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We relate the reduced density matrices of quadratic fermionic and bosonic models to their Green’s function
matrices in a unified way and calculate the scaling of the entanglement entropy of finite systems in an infinite
universe exactly. For critical fermionic two-dimensional �2D� systems at T=0, two regimes of scaling are
identified: generically, we find a logarithmic correction to the area law with a prefactor dependence on the
chemical potential that confirms earlier predictions based on the Widom conjecture. If, however, the Fermi
surface of the critical system is zero-dimensional, then we find an area law with a sublogarithmic correction.
For a critical bosonic 2D array of coupled oscillators at T=0, our results show that the entanglement entropy
follows the area law without corrections.
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I. INTRODUCTION

Entanglement is a key feature of the nonclassical nature
of quantum mechanics. It is a necessary resource for quan-
tum computation and at the heart of interesting connections
between quantum information theory and traditional quan-
tum many-body theory, such as in quantum critical phenom-
ena �1–3� or the quantum Hall effect �4,5�.

One of the most widely used entanglement measures for
pure states is the entropy of bipartite entanglement: For a
pure state ��AB� of a bipartite “universe” AB consisting of
system A and environment B, it is given by the von Neu-
mann entropy SA=−Tr �A log2 �A, where �A
=TrB��AB���AB� is the reduced density matrix of system A.

An important question is how the entanglement entropy
scales at T=0 with the size of the system, assuming the uni-
verse to be in the thermodynamic limit. This was first studied
by Beckenstein in the context of black hole entropy �6�. As
opposed to thermodynamic entropy, which is extensive, en-
tanglement entropy was found to be proportional to the area
of the black hole’s event horizon, its physical locus being
essentially the hypersurface separating system and environ-
ment. Entanglement entropy scaling hence depends deci-
sively on the dimension d of the universe.

This observation has given rise to a long string of studies
of this so-called area law. In one dimension d=1, scaling is
well understood both for fermions �2,7–11� and bosons
�12,13�. For one-dimensional spin chains at T=0, one finds
that the entanglement entropy SA�L� of a system A of linear
size L saturates away from criticality, but scales as log2 L
when the system becomes critical �2�, i.e., when correlation
lengths diverge. In the latter case, conformal field theory
�CFT� yields �14,15� SA�L�= c+c̄

6 log2 L+k, where c and c̄ are
the holomorphic and the antiholomorphic central charges of
the field theory. Essentially, there is no physical limit to the
boundary region between system and environment.

The situation is far less clear in higher dimensions d�1.
The area law implies that, away from criticality, the en-
tanglement entropy is essentially proportional to the surface
area of system A

SA � Ld−1, �1�

as confirmed in analytical calculations for �bosonic� noncriti-
cal coupled oscillators �16�.

At criticality, the correlation lengths diverge and one may
expect corrections to the area law, as for d=1. For critical
ground-states of fermionic tight-binding Hamiltonians, the
entanglement entropy was indeed found to scale as

SA � Ld−1 log2 L , �2�

for both lattice models �17� and continuous fields �18�. The
prefactor could only be derived �18� assuming �i� the validity
of the Widom conjecture �19� and �ii� its applicability to the
functional form of binary entropy. For bosons at criticality,
numerical evidence for the area law �1� was found for a
three-dimensional array of coupled oscillators �20�. Callan
and Wilczek derived the area law in approximative field the-
oretical calculations �21�.

Beyond the fundamental physical interest, entanglement
scaling sets the scope of entanglement-based numerical
methods, such as the density-matrix renormalization group
�DMRG� �22,23�, as the computation time required to simu-
late a quantum state using these methods on classical com-
puters increases exponentially with its entanglement entropy.

In this paper, we study the bipartite entanglement entropy
in a unified treatment for exactly solvable two-dimensional
fermionic and bosonic models at T=0. To this purpose, we
relate the reduced density matrix of a quadratic model to its
Green’s function matrices, generalizing work by Cheong and
Henley �24� based on a coherent-state method developed by
Chung and Peschel �25�. For the critical fermionic two-
dimensional tight-binding model, we find as expected �2�,
but our exact calculation allows one to identify the depen-
dence of the scaling law prefactor on the chemical potential
�. We exactly verify the behavior predicted in �18�, where
the validity of the Widom conjecture and its applicability to
the binary entropy were assumed. Interestingly, we observe a
sublogarithmic correction to the area law if the gap of the
model closes in a zero-dimensional region of momentum
space �i.e., one or more points�. For a critical bosonic two-
dimensional model of coupled harmonic oscillators, we find
the entanglement entropy to saturate to the area law �2�,
which confirms �20,21�.

The generic quadratic Hamiltonians studied here are
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HF,B = 	
ij

ai

†Vijaj +
1

2
�ai

†Wijaj
† + H.c.�� , �3�

where ai�ci and ai�bi are fermionic and bosonic operators
for HF and HB, respectively. Previous field-theoretical work
did not indicate any qualitative dependence of the entangle-
ment entropy scaling on the presence or absence of interac-
tions in the systems. For one-dimensional systems, it is
known that the decisive difference is the presence or absence
of criticality, in whatever way it comes about. This is why
the free case is, for once, highly relevant.

II. CALCULATING ENTROPY FROM GREEN’S
MATRICES

We consider a bipartite universe AB of N modes �or
sites�. System A consists of n sites; in our calculations, we
will eventually take the thermodynamic limit N→�. The
relation between the Green’s function matrices of system A
and its reduced density matrix �A=TrB � can be derived by
determining the matrix elements of the full density matrix �
with respect to coherent states and integrating out the vari-
ables of the environment B.

A. Fermionic systems

The Green’s function matrix for system A with respect to
the operators Ai�ci

†+ci and Bi�ci
†−ci, as defined by

�GBA�ij = Tr�BiAj with i, j � A , �4�

can be obtained exactly for the solvable Hamiltonian HF, Eq.
�3�, following �26�. It can then be shown that �A is given by

����A���� = det 1
2 �1 − GBA�

� e−1/2��� − ���T�GBA+1��GBA − 1�−1���+���, �5�

where �= �1 , . . . ,�n� are the Grassmann variables associated

with system A, and ��� are the corresponding coherent states
with ci���=�i���. Indeed, �5� reproduces all two-particle
Green’s functions correctly and is, due to Wick’s theorem,
thus the correct reduced density matrix.

To calculate the entropy of system A, we diagonalize �A
by the Bogoliubov transformation

fq = 	
i
�Pqi + Qqi

2
ci +

Pqi − Qqi

2
ci

†� , �6�

where PPT=QQT=1 �due to the anticommutation rules�,
PqGBA

T =�qQq and QqGBA=�qPq. The diagonalized reduced
density matrix reads

�A = ��
q

1 − �q

2 �e−	q	qfq
†fq, �7�

with pseudoenergies 	q=ln
1−�q

1+�q
, yielding the entropy

SA = 	
q=1

n

h�1 + �q

2
� , �8�

with the so-called binary entropy

h�x� = − x log2 x − �1 − x�log2�1 − x� . �9�

B. Bosonic systems

For the quadratic Hamiltonian HB, the Green’s function
matrices GAA and GBB with respect to the operators Ai�bi

†

+bi and Bi�bi
†−bi can be obtained as in �27�. With respect

to the bosonic coherent states bi���=
i���, the reduced den-
sity matrix then reads

����A���� = Ke�1/4���� + ���T�GAA−1��GAA + 1�−1���+���

� e−�1/4���� − ���T�GBB − 1�−1�GBB+1����−���,

�10�

where K=�det�1+GAA��1−GBB� is determined by the nor-
malization of �A.

The Bogoliubov transformation

gq = 	
i
�Pqi + Qqi

2
bi +

Pqi − Qqi

2
bi

†� , �11�

with PTQ=QTP=1, PqGAA=�qQq, and QqGBB=−�qPq di-
agonalizes �A, giving

�A = ��
q

2

�q + 1�e−	q�qgq
†gq, �12�

where �q=ln� �q+1
�q−1

� are pseudoenergies. The entropy SA is the
sum of the quasiparticle entropies

SA = 	
q=1

n ��q + 1

2
log2

�q + 1

2
−

�q − 1

2
log2

�q − 1

2
� .

�13�

When we choose T=0, i.e., when � is the ground-state den-
sity matrix, Eqs. �8� and �13� give the entanglement entropy.
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FIG. 1. The prefactor c��� in the entanglement entropy scaling
law as a function of the chemical potential � for the ground-state of
the two-dimensional fermionic tight-binding model in comparison
to the result of Gioev and Klich �18�. Insets show the hopping
parameters and the Fermi surfaces for �=−3,−2,−1,0.
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III. CRITICAL FERMIONIC ENTANGLEMENT AND THE
WIDOM CONJECTURE

The form of the logarithmic correction to the entangle-
ment entropy in �d�1�-dimensional critical fermion models
and bounds on it have been derived by Wolf �17� and Gioev
and Klich �18�. Assuming that the Widom conjecture �19�
holds also for d�1 and that the nonanalyticity of the binary
entropy h can be ignored at one point in the calculation,
Gioev and Klich �18� arrive at

SA � S��L� = c���L log2 L + o�L log2 L� , �14�

c��� =
1

2

1

12
�

��

dSx�
�����

dSk�nxnk� , �15�

where � is the real-space region of A, rescaled by L such
that Vol���=1. Vectors nx and nk denote the normal vectors
on the real-space surface �� and the Fermi surface �����.
With the method introduced in Sec. II applied for T=0, one
can calculate the entanglement entropy for finite L exactly
and thus check �14�, also shedding some light on the validity
of the assumptions leading to �15�.

A. Two-dimensional systems with a one-dimensional Fermi
surface

The dispersion relation of the two-dimensional tight-
binding model with periodic boundary conditions

H = − 	
x,y

�cx,y
† cx+1,y + cx,y

† cx,y+1 + H.c.� �16�

is E�k�=−2�cos kx+cos ky�. The ground-state Green’s func-
tion matrix, from which we calculate the entanglement en-
tropy, reads in the thermodynamic limit

Gr,r� = �
����

d2k

�2�2eik�r−r��, �17�

with r= �x ,y�. Figure 1 shows the scaling prefactor c��� as
fitted from the exact entanglement entropy of an L�L square
with the rest of the universe, which was obtained from �8�. It
is in excellent agreement with �15� and thus also supports the
Widom conjecture for d=2. The same agreement was found
in the model

H = − 	
x,y

�1 + �− 1�y�cx,y
† cx,y+1 + cx,y

† cx+1,y+1 + cx,y
† cx−1,y+1

+ H.c.� �18�

which has a two-banded dispersion relation E�k�
= ±2�1+4 cos kx cos2 ky +4 cos2 kx cos2 ky and a discon-
nected Fermi surface for �� �−2,2�, Fig. 2.

Recently, the correctness of �14� and �15� was in analo-
gous manner also confirmed for a three-dimensional fermi-
onic system �28�.

B. Two-dimensional systems with a zero-dimensional Fermi
surface

Especially for a comparison to bosonic systems, it is in-
teresting to investigate models with a zero-dimensional
Fermi surface. In particular, we choose the two-dimensional
model

H = − 	
x,y

hcx,y
† cx+1,y + �1 + �− 1�x+y�cx,y

† cx,y+1 + H.c.� ,

�19�

which has for 0�h�1 the two-band dispersion relation
E�k�= ±2�1+h2 cos2 kx+2h cos kx cos ky, i.e., a gap of size
4�1−h� at k= � ,0�. Figure 3 shows for �=0 and h→1 how
the entanglement entropy converges to the area law with a
sublogarithmic correction, S��L�=Lo�log2 L�, meaning
limL→� S��L� / �L log2 L�=0. The curves S��L� /L for finite
gaps were extrapolated to obtain limL→�S��L� /L. Those val-
ues indicate, indeed, a divergence for h→1. This result is
consistent with Eq. �14�, as the scaling coefficient c���, Eq.
�15�, vanishes for systems in d�1 dimensions with a zero-
dimensional Fermi surface. Further investigations have to
determine the analytical form of the sublogarithmic correc-
tion and its universality.

IV. CRITICAL BOSONIC ENTANGLEMENT

An important question is whether the logarithmic correc-
tion observed in the entanglement entropy scaling law for
critical one-dimensional bosonic systems is also present in
higher-dimensional systems. To investigate this, we examine
a two-dimensional system of coupled oscillators

H =
1

2	
x,y

��x,y
2 + �0

2�x,y
2 + ��x,y − �x+1,y�2 + ��x,y − �x,y+1�2� ,

�20�

where �x,y, �x,y, and �0 are coordinate, momentum,
and self-frequency of the oscillator at site r= �x ,y�, respec-
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FIG. 2. The scaling prefactor c��� for the ground-state of a
two-dimensional fermionic tight-binding model with next-nearest-
neighbor hoppings in comparison to the result of �18�. Insets show
the hopping parameters and the Fermi surfaces for �� �−0.25,
−1.75� in the quartered Brillouin zone.
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tively. The masses and coupling strengths are set to unity.
The system has the dispersion relation E�k�
=��0

2+4 sin2kx /2+4 sin2ky /2, i.e., a gap of size �0 at k
= �0,0�.

In the low-energy limit, the harmonic oscillators can be
reduced to a field theory only containing ��
�2, which de-
scribes a massless free bosonic model. The scaling of en-
tanglement entropy in this model has been studied by
Srednicki �20� numerically in d=3 dimensions and by Callan
and Wilczek �21� with approximate field theoretical methods
for all d�1. Both provide evidence for the area law �1�.

Applying the transformation bi=��
2

��i+
i
��i� with �

=��0
2+4, the Hamiltonian �20� is mapped to the canonical

form �3� and is thus amenable to the method introduced in
Sec. II. The translation invariant Green’s function matrices
GAA and GBB of system A are at T=0

GAA�r,0� =
1

2�
0

 �
0



d2k
�

E�k�
cos kxx cos kyy

GBB�r,0� = −
1

2�
0

 �
0



d2k
E�k�

�
cos kxx cos kyy ,

and the entanglement entropy is obtained from Eq. �13�. Spe-
cial care has to be taken for the limit �0→0, as this results in
a singularity of the integrand for GAA. We calculated the
entropy for ever smaller but finite gaps �0 and refined in
each numerical integration the momentum space resolution
until the integral converged. The limit �0→0 was then in-
vestigated by extrapolation. Figure 4 displays the entangle-
ment entropy as a function of the linear size L of system

A for several �0. The curves converge for �0→0,
and a finite-size scaling analysis yields �see inset�
lim�0→0limL→�S��L� /L�0.45, i.e., the critical model obeys
for d=2 the area law S��L��0.45L. The fact that no loga-
rithmic correction is observed although the system is critical
may be attributed to the fact that the gap closes in a single
point �or zero-dimensional region� of momentum space. This
is very similar to the same situation for fermionic systems
analyzed in Sec. III B.

V. CONCLUSIONS

A relation between Green’s function matrices of quadratic
fermionic and bosonic Hamiltonians to reduced density ma-
trices was used to study bipartite entanglement entropy in
critical two-dimensional systems. We identified three differ-
ent regimes for the scaling of the entropy and presented exact
quantitative results: �i� For critical fermionic systems with a
one-dimensional Fermi surface, it follows the area law with a
logarithmic correction and the corresponding prefactor deter-
mined in �18� under assumption of the Widom conjecture is
correct. This gives also support for the Widom conjecture in
two dimensions. �ii� For critical fermionic systems with a
zero-dimensional Fermi surface, it follows the area law with
a sublogarithmic correction. �iii� For critical bosonic sys-
tems, it follows the area law without corrections. Those find-
ings demonstrate the subtle nature of entanglement at criti-
cality, the physical explanation of which remains a
challenging topic for future research.
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