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An open ended spin chain can serve as a quantum data bus for the coherent transfer of quantum state
information. In this paper, we investigate the efficiency of such quantum spin channels which work in a
decoherence environment. Our results show that the decoherence will significantly reduce the fidelity of
quantum communication through the spin channels. Generally speaking, as the distance increases, the deco-
herence effects become more serious, which will put some constraints on the spin chains for long distance
quantum state transfer.
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I. INTRODUCTION

Quantum computation has the potential to outperform
their classical counterparts in solving some intractable prob-
lems which would need an exponentially longer time for a
classical computer �1,2�. A lot of effort has been devoted to
searching for various kinds of real physical systems that may
be appropriate for the implementation of quantum computa-
tion. One key feature of such physical systems is scalability
�3�. There are several prospective candidates for scalable
quantum computation, such as optical lattices �4–6�, arrays
of quantum dots �7–9�, and superconducting circuits �10,11�.
It is also known that universal quantum computation can be
performed by a chain of qubits with nearest neighbor Heisen-
berg or XY coupling together with some other physical re-
sources �12–15�.

In the large-scale quantum computing, how to transmit
quantum states from one location to the other location, which
is a little similar but not all the same to quantum information
distributing �16�, is an important problem. The primitive
scheme of quantum communication through an unmodulated
spin chain is proposed by Bose �17�. It was shown that quan-
tum states can be transferred via an open ended spin chain
with ferromagnetic Heisenberg interactions. The fidelity will
exceed the highest fidelity for a classical transmission of a
quantum state until the chain length N is larger than 80. In
Ref. �18�, Christandal et al. put forward a special class of
Hamiltonian that is mirror periodic. Based on a spin chain
with such a mirror-periodic Hamiltonian, a perfect quantum
state transfer can be achieved. Up to now, there are many
other variational schemes for the transfer of quantum states
in spin systems �19,20�. In the real physical systems, espe-
cially for a solid state system, decoherence and noise is in-
evitable �1�. For example, in the system of arrays of quantum
dots, both the surrounding nuclei spin environment �21� and
1/ f noise will induce decoherence. Therefore, under the in-
fluence of decoherence, how efficient different spin chain
channels will work becomes an interesting and important
problem. On the other hand, dynamical decoherence proper-
ties of many-body systems �22–24� are basically significant

by itself. There have been several works about the decoher-
ence and spin chain channels �25–27�. However, the deco-
herence effects on the efficiency of these quantum spin chan-
nels have not yet been thoroughly investigated.

In this paper, we calculate the fidelity of quantum com-
munication through the spin chain channels under the influ-
ence of decoherence. Two representative kinds of environ-
ment model are investigated. One is the one common spin
environment �28�. The other is the local independent envi-
ronment �29�. We show that the efficiency of the spin chan-
nels will be significantly lowered by the decoherence envi-
ronment. As the spin chain length increases, the decoherence
effects may become very severe, which suggest some new
constraints on the spin chains for long distance quantum state
transfers. We mostly concentrate on the Heisenberg spin
chain and the mirror-periodic Hamiltonian scheme. However,
some of the results are applicable for other schemes of quan-
tum state transfer.

The structure of this paper is as follows. In Sec. II we
investigate the efficiency of quantum spin channels in one
common spin environment. In Sec. III the situation of a local
independent environment is discussed. In Sec. IV are conclu-
sions and some discussions.

II. ONE COMMON SPIN ENVIRONMENT

We start by considering the important decoherence model
in spin systems, i.e., one common spin environment. The
Hamiltonian of the spin chain with N spins is denoted as HS.
The total z component of the spin is conserved, i.e.,
��i=1

N �i
z ,HS�=0. This is true for several important spin chain

channels �17,18�. The central system interacts with one com-
mon spin environment � �28�, which is formed by M inde-
pendent spins, for large values of M, as depicted in Fig. 1.
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FIG. 1. �Color online� A quantum wire with N spins in the line

coupled with one common spin environment.
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HS� =
1

2�
i=1

N

�i
z

� �
k=1

M

gk�k
z . �1�

The whole system of the spin chain S and the environ-
ment � is described by the Hamiltonian

HT = HS + HS�. �2�

Here the self-Hamiltonian of the environment � is neglected.
This simple decoherence model is an important solvable
model of decoherence, which is much relevant to quantum
information processing �1�. We will demonstrate how effi-
cient the quantum spin chain channels will work in such a
decoherence environment.

The quantum state to be transferred is located at the first
spin, ��in�=� �0�+� �1�. The initial state of the central system
is

��S�0�� = ��0� + ��1� �3�

with �0�= �00, ¯0�, �1�= �10, ¯ ,0�. In the following, we
will denote �j� the state in which the jth spin is in the �1�
state, while all the other spins are in the �0� state. Without the
influence of decoherence, the transfer fidelity at time t is
defined as f1N�t�ª �N �e−iHst �1�. Using the calculations in
�30�, we can write down the final density matrix �N�t� in the
absence of the decoherence, just in terms of the initial coef-
ficients of the input state, and the transfer fidelity, as follows:

�N�t� = 	1 − �f1N�t��2 �f1N
* �t�

�*f1N�t� �f1N�t��2

 . �4�

Now we take into account the interaction between the
spin chain and the environment. We denote the basis of the

environment ��m��m � �, �m=0
2M−1 �m��m � = I�, where �m�

= �m1m2 , ¯mM� with �k
z �mk�= �−1�mk �mk�. Since

�k=1
M gk�k

z �m�=�k=1
M �−1�mkgk �m�, therefore,

HT = �
m=0

2M−1 	HS +
1

2
Bm�

i=1

N

�i
z
 � �m��m� �5�

with Bm=�k=1
M �−1�mkgk. The time evolution operator for the

combined system environment is U�t�=exp�−itHT�, i.e.,

U�t� = �
m=0

2M−1

Um�t� � �m��m� , �6�

where Um�t�=exp�−itHS
�m�� with HS

�m�=HS+ 1
2Bm�i=1

N �i
z. We

consider the initial state of the spin chain together with the M
independent environment spins of the form as Zurek has con-
sidered in Ref. �28�:

��S��0�� = ��S�0�� � �
m=0

2M−1

cm�m� . �7�

After arbitrary time t, the evolution of the spin-

environment system is ��S��t��=U�t� ��S��0��=�m=0
2M−1�Um�t�

� �m��m � � ��S��0��. Therefore, the final density matrix of the
target spin is

�N� �t� = TrN̄Tr����S��t����S��t���

= �
m=0

2M−1

�cm�2TrN̄�Um�t���S�0����S�0��Um
† �t��

= �
m=0

2M−1

�cm�2�N
�m��t� . �8�

We note that � 1
2Bm�i=1

N �i
z ,HS�=0. It can be observed that

if the environment is in the state �m�, the output just under-
goes a Z rotation by some angle Bm, i.e.,

�N
�m��t� = 	 1 − �f1N�t��2 �f1N

* �t�e−iBmt

�*f1N�t�eiBmt �f1N�t��2

 . �9�

Consequently, the only change to the final density matrix
caused by the decoherence is to reduce the off-diagonal ele-

ments by a factor of 	�t�=�m=1
2M−1 �cm�2eiBmt and 	*�t�. The

efficiency of the quantum spin channel is characterized by
the fidelity averaged over all pure state in the Bloch sphere,
that is F��t�=1/4

Tr��N� �t� ��in���in � �d�.

We denote the character function of the environment as

��B�=�m=0
2M−1 �cm�2
�B−Bm�. After some straightforward cal-

culation, we can write the average fidelity of the quantum
spin channel in the spin environment as

F��t� =
1

2
+

�f1N�t��2

6
+

�f1N�t��
3

� cos�Bt + ����B�dB ,

�10�

where �=arg�f1N�t��. For a general spin environment of
large M values, the character function ��B� is approximately
Gaussian �28�, that is ��B�=exp�−B2 /�� /�
�. Then


cos�Bt���B�dB=e−�t2/4, and the average fidelity becomes

F��t� =
1

2
+

�f1N�t��2

6
+

�f1N�t��cos �

3
e−�t2/4. �11�

A. Heisenberg spin chain

We first consider the Bose primitive scheme. There are N
spins in the line with ferromagnetic Heisenberg interactions,
labeled 1 ,2 , . . . ,N. The Hamiltonian of the spin chain �17� is
HS=−J�i=1

N−1�� i ·�� i+1−B�i=1
N �i

z. For the situation without con-
sidering the influence of decoherence environment, by
choosing the magnetic fields B as some special value Bc, one
can make the transfer fidelity f1N�t�= �N �e−itHS �1��R, i.e.,
�=arg�f1N�t��=0, and then maximize the original average
fidelity. Therefore, the average fidelity of the quantum spin
channel in the spin environment is

F��t� =
1

2
+

f1N
2 �t�
6

+
f1N�t�

3
e−�t2/4. �12�

We depict the above average fidelity for N=3,5 ,8 ,10
in Fig. 2. Compared with the original fidelity �17�
F�t�= 1

2 + f1N
2 �t� /6+ f1N�t� /3, it can be seen that the decoher-

ence environment will obviously reduce the efficiency of
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quantum communication through the spin chain channels,
especially for the target spin of long distance. Because if the
time of transfer is longer, the decoherence effects are more
severe and more quantum state information will be lost. In
fact, without the influence of decoherence, the critical spin
chain length is Nc=80�17�, i.e., if the spin chain length N
�Nc, the fidelity of quantum communication through the
spin channel will exceed 2

3 , which is the highest fidelity for
classical transmission of the state �31�. However, even
though the environment parameter � is small, the critical
spin chain length is significantly reduced. We list the critical
spin chain length for several environment parameters in
Table I. Therefore, if the spin chain length is large, to
achieve satisfactory efficiency of quantum state transfer, new
constraints, e.g., larger coupling strength J, is necessary.

We now investigate entanglement distribution through the
above open ended spin channel in the one common spin
environment. Two particles A and B are initially in the en-
tangled state ��AB

† �= ��01�+ �01�� /�2. We set B as the first site
of the spin chain channel, then after some time t entangle-
ment will be established between A and the target spin, i.e.,
the Nth spin. What we are interested in is the amount of
distributed entanglement between the A and the Nth spin. As
pointed out in Ref. �17�, the spin chain, without the influence
of environment, acts as an amplitude damping quantum
channel, i.e.,

�AN�t� = �
i=0,1

�I � Mi���AB
† ���AB

† ��I � Mi
†� �13�

with M0= �0��0 � + f1N�t� �1��1� and M1= �1− �f1N�t��2�1/2 �0��1�.
In the same way as discussed above, the final entangled state
becomes �AN� �t�= ��1−�2� �00��00 � +�2 �01��01 � + �10��10 �

+� �01��10 � +�* �10��01 � � /2, where �= �f1N�t�� and �

=
� exp�−iB�t���B��dB�=�e−�t2/4. Therefore, the distrib-
uted entanglement measured by concurrence �32� is,

�� = �0e−�t2/4, �14�

where �0=� is the distributed entanglement without decoher-
ence.

B. Mirror-periodic Hamiltonian

Now we consider the perfect state transfer channels, i.e.,
the mirror-periodic Hamiltonian scheme in one common spin
environment. The N spins in the line with XY coupling is
described by the Hamiltonian �18� HS=�i=1

N−1Ji /2��i
x�i+1

x

+�i
y�i+1

y �, where Ji=��i�N− i� /2. The most important prop-
erty of the mirror-periodic Hamiltonian is that
e−itH��s1 ,s2 , . . . ,sN−1 ,sN�= �±���sN ,sN−1 , . . . ,s2 ,s1� for some
time t. For the above Hamiltonian HS, the transfer fidelity is
f1N�t�= �−i sin��t /2��N−1, i.e., perfect quantum state transfer
will be achieved at a constant time t=
 /� for arbitrary spin
chain distance. According to the above Eqs. �8� and �9�, we
can easily get the average fidelity

F��t� = 2
3 + 1

3e−�t2/4. �15�

Since the optimal transfer time t=
 /� is constant, the aver-
age fidelity is independent on the spin chain length N. This is
different from the situation of the Heisenberg spin chain
channel.

III. LOCAL INDEPENDENT ENVIRONMENT

In this section, we will consider another representative
decoherence model, the local independent environment.
Each individual spin of the central system S interacts inde-
pendently with the local environment �i, as depicted in Fig.
3. The decoherence process of the multispin system can be
described by a general quantum master equation of Lindblad
form �33�,

�

�t
� = − i�HS,�� + �

i=1

N

�I � ¯ � I � Li � I � ¯ � I�� .

�16�

The superoperator Li describes the independent interaction
of the ith spin with the local environment.

It is known that macroscopic systems are more fragile
under the influence of the decoherence environment. In the
situation of local independent decoherence environment,
this can be demonstrated in an explicit way as follows.

TABLE I. Critical spin chain length Nc for different environ-
ment parameters � /J2.

� /J2 0 0.0002 0.001 0.002 0.005 0.01 0.015 0.02

Nc 80 32 29 26 22 18 16 15

FIG. 2. �Color online� The average fidelity of quantum spin
channels in the one common spin environment �dashed� and with-
out decoherence �solid� as functions of time t /J for different dis-
tances N=3,5 ,8 ,10. The Gaussian parameter � /J2=0.02.

FIG. 3. �Color online� A quantum wire with N spins in the line
coupled with local independent environment.
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The phenomenological analysis solution of the quantum
master equation in Eq. �15� can be written as ��t�
=��0�+
0

t �−i�HS ,��t���+�i=1
N Li��t��dt��. And the ideal state

without decoherence is �0�t�=��0�+
0
t �−i�HS ,�0�t����. If the

time t=
t is short enough, the difference between the real
and ideal state of the central system is ��t�−�0�t�
=�i=1

N Li��0�
t. Therefore, it is obvious that the state devia-
tion will become larger as N increases for most kinds of
decoherence model.

A. Mirror-periodic Hamiltonian

We first consider the mirror-periodic Hamiltonian scheme
in the local independent dephasing and damping channels.
The dephasing process corresponds to the situation where
only phase information is lost �1�, without energy exchange.
The superoperator for the dephasing channel �29� is

Li� = −
	i

2
�� − �i

z��i
z� . �17�

For simplicity, we assume that the system-environment cou-
pling strength 	i=	 are the same for all spins.

In the case of quantum state transfer, the initial state of the
system is ��S�0��=� �0�+� �1�. The state transfer dynamics
under the influence of the dephasing channel is completely
determined by the evolution in the zero and single excitation
subspace H0�1. Therefore, we only need to solve the above
master equation in this �N+1�-dimensional subspace. When
restricted to the subspace H0�1,

HS = �
i=1

N−1

Ji��i��i + 1� + �i + 1��i�� ,

�i
z = IN+1 − 2�i��i� . �18�

At time T=
 /�, the reduced density of the Nth spin is

��N��
/�� = 	1 − �NN�
/�� �0N�
/��
�0N

* �
/�� �NN�
/��

 , �19�

where �NN�
 /��= �N ���
 /�� �N� and �0N�
 /��
= �0 ���
 /�� �N�. Therefore, the probability of an excitation
transfer from the first spin to the Nth spin at time t=
 /�
is P=�NN�
 /��. And the fidelity between the real and
ideal transferred quantum state, i.e., ��ideal�
 /���
=� �0�+ �−i�N−1� �1�, is

F�
/�,�,�� = �1 − �NN�
/������2 + �NN�
/�����2

+ 2 Re��− i�N−1�0N�
/���*�� . �20�

The efficiency of quantum communication through the
above quantum spin channel is characterized by the average
fidelity over all pure states in the Bloch sphere F�
 /��
= 1

4
 
F�
 /� ,� ,��d�. In the mirror-periodic Hamiltonian
scheme, we solve the above differential equations numeri-
cally, and depict the probability of an excitation transfer and
the average fidelity in Figs. 4 and 5. Though the transfer time
is constant t=
 /� for any spin chain distance N, the prob-
ability of an excitation transfer and the average fidelity will

still decay as the spin chain length increases. Due to the
decoherence effects, the mirror-periodic Hamiltonian scheme
cannot achieve perfect quantum state transfer again. How-
ever, using larger nearest-neighbor interaction �, i.e., relative
smaller system-environment coupling strength 	 /�, we will
increase the efficiency of quantum communication in the de-
coherence environment. The pure damping channel corre-
sponds to the decay process of the central system coupled to
a thermal bath at zero temperature �1,29�. The superoperator
for the damping channel is

Li� = −
	i

2
��i

−�i
+� + ��i

−�i
+ − 2�i

+��i
−� , �21�

where �i
±= ��i

x± i�i
y� /2, with the system-environment cou-

pling strength 	i=	 for all spins.
In the similar way as the dephasing channel, when re-

stricted to the subspace H0�1,

FIG. 4. �Color online� The probability of an excitation transfer
as a function of the spin chain length N for the dephasing channel in
the local independent model. The system-environment coupling
strength 	 /�=0.1.

FIG. 5. �Color online� The fidelity as a function of the spin
chain length N for the dephasing channel in the local independent
model. The system-environment coupling strength 	 /�=0.1.
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�i
− = �i��0�,�i

+ = �0��i�,�i
−�i

+ = �i��i� . �22�

The reduced density of the Nth spin and the average fidelity
in Eqs. �18� and �19� are applicable to the damping channel
also. By solving the corresponding differential master equa-
tions numerically, we can obtain the probability of an exci-
tation transfer and the average fidelity for different spin
chain lengths N. Unlike the situation of the dephasing chan-
nel, we find that at time t=
 /�, the probability of an exci-
tation transfer is independent on the spin chain length, that is
�NN�
 /��=e−	
. Moreover, the average fidelity F�
 /�� is
independent on the spin chain length also. This result is
somewhat surprising. Whether this property is only held by
the mirror-periodic Hamiltonian in a pure damping environ-
ment is an interesting open problem, which will be investi-
gated in detail in our following work.

B. Heisenberg spin chain

For the Heisenberg spin chain channel in the local inde-
pendent dephasing and damping environment, we can ex-
press the system Hamiltonian HS in the subspace H0�1 and
solve the quantum master equations in the similar way as
discussed above. We list the maximum probability of an ex-
citation transfer P for different spin chain length N in Table
II. The behavior of the average fidelity F is similar to the
probability of an excitation transfer P.

It can be seen that the maximum probability of an excita-
tion transfer, i.e., the efficiency of the Heisenberg spin chain
channel, will decay as the spin chain length N increases not
only for the dephasing channel but also for the damping
channel. This is slightly different from the situation of
mirror-periodic Hamiltonian, where the probability of an ex-

citation transfer and the average fidelity are independent on
the spin chain length.

IV. CONCLUSIONS AND DISCUSSIONS

In conclusion, we have investigated the efficiency of
quantum communication through the spin chain channels un-
der the influence of a decoherence environment. We focus on
the Heisenberg spin chain and the mirror-periodic Hamil-
tonian scheme. Two representative decoherence models are
considered, one is the common spin environment, the other is
local independent environment. It can be seen that the effi-
ciency of the quantum wires will be significantly lowered by
the external decoherence environment. Generally speaking,
the decoherence effects become more serious for larger spin
chain lengths. However, for a different spin chain Hamil-
tonian and decoherence models, the results will be somewhat
different.

In Ref. �26�, it has been shown that in some specific en-
vironment, quantum state transfer is possible with the same
fidelity and only reasonable slowing. However, for more
general decoherence models as considered in this paper, we
show that, to achieve highly efficient long distance quantum
state transfer in a decoherence environment, the time of
transfer �34� becomes a crucial factor and more constraints
on the spin system Hamiltonian are requisite. We should re-
sort to a new encoding strategy for the protection of quantum
state information during the transfer along the spin chain
channels. Besides, we provide some possible evidence for
the unusual dynamical decoherence properties of the mirror-
periodic Hamiltonian, which may lead to some valuable utili-
ties of this special class of Hamiltonian.
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