�.
�12� B. Edlen, in Handbuch der Physik �Springer, Berlin, 1963�,

Vol. 27.
�13� J. H. Van Vleck and N. G. Whitelaw, Phys. Rev. 44, 551

�1933�.
�14� R. J. Drachman, Phys. Rev. A 26, 1228 �1982�.
�15� C. Laughlin, J. Phys. B 28, 2787 �1995�.
�16� A. R. Edmonds, Angular Momentum in Quantum Mechanics

�Princeton University Press, Princeton, 1960�.
�17� L. Pruvost, P. Camus, J.-M. Lecomte, C. R. Mahon, and P.

Pillet, J. Phys. B 24, 4723 �1991�.
�18� W. Clark, C. H. Greene, and G. Miecznik, Phys. Rev. A 53,

2248 �1996�.
�19� Ch. Jungen, I. Dabrowski, G. Herzberg, and D. J. W. Kendall,

J. Chem. Phys. 91, 3926 �1989�.
�20� M. L. Zimmerman, M. G. Littman, M. M. Kash, and D. Klep-

pner, Phys. Rev. A 20, 2251 �1979�.
�21� W. P. Spencer, A. G. Vaidyanathan, D. Kleppner, and T. W.

Ducas, Phys. Rev. A 26, 1490 �1982�.
�22� U. Fano and J. W. Cooper, Rev. Mod. Phys. 40, 441 �1968�.
�23� T. F. Gallagher and W. E. Cooke, Phys. Rev. Lett. 42, 835

�1979�.
�24� W. M. Itano, L. L. Lewis, and D. J. Wineland, Phys. Rev. A

25, R1233 �1982�.
�25� K. Bockasten, Phys. Rev. A 9, 1087 �1974�.
�26� A. Lingard and S. E. Nielsen, At. Data Nucl. Data Tables 19,

533 �1977�.
�27� C. E. Moore, Atomic Energy Levels, Natl. Stand Ref. Data Ser.,

Natl. Bur. Stand. �U.S.� Circ. No. 35 �USGPO, Washington,
D.C., 1971�.

�28� T. F. Gallagher, Rydberg Atoms �Cambridge University Press,
Cambridge, England, 1994�.

�29� V. A. Dzuba, V. V. Flambaum, and J. S. M. Ginges, Phys. Rev.
A 63, 062101 �2001�.

�30� C. Guet and W. R. Johnson, Phys. Rev. A 44, 1531 �1991�.
�31� J. Z. Klose, J. R. Fuhr, and W. L. Wiese, J. Phys. Chem. Ref.

Data 31, 217 �2002�.
�32� Geetha Gopakumar, Holger Merlitz, Rajat K. Chaudhuri, B. P.

Das, Uttam Sinha Mahapatra, and Debashis Mukherjee, Phys.
Rev. A 66, 032505 �2002�.

TABLE II. Calculated and experimental values of the matrix
elements extracted in this work.

�6s �r �6p� �6s �r2 �5d�

4.03a 9.76a

4.10b 10.55c

4.05d 13.92e

3.99f 14.24f

4.07g 14.12g

aThis work.
bReference �7�.
cReference �6�.
dReference �29�.
eReference �30�.
fReference �31�.
gReference �32�.

IONIC DIPOLE AND QUADRUPOLE MATRIX ELEMENTS¼ PHYSICAL REVIEW A 74, 022502 �2006�

022502-9


