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We propose a simple physical implementation of the quantum Householder reflection (QHR) M(v)=I
—2|v){v| in a quantum system of N degenerate states (forming a qunit) coupled simultaneously to an ancillary
(excited) state by N resonant or nearly resonant pulsed external fields. We also introduce the generalized QHR
M(v; @)=I+(e’*—1)[v){v|, which can be produced in the same N-pod system when the fields are appropriately
detuned from resonance with the excited state. We use these two operators as building blocks in constructing
arbitrary preselected unitary transformations. We show that the most general U(N) transformation can be
factorized (and thereby produced) by either N—1 standard QHRs and an N-dimensional phase gate, or N—1
generalized QHRs and a one-dimensional phase gate. Viewed mathematically, these QHR factorizations pro-
vide parametrizations of the U(N) group. As an example, we propose a recipe for constructing the quantum
Fourier transform (QFT) by at most N interaction steps. For example, the QFT requires a single QHR for N

=2, and only two QHRs for N=3 and 4.
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I. INTRODUCTION

Coherent control of quantum dynamics traditionally in-
volves scenarios for transfer of population, complete or par-
tial, from one bound initial energy state to another, single or
superposition state, or a continuum of states. Such tech-
niques are well developed, particularly for two- and three-
state systems, e.g., 7 pulses [1], adiabatic passage using one
or more level crossings [2], or stimulated Raman adiabatic
passage and its extensions [3]. Essentially all these tech-
niques start from a single initial state; such a state can be
prepared experimentally, e.g., by optical pumping.

At the same time, in contemporary quantum physics
implementations of specific propagators are often demanded;
for example, some fields in quantum information lean
heavily on the quantum Fourier transform [4]. Another ex-
ample is quantum state engineering when a system starts in a
coherent superposition of states; then one must construct the
entire propagator, while the above techniques provide only
some transition probabilities.

The implementation of such propagators is well under-
stood and used for qubits, i.e., two-state quantum systems,
upon which the theory of quantum information is primarily
built [4]. On the other hand, qunits—AN-state quantum
systems—offer some advantages. For example, a qubit can
encode two continuous parameters: the population ratio of
the two qubit states and the relative phase of their ampli-
tudes. A qunit in a pure state can encode 2(N—1) parameters
(N-1 populations and N—1 relative phases), i.e., by using
qunits, information can be encoded in significantly fewer
particles than with qubits. This is beneficial for storing quan-
tum information, which can be particularly important if the
number of particles that can be used is restricted, e.g., due to
decoherence [4]. Furthermore, there are indications that us-
ing qunits can improve error thresholds in fault-tolerant com-
putation.

Physical realizations of qunit operations in the existing
proposals [5], however, are difficult to implement. These
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implementations use sequences of U(2) operations, i.e.,
transformations acting at each instance of time upon only
two of the N states of the qunit. The general U(N) transfor-
mation of a qunit requires O(N?) such U(2) operations [5];
hence the complexity increases rapidly with the qunit dimen-
sion N, which makes qunit manipulations challenging, even
for qutrits (N=3).

In this paper, we show that a general U(N) transformation
can be implemented physically in a quantum system with
only N interaction steps. For this purpose we introduce a
compact quantum implementation, in a single interaction
step, of the Householder reflection [6]. The latter is a pow-
erful and numerically very robust unitary transformation,
which has many applications in classical data analysis, e.g.,
in solving systems of linear algebraic equations, finding ei-
genvalues of high-dimensional matrices, least-squares opti-
mization, QR decomposition, etc. [7]. The Householder
transformation, acting upon an arbitrary N-dimensional ma-
trix, produces an upper (or lower) triangular matrix by N
—1 operations. When the initial matrix is unitary, the result-
ing final matrix is diagonal, i.e., a phase gate or a unit matrix.
We use this property to decompose an arbitrary U(N) matrix
into Householder matrices and hence design a recipe for
physical realization of a general U(N) transformation.

The quantum Householder reflection (QHR) consists of a
single interaction step involving N simultaneous pulsed
fields. In contrast to the existing U(2) realizations of qunit
transformations, here each Householder reflection acts simul-
taneously upon many states: N states in the first step, N—1
states in the second, etc. This allows us to greatly reduce the
number of physical steps, from O(N?) in U(2) realizations to
only O(N) in our proposal.

We introduce two types of QHR: standard and generalized
QHR; the latter involves an additional phase factor. The
physical realizations of both use simultaneous pulses of pre-
cise areas in a system with an N-pod linkage pattern, the
difference being that the standard QHR operates on exact
resonance, whereas the generalized QHR requires specific
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detunings. Any unitary matrix can be decomposed into N
—1 standard QHRs and a phase gate, or into N generalized
QHRs, without a phase gate. This advantage of the general-
ized QHR implementation derives from the additional phase
in each step, which delivers N additional phases in the end,
thereby making the phase gate unnecessary.

This paper is organized as follows. In Sec. II we define
the standard and generalized QHR gates and propose physi-
cal implementations. In Sec. III we describe the decomposi-
tions of a general U(N) matrix by means of standard and
generalized QHRs, which provide the routes for realization
of an arbitrary U(N) transformation. In Sec. IV we apply
these decompositions to quantum Fourier transforms. The
conclusions are summarized in Sec. V.

II. QUANTUM HOUSEHOLDER REFLECTION
A. Standard QHR

An N-dimensional quantum Householder reflection is de-
fined as the operator

M(v) =1-2|v)v

: (1)

where |v) is an N-dimensional normalized complex column
vector and I is the identity operator. The QHR (1) is Hermit-
ian and unitary, M(v)=M(v)"=M(v)~!, which means that
M(v) is involuntary, M?(v)=I; in addition, det M(v)=-1. If
the vector |v) is real, M(v) has a simple geometric interpre-
tation: reflection with respect to an (N—1)-dimensional plane
with a normal vector |v); in the complex case the interpreta-
tion is more involved. In general, the Householder vector |v)
is complex, which implies that it contains 2(N—1) real pa-
rameters (taking into account the normalization condition
and the unimportant global phase).

B. Generalized QHR
We define the generalized QHR as

M(v; @) =1+ (e - 1)|v)v

, 2)

where |v) is again an N-dimensional normalized complex
column vector and ¢ is an arbitrary phase. The standard
QHR (1) is a special case of the generalized QHR (2) for
o= M(v;7)=M(v). The generalized QHR is unitary,

M(v;¢) ' =M(@;¢) =M(v;- @), (3)

and its determinant is det M =¢¢.

C. Physical implementations
1. Coherently driven N-pod system

The standard and generalized QHRs have simple physical
realizations. Consider the (N+ 1)-state system with N degen-
erate [in the rotating-wave approximation (RWA) sense [1]]
ground states |n) (n=1,2,...,N), which represent the qunit,
coupled coherently and simultaneously by N external fields
to an ancillary excited state |e)=|N+1), as shown in Fig. 1
[8]. Such an N-pod system can be formed, e.g., by coupling
the magnetic sublevels of several J=1 levels to a single J
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FIG. 1. Physical realization of the quantum Householder reflec-
tion: N degenerate (in the RWA sense) ground states, forming the
qunit, coherently coupled via a common excited state by pulsed
external fields of the same time dependence and the same detuning,
but possibly different amplitudes and phases.

V)

=0 level by polarized laser pulses [8]; for a qutrit only one
J=1 level suffices. The propagator Uy, (z,t,) of this system
obeys the Schrodinger equation

d
iﬁEUNH(Ia 1)) = H() Uy, (1,10), (4)

with the RWA Hamiltonian [1]

0 0 0 00
X 0 0 0 Q)
H(;):E : : . N G
0 0 0 Qu0
| Q1) Q,(0) Qp(0) 240

and the initial condition Uy,(zy,,)=I. The excited state |e)
can be generally off resonance by a detuning A(r) [8], which,
however, must be the same for all fields. The functions
O(2),...,Q\(t) are the Rabi frequencies of the couplings
between the ground states and the excited state; we require
that they have the same time dependence, described by the
envelope function f(7), but we allow for different amplitudes
X, and phases 3,

O, (1) = x,f(1)e'Pn

By using the Morris-Shore transformation [9] the coupled
(N+1)-state system can be decomposed into a set of N—1
dark ground states, which are superpositions of qunit states,
and a two-state system, consisting of a bright ground state
and the excited state |e) [8]. This two-state system is driven
by a Hamiltonian involving the same detuning A(z) as in Eq.
(5), and the coupling is the root-mean-square (rms) Rabi fre-
quency (1=, ()= xf(0).

The exact solution for the propagator reads [8]

(n=1,2,...,N). (6)
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Here y= \'Eflv:l )(i is the rms peak Rabi frequency and B,
=pBy—B,, (k,m=1,2,...,N) are the relative phases of the ex-
ternal fields. The complex parameters a and b (with |b|>=1
—|al?) are the Cayley-Klein parameters of the SU(2) propa-
gator for the Morris-Shore bright-excited two-state system.

2. Standard QHR: Exact resonance

In the case of exact resonance (A=0) the Cayley-Klein
parameters for any pulse shape f(¢) are

A A

a=cos—, b=-—isin—, (8)
2 2

where A is the rms pulse area,

y
A=x f f@dr. )

li

If

A=22k+1)m (k=0,1,2,...), (10)

then a=-1, b=0, and the last row and column of the propa-
gator (7) vanish, except for the diagonal element, which is
—1; the propagator (7) reduces to

r 1 0
U™ ;
UN+1= L 1 0 (11)
0 0 -1

Here U™ is an N-dimensional unitary matrix (with det U7
—1), which represents the propagator within the N-state
degenerate manifold; it has exactly the QHR form (1), U™
=M(v;7)=M(v). The components of the N-dimensional
QHR vector |v) are the normalized Rabi frequencies, with
the accompanying phases

1 . A .
|U> = _[XlelBI’XZelﬁz’ ’XNel'BN]T- (12)
X
Hence the propagator U™ within the degenerate N-state
manifold of the N-pod system driven by the Hamiltonian (5),
with A=0 and rms pulse area (9), represents indeed a physi-

cal realization of QHR in a single interaction step. Any QHR
vector (12) can be produced by appropriately selecting the
peak couplings x,, and the phases 8,, while obeying Eq. (10)
(e.g., by adjusting the pulse duration).

3. Generalized QHR
The unitary propagator (7) for a=e'® (b=0) reduces to

r 1

U¢ :
1 0

0 ¢®

0

Uy =

(13)

s

0

where, as is easily verified, we have U?=M(v; ¢), and hence
the propagator U® represents a physical realization of the
generalized QHR (2). The vector |v) is again given by Eq.
(12). The condition a=¢'® for ¢+ 0, can only be realized
off resonance (A #0). There is a beautiful off-resonant solu-
tion to the Schrodinger equation—the Rosen-Zener model—
which we shall use here to exemplify the generalized QHR.

The Rosen-Zener model [10] can be seen as an extension
of the resonance solution (8) to nonzero detuning for a spe-
cial pulse shape (hyperbolic secant),

f(r) =sech(#/T), (14a)
A(r) = A,. (14b)
The Cayley-Klein parameter a reads [8,10]
1 1
F2<— + —iA0T>
2 2
, (15)

11
- ST+ —iAT
P A

a=
1
I'-+-
2 2

|

where I'(z) is Euler’s gamma function. Using the reflection
formula F(%+Z)F(%—z)=ﬂ'/cos 7z, we find

sin”| —
5 X

coshz( 2 7TA0T>

1 I
xT + 51A0T>F(

lal*=1- (16)
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Hence in this model, |a|=1 for xT=2[ (I=1,2,...); then
the last row and the last column of the propagator (7) vanish,
except the diagonal element. The phase ¢ of a=¢'¢ depends

on the detuning A and for an arbitrary integer / we find from
Eq. (15)

AT+ i(2k+1)

=¢l?= , 17
a=e gAOT—i(zkn) (17)
and hence
-1
e=2arg [[[AT+i(2k+1)]. (18)
k=0

This can be seen as an algebraic equation for A,, which has
[ real solutions. For example, for /=1 (which corresponds to
the rms pulse area A=2m), we have AjT=cot(¢/2). Hence
the generalized QHR phase ¢ can be produced by an appro-
priate choice of the detuning A,

The use of nonresonant interaction, besides providing an
additional phase parameter, has another important advantage
over resonant pulses: lower transient population of the inter-
mediate state. This can be crucial if the lifetime of this state
is short compared to the interaction duration. Equation (18)
provides the opportunity to control this transient population,
which is proportional to A{)Z, by using large peak Rabi fre-
quency (implying larger [) and find the largest solution for
Ay. It is important that the standard QHR can also be realized
off resonance, by selecting a detuning A, for which ¢=1r.

III. QHR DECOMPOSITION OF U(N)
A. Standard QHR decomposition

We shall show that QHR is a very efficient tool for con-
structing a general U(N) qunit gate. In particular, we shall
show that any N-dimensional unitary matrix U (U~'=U")
can be expressed as a product of N—1 standard QHRs M(v,,)
(n=1,2,...,N-1) and a phase gate ®(¢p;, d,,...,Py),

U= M(UI)M(U2) T M(UN—I)(I)(¢1’¢2a ,¢N), (19)

where

¢(¢1’ ¢2’ cee ¢N) = diag(ei¢],ei¢2, cee ,ei¢N) . (20)

We shall prove this assertion by explicitly constructing
the decomposition (19). The standard QHRs M(v,,) involve
vectors |v,), which we construct as follows. First we define
the normalized vector |v;) as

luy) = ' ler)
V2[1 - Re(u; e )]’

(21)

|U1>=

where the vector |u,) denotes the nth column of U={u,,},
¢ =arg uy,, and |e;)=[1,0,...,0]". We find

M(©))|up) =e'®e,), (22a)

M(v))|u,) = u,) + Ze_i¢1u1n|vl), (22b)
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(e M())|u,y=0 (n=2,3,...,N). (22¢)

Hence the action of M(v;) upon U nullifies the first row and
the first column except for the first element,

&t o -0
wu=| 7 T
M@)U=| . R (23)
: : Uy
0 L N

where Uy_; is a U(N—1) matrix. We repeat the same proce-
dure on M(v,)U and construct the vector |v,),

|uz) = €'%e,)

V2[1 - Re(ul,e®)]’

lva) = (24)

where the vector |u3) is the second column of M(v;)U, ¢,
=arg[M(v,)U],,, and |e,)=[0,1,0,...,0]%. The correspond-
ing QHR M(v,), applied to M(v,)U, has the following ef-
fects: (i) it nullifies the second row and the second column of
M(v;)U except for the diagonal element, which becomes
e and (ii) it does not change the first row and the first
column. By repeating the same procedure N—1 times, we
construct N—1 consecutive Householder reflections, which
nullify all off-diagonal elements, to produce a diagonal ma-
trix comprising N phase factors,

M(UN—I)"'M(UI)U=¢’(¢17¢2v ’(bzv), (25)

which completes the proof of Eq. (19) since M(v)=M(v)~".
If Uis a SUN) matrix then det ®==+1, meaning ="_ ¢,
=0 or .

We note that the choice of the QHRs M(v,,) is not unique;
for example, the first QHR M(v,) can be constructed from
the first row of U, instead of the first column. Furthermore,
the final diagonal matrix (20) occurs due to the unitarity of
U, which leads to Eq. (22¢); a QHR sequence produces a
triangular matrix in general.

The QHR decomposition (19) of the U(N) group into N
—1 Householder matrices (1) and a phase gate provides a
simple and efficient physical realization of a general trans-
formation of a qunit by only N—1 interaction steps and a
phase gate; this is a significant advance compared to O(N?)
operations in existing recipes. Each QHR vector is N dimen-
sional, but the nonzero elements decrease from N in |v|> to
just 2 in |vy_;), and so does the number of fields required for
each QHR [see Eq. (12)].

The decomposition (19) is also of mathematical interest
because it provides a very natural parametrization of the
U(N) group. Indeed, a QHR vector with n nonzero elements
contains 2(n—1) real parameters (because of the normaliza-
tion and the irrelevant global phase). The phase gate (20)
contains N phases. Hence Eq. (19) involves 22\1222(11—1)
+N=N? real parameters, as should be the case for a general
U(N) matrix.

B. Generalized QHR decomposition

We shall show now that any unitary matrix U can be
expressed as a product of N generalized QHRs M(v,; ¢,)
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(n=1,2,...,N) defined by Eq. (2), without a phase gate, that
is,

N
U=[IM@,:¢,). (26)

n=1

We first define the normalized vector

1 2 si /2
o= =y 2ED s ey, @)
e ‘P]_l |1—M11|

where the vector |u,) denotes again the nth column of U and
¢;=2 arg(1—u,;)—. It is readily seen that

M(vy;— @p)|uy) = ley),

(28a)

(eIM(vy;— @)|uy=0 (n=2,3,...,N). (28b)

Therefore, the action of M(v,;—¢;) upon U nullifies the first
row and the first column except for the first element, which
is turned into unity,

1 0

or 7
M(v;;-¢)U=] . U ; (29)

: N-1

0 L il

where Uy_; is a U(N—1) matrix. We repeat the same proce-
dure on Uy_; and construct the vector

1 2 si /2
o) = | 2D e, G0)
e -1 1= us)|

where the vector |u}) is the second column of M(v,;—¢;)U
and ¢,=2 arg(1—uy,)—m. The action of M(v,;—¢,) upon
M(v;;—¢;)U has the following effects: (i) it nullifies the
second row and the second column of M(v;;—¢;)U except
for the diagonal element which is turned into unity, and (ii) it
does not change the first row and the first column of
M(v,;—¢;)U. By repeating the same procedure N times, we
construct N consecutive generalized Householder reflections,
which nullify all off-diagonal elements to produce the iden-
tity matrix

1
[IM®©,;-¢,)U=1. (31)

n=N

By recalling Eq. (3) we obtain Eq. (26) immediately. Note
that the last QHR M(vy; on)=®(0,...,0,¢y) is actually a
one-dimensional phase gate.

Therefore the use of generalized QHRs replaces the
N-dimensional phase gate needed in the standard QHR
implementation (19) by a one-dimensional phase gate
®(0,...,0,¢y). We point out that again, as for the standard
QHRs M(v,), the choice of any of the generalized QHRs
M(v,; ¢,) is not unique because it can be constructed from
the respective row, rather than the column, of the corre-
sponding matrix.
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C. Examples
1. Qubit

As an example of the QHR decomposition we first con-
sider the qubit, which is the conventional system for quan-
tum information processing. The conventional realization of
a general U(2) transformation involves three interactions:
two phase gates and one rotation R(1) [4],

U = (I)(al,az)R(l(})(I)(O, Of3). (32)

Already for a qubit, the QHR implementations (19) and
(26) are superior to Eq. (32) because they require only one
QHR and one phase gate,

UZM(U)(D(¢1,¢2), (333)

U=M(v;¢)P(0,¢,). (33b)

2. Qutrit

As a second example we consider a qutrit—a three-state
quantum system. The most general transformation of a qutrit
belongs to the U(3) group, which can be parametrized by
nine real parameters; the SU(3) group is described by eight
real parameters. A SU(2) factorization of SU(3) reads [11]

U =Ry(a, 81, 71)R(ay, B, a0)Ros(a3, B3, v3),  (34)

where R,,, are SU(2) subgroups of SU(3), with the SU(2)
submatix occupying the mth and nth rows and columns of
R,,,. Hence this implementation (34) of SU(3) requires three
SU(2) gates, each involving three qubit gates (32), i.e., nine
qubit gates in total (which can be reduced to seven by com-
bining adjacent phase gates). With the present QHR imple-
mentation (33) of SU(2) the number of operations can be
reduced to six.

Already for SU(3) or U(3), the present QHR implementa-
tions (19) and (26) are considerably more efficient because
they require only two QHRs and a phase gate,

U=M(v)M(@y)®(¢b;, 2, $3), (35a)

U=M(v;:¢)M(v;0)®(0,0,¢5). (35b)

As an example, the arbitrarily chosen SU(3) gate
0.8646_277”3 0.2826157Ti/19 0-4166_777”8

U= 0.382¢%1407  0.902¢7™11 0.203£03%87 | (36)
0.3276_0'7897ﬁ O.328€4m/5 O.886e0'035m

(keeping three significant digits) can be realized with two
standard QHRs and a phase gate, with

[v,) =[0.260e™",0.734e%140™ 0.628¢~079™1T (37a)

|02> — [0,0'6516—0.1347Ti’0.7598047107Ti]T, (37b)

P = diag{€_0'6677ﬁ,€0'866m,8_0'1997Ti}. (37(3)

Alternatively, the same SU(3) gate (36) can be realized by
two generalized QHRs and a phase gate (35b), with ¢,
=-0.6937, ¢,=0.653m, ¢3=0.047, and
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|Ul> - [0.95560'30777-[,0.2266_0'70777[,O. 19380.364171']7"
(38a)

lv,) =[0,0.987¢%347™,0.161e703837]7. (38b)

IV. QUANTUM FOURIER TRANSFORM

The quantum Fourier transform (QFT) is a key ingredient
in quantum factoring, quantum search, generalized phase es-
timation, the hidden subgroup problem, and many other
quantum algorithms [4]. The QFT is defined as the unitary
operator with the following action on an orthonormal set of
states |n) (n=1,2...,N):

N
1 .

U,f,|n) — /__2 eZm(n—])(k—l)/N|k>. (39)

VN k=1

A. Qubit
For a qubit, U is the Hadamard gate [4],
1(1 1

Uj=—+ : 40
? VEL -1 } 40)

which can be written as a single QHR, U5 =M(v), with

1 =
vy = 5[— V22,72 42T (41)

Here the standard and generalized QHRs coincide.

B. Qutrit
For a qutrit the QFT matrix reads

| 1 1 1
U§= — 1 827Ti/3 e—2ﬂ'i/3 . (42)
V3 | o2 gl

The standard QHR decomposition reads

UL = M(v,)M(v,)®(0, 7/4,— 37/4), (43a)
1 1 Y T
lv)==~/1+—=[1-v3,1,17, (43b)
2 \1’3
~
1+v2
) = A/ ——[0,1 -2, i]". (43¢)
242
The generalized QHR decomposition reads
U =M(v; MM(vy; 7/2), (44a)
1 1
)y ==~/ 1+ —=[1-3,1,17, (44b)
2 V3
1 T
|U2> = ?[03 1’_ 1] . (440)
V2

Here the first QHR M(v;7)=M(v,) is the same for the
standard and generalized QHR implementations.
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C. Quartit
For a quartit (N=4) the QFT matrix reads

1 1 1 1
1T i -1 -i
Ul=- 45
T2l -1 1 -1 45)
1 —i -1 i
The standard QHR decomposition reads
U =M(v,)M(v,)®(0, 7/4,0,— 37/4), (46a)
1 T
|v1>=5[—1,1,1,1] , (46b)
1+ ’/E —
o=\ == 0.1-\2.0~i.  (46c)
22
The generalized QHR decomposition reads
U =M(v;; MM(vy;7/2), (47a)
1 T
|U1>=5[_1»17151] 5 (47b)
1 T
[v,) = —=[0,1,0,-1]". (47¢)
V2

Again, the first QHR M(v,;m)=M(v,) is the same for the
standard and generalized QHR implementations. Interest-
ingly, the QFT for N=4 is decomposed with only two QHRs,
rather than three, without phase gates.

Figure 2 shows the time evolution of the propagator Uy(r)
toward the corresponding QFT matrix Uﬁ, for N=2,3,4, for
realizations with generalized QHRs. As time progresses, the
deviation of Uy(z) from Uf, vanishes steadily in all cases. As
predicted, QFT is realized with just a single QHR for N=2
and with just two QHRs for N=3 and 4.

V. DISCUSSION AND CONCLUSIONS

We have proposed a simple physical implementation of
the quantum Householder reflection in a coherently driven
N-pod system. We have shown that the most general U(N)
transformation of a qunit can be constructed by at most N
—1 standard QHRs and an N-dimensional phase gate, or by
N-1 generalized QHRs (each having an extra phase param-
eter compared to the standard QHR) and a one-dimensional
phase gate, i.e., by only N physical operations. This signifi-
cant improvement over the existing setups [involving O(N?)
operations] can be crucial in making quantum-state engineer-
ing and operations with qunits experimentally feasible.

The Householder gate is superior already for a qubit be-
cause the general U(2) gate needs just two gates, a QHR and
a phase gate, compared to three gates in existing implemen-
tations. For a qutrit, the QHR realization of U(3) requires
only three gates, compared to at least seven hitherto. The
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FIG. 2. (Color online) Deviation =¥_[(Uy)—(U)ul of the
propagator Uy(7) from the QFT matrix Uf, versus time for N
=2,3,4, for generalized QHR implementations. The pulses for N
=2 are centered at time 7=-57, whereas for N=3 and 4 at times
7==5T and 5T. We have assumed sech pulse shapes [Eq. (14a)] and
rms pulse area A=2 (y=2). The individual couplings y, are given
by the components of the generalized QHR vectors (41) for N=2,
(44b) and (44c) for N=3, (47b) and (47¢) for N=4, each multiplied
by x. The detunings are Aq=0 for the first steps and Ag=1/T for the
second.

QHR implementation of the U(N) gate is particularly impor-
tant for qutrits because of the straightforward physical imple-
mentation in a J=1+J=0 transition (Fig. 1); the results, of
course, apply to any N, and can be accomplished, for in-
stance, by using more J=1 levels.

We have given examples for QHR implementations of
quantum Fourier transforms. The QHR realization of QFT
for a qubit requires a single interaction step, compared to two
steps hitherto. The QHR realization is particularly efficient
for a quartit (N=4), where the QFT is synthesized with only
two QHR gates [as for a qutrit (N=3)], much fewer than
0O(4?) in the existing SU(2) proposals.

The components of the Householder vectors are the am-
plitudes of the respective couplings. It is important that all
QHR phases are relative phases of the external control fields,
e.g., relative laser phases, which are much easier to control
than dynamic and geometric phases.

PHYSICAL REVIEW A 74, 022323 (2006)

The generalized QHR requires off-resonant pulsed inter-
actions, appropriately detuned from resonance. The standard
QHR can be realized both on and off resonance. The off-
resonance implementation has the advantage that only negli-
gible transient population is placed into the (possibly decay-
ing) ancillary excited state; however, it requires a specific
value of the detuning.

In the existing SU(2) proposals, each interaction step in-
volves a single SU(2) (or Givens) rotation. The difference
between the Givens rotation and the Householder reflection
is that, when applied to an arbitrary matrix, the Givens rota-
tion nullifies a single matrix element; the Householder re-
flection nullifies an entire row (or column). When the matrix
is unitary, a single Householder reflection nullifies one col-
umn and one row simultaneously. Hence the Householder
reflection is N times faster than the Givens SU(2) transfor-
mation.

In atoms and ions qubits are encoded usually in degener-
ate ground sublevels, and the coupling between them is ac-
complished by off-resonant interactions, via an intermediate
state, which is eliminated adiabatically to produce an effec-
tive Raman coupling. In doing so, the phase relation between
the two Raman fields is lost. In our proposal we use resonant
or nearly resonant fields; no adiabatic elimination is per-
formed and the phase relation is preserved in the resulting
QHR propagator. Therefore, already for N=2, the QHR con-
tains an additional phase parameter compared to previous
realizations, which reduces the number of steps for U(2) op-
erations from 3 to 2. Hence, even for a qubit there is a clear
improvement. It is also significant that resonant interactions,
which we use, require less interaction energy than off-
resonant interactions; this may be crucial in the case of weak
couplings.

We conclude by emphasizing that the widespread use of
the Householder reflection in classical data analysis promises
that the proposed quantum implementation has the potential
to become a powerful tool for quantum-state engineering and
quantum-information processing.
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