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Divergence of the entanglement range in low-dimensional quantum systems
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We study the pairwise entanglement close to separable ground states of a class of one-dimensional quantum
spin models. At 7=0 we find that such ground states separate regions, in the space of the Hamiltonian
parameters, which are characterized by qualitatively different types of entanglement, namely parallel and
antiparallel entanglement; we further demonstrate that the range of the concurrence diverges while approaching
separable ground states, therefore evidencing that such states, with uncorrelated fluctuations, are reached by a
long range reshuffling of the entanglement. We generalize our results to the analysis of quantum phase
transitions occurring in bosonic and fermionic systems. Finally, the effects of finite temperature are considered:
At T>0 we evidence the existence of a region where no pairwise entanglement survives, so that entanglement,

if present, is genuinely multipartite.
DOI: 10.1103/PhysRevA.74.022322

I. INTRODUCTION

Quantum fluctuations may disorder the ground state of a
system, especially at low dimensions. A paradigmatic ex-
ample in this sense are quantum phase transitions [1], where
different phases can be achieved at 7=0 by adjusting a con-
trol parameter of the system. Paradoxically enough, quantum
effects can provide also classical-like ground states (CGS).
In fact, for certain values of the control parameter, quantum
fluctuations may become completely uncorrelated; thereby
the ground state of the system gets factorized and identical to
the lowest-energy state of the classical counterpart of the
original quantum system. This phenomenon was evidenced
by Kurmann et al. [2] in the early eighties, for S=1/2
Heisenberg antiferromagnetic chains in an external magnetic
field A.

The study of entanglement in quantum many-body sys-
tems has been providing a new angle in statistical mechanics
[3-7], particularly at low temperature where cooperative
phenomena are dominated by quantum mechanics. Thanks to
a proper analysis of certain entanglement estimators, the re-
sult by Kurmann et al. was recently retrieved [8] and gener-
alized to two-dimensional spin systems [9]; moreover, nu-
merical evidence arose for it to hold in spin chains with
long-ranged interaction [10].

Special interest has been devoted to bipartite entangle-
ment of formation in connection with quantum criticality: In
fact, though quantum critical points are rather marked by the
enhancement of multipartite entanglement [8,9,11], the varia-
tion of the pairwise entanglement at criticality captures the
nonanalyticity of the ground state of the system [12]. On the
other hand, the naive guess that the range of pairwise en-
tanglement should diverge at a quantum phase transition, in
analogy with the divergence of the correlation length of the
two-point correlators, has never been evidenced [3,4].

In this paper we show that, in the space of the Hamil-
tonian parameters, the special points where CGS occur (here-
after called separable points) mark a separation between re-
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gions characterized by different types of entanglement,
(called antiparallel and parallel entanglement in Ref. [13]),
which correspond to qualitatively different spin configura-
tions. The transition from one region to the other is found to
be characterized by the divergence of the range of pairwise
entanglement in the immediate neighborhoods of the CGS
[see Egs. (12) and (13) below].

Spin-off in systems of strongly interacting bosons in a
lattice are also found: We evidence that the superfluid-
insulator quantum phase transition at commensurate filling
fractions is in fact a transition between a phase (superfluid)
where solely particle-hole entanglement is present and a
phase (insulator) with no pairwise entanglement at all: the
particle-hole entanglement is easily seen to correspond to
antiparallel entanglement and the range of the concurrence is
found to diverge while approaching the transition [see the
paragraph below Eq. (13)].

Finally, we study how robust CGS are with respect to
temperature: We evidence the emergence of a region in the
h-T plane, fanning out from separable points (see Fig. 3)
where pairwise entanglement vanishes. In such a region, if
entanglement is present in the system, it necessarily is of
multipartite type. Our study also sheds light on the result by
Kurmann et al. (see the concluding paragraph).

II. MODELS

We focus our attention on the class of one-dimensional
(ID) spin models described by the Hamiltonian

H(jx’jy’jz) = ‘]2 (.]rS;C )ic+1 +jyszy ;\')+1 +jZS1; ?+1 - hStZ)’ (1)

where i runs over the sites of the chain, S{" (a=x,y,z)
are quantum angular momentum operators corresponding
to S=1/2, j, are the anisotropy parameters (|j,|<1),
h=gugH/J is the reduced magnetic field, and J is the ex-
change integral, assumed positive and hereafter set to unity.
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In Ref. [2] it was demonstrated that CGS are obtained for
h=h¢=/(j+j.)(j,+j,); although the model (1) cannot be
solved exactly for generic j,, the above result is rigorous. In
order to analyze quantum correlations, which are crucial for
understanding the behavior of the system at and near a sepa-
rable point, we restrict the parameters in the Hamiltonian (1)
so as to rely on exact results: We therefore consider the solv-
able cases H(l+7y,1-v,0)=Hyy with 0<y<1, and
H(1,1,).)=Hxx, corresponding to the XY and XXZ models
in a transverse field, respectively.

The quantitative analysis of the pairwise entanglement be-
tween two spins sitting on sites / and m of the chain is ad-
dressed via the concurrence C, with r=|/—m| (translational
invariance is assumed) [14]. In terms of correlation functions
gr“=(Sy'Sy,,» and magnetization M.=(S¢), the concurrence
reads [15]

C,=2max{0,C.,C}, (2)
1 SN
Cl=lg" +8”| - <Z+giz) - M, 3)
" xx yy 2z 1
Cr=|gr _gr|+gr_Z’ (4)

where C] and C measure the pairwise entanglement related
with the occurrence of antiparallel and parallel Bell states,
respectively, as discussed in Ref. [13] both for pure and
mixed states. We will also consider the one-tangle [15,16]

n=1-4 M2, (5)

the two-tangle
n=22C;, (©)

and the ratio 7,/ 7; which estimates the fraction of the total
entanglement stored in pairwise correlations [8]. Although
g “ and M, do not show any anomaly at a separable point,
they unveil it when combined in C,, which is found to drop
to zero in a nonanalytic way at this point. Such circum-
stances come together with the vanishing of 7, and with a
highly nontrivial behavior of the ratio 7,/ 7 [8].

III. RESULTS
A. Zero temperature

Let us first consider the completely integrable [17,18] XY
model in a transverse field. Besides the quantum critical
point h=h,=1, its T=0 phase diagram [19] is characterized
by the circle h>+9?=1 (hereafter called the separable circle)
where CGS occur in the form

G5 =1114").

|¢5(Y> =(-1) cos(%)ﬁ) + sin(%)”;%
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FIG. 1. (Color online) Entanglement phase diagram in the h-7y
plane. Points on the circle correspond to models whose ground state

is separable.
[1-vy
cos(6,)=\/—,
( 7) 1+vy

where |¢f(y) is the state of the spin sitting on the ith site.
Since the early papers on the model it is known that
the functional form of M, and g;* depends substantially
on whether the parameters of the system fix a point sitting
inside, outside, or on the circle itself [19]; however, it
had never been noticed that the simplicity of the exact
solution at /iy’ = V1-+7 is ultimately due to the factorization
of the ground state. In fact, this is clearly evidenced by the
concurrence, whose expression on the separable circle reads

1
C,=2C!=2C"=——42M*~~ Vo, (7)
1+7y -2
. 1
and hence, being M =35\(1-7y)/(1+7),
C,=C.=C.=0, Vr. (8)

Moreover, it is C.=0 (and C,<0) inside the circle, and
C, =<0 (and C!=0) outside the circle, no matter the sign of
the exchange interaction and the value of r. According to the
analysis presented in Ref. [13] this means that inside (out-
side) the circle pairwise entanglement exclusively originates
from the occurrence of antiparallel (parallel) Bell states.

We remark that whether the system has parallel or anti-
parallel pairwise entanglement at 7=0 uniquely depends on
the Hamiltonian parameters y and /: As a consequence, we
can draw an “entanglement phase diagram” in the s-7 plane,
where different phases are characterized by the presence of
parallel or antiparallel entanglement. The separable circle
h*+9*=1 marks a boundary in such diagram (see Fig. 1)
suggesting that the occurrence of a CGS is a necessary step
for switching from parallel to antiparallel entanglement. We
notice that the same scenario emerges from the numerical
analysis of more complicated models, both in one [8] and
two dimensions [9].

As the transition from parallel to antiparallel entangle-
ment involves the whole system, we study how the pairwise
entanglement propagates along the chain in the vicinity
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FIG. 2. (Color online) Concurrence for the XY model at T=0:
curves are C, vs h for r=1,2,3,4,5 (top to bottom), and y=0.5.
The inset is a zoom near the factorizing field, in logarithmic scale.

of a separable point: for doing that, we introduce the range
R of the T=0 pairwise entanglement, which is defined
as the maximum distance between two spins such that the
concurrence is nonvanishing:

C.,>0 forr<R and C,=0 for r>R. (9)

We underline that the exact vanishing of C, for r>R
and & # h; follows from the definition of the concurrence Eq.
(2), in the sense that C, vanishes whenever C, and C, are
both negative. On the other hand, at the factorizing field,
C,=C/=C=0 for all values of r due to the fact that the
correlation functions do not depend upon r on the separable
circle. In Fig. 2 we show the exact results for C, with r
ranging from 1 to 5. Results for larger r are also available
and show the same qualitative behavior: C, fans out from the
separable point with nonzero derivative, reaches a maximum,
and then vanishes, both for h>hf and h<hf, though not
symmetrically with respect to hy.

The observed behavior suggests the divergence of R for
h— hy: by expanding the exact expressions of the correlation
functions up the first order in (-k;) we find [20]

1‘*2r—1
C,= e |h-he + O((h-hp)?), (10)
Y

where I'=/(1-1)/(1+ 7). Equation (10) confirms that all C,
get progressively positive for & approaching the factorizing
field, as clearly seen in Fig. 2: This means that the range of
the concurrence R diverges at /.

In order to analyze how R diverges with the field, we push
forward the expansion in (h-hg), meanwhile considering the

large-R expressions for the correlation functions, given in
Refs. [19,21]. The result for 1> h; reads

2r-1

C)= (h-hg) = [A* + B(r)1(h-he)* + O((h-hy)*) (11)

4y

where A2=T?(3+v)/(329) and B(r) is a coefficient which
vanishes for r—oc. The range of the concurrence is implic-
itly obtained from Eq. (11) by requiring Cx=0. In fact,
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for sufficiently large r, it is [A2+B(r)]"'=A=[1-B(r)/A?],
and hence, by substituting into Eq. (11), C’ is found to
vanish both for A=h; and h-h;=12""'/(4yA?), leading to the
logarithmic divergence

Xy 1-y\™ -1
R¥ « In In |h-h ™, (12)
1+

where we have introduced the symbol R*? to make clear that
the functional form of the divergence is in general model
dependent.

For h < h; the expression for C] is different from Eq. (11),
and to this difference we ascribe the asymmetric behavior of
C, with respect to the separable point observed in Fig. 2;
however, for & — h; the above result is still valid, though just
for the (thermal) ground state with unbroken symmetry
[4,22]. It is to be noticed that, in the thermodynamic limit
(here considered) and while approaching the CGS, the fact
that the concurrences C, become progressively positive for
larger and larger r goes together with their getting vanish-
ingly small: this is due both to the monogamy of the en-
tanglement [23,24] and to the proximity of the separable
point itself.

The divergence of R implies, as a consequence of
the monogamy of the entanglement, that the role of pairwise
entanglement is enhanced while approaching the separable
point; in fact, the ratio 7,/7; is found to have a cusp
minimum at the critical point and to increase while moving
towards the CGS, in full analogy with the result of Refs.
[8.9]. In the particular case of the Ising model (i.e., y=1), we
find that for 7— h;=0 the ratio 7,/7; goes to unity at the
separable point. For y# 1 and h;<<h<h, our data show that
7,/ 7, monotonically increases for 41— hf and that the value

(mo/ 1) ¢ increases with .

We remark that the divergence of RXY while approaching
the separable circle cannot be recognized as a critical effect,
since the ground state is nonsingular at A; and the long-
ranged pairwise entanglement does not survive either inside
or outside the separable circle.

A complementary view on the physics of CGS is obtained
by the analysis of Hyyz, that can be done resorting to Bethe
ansatz results [25]. In this case /; coincides with the satura-
tion field h,=(1+j,), and |GS*™#)=I1,|1,). Also, and distinc-
tively from the XY case, the factorized state extends over a
finite portion of the A-j, phase diagram of the model. In fact,
h, separates a gapless quasiordered phase (with power law
decay of the in-plane correlation functions) from the gapped,
fully polarized phase (with (S,)=1/2). Due to the in-plane
symmetry of the model (implying g"=g») C is always
negative and therefore pairwise entanglement, if present,
is of the antiparallel type. Combining the exact results of
Refs. [26,27], we find that R diverges approaching the band
transition as follows:

RXXZ o (hq _ h)_6/4, (13)

where
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4ln,—h

T tan(?)tan(ﬂ'n)

1
0=2+ , and »=—arcos(—j,). (14)
o

The divergence of R in the isotropic case (j,=1), specifically
determined in Ref. [13], results from Eq. (13) with 6=2. We
underline that saturation is not related to a spontaneous sym-
metry breaking, and the divergence of R while approaching
h does not mark a critical phenomenon.

Let us now consider strongly interacting hard-core
bosons/spinless fermions in 1D: We shall find that the
occurrence of CGS plays a fundamental role for such
systems.

Hard-core bosons with repulsive Coulomb interaction are
described by the quantum lattice gas [28], whose dynamics is
described by Hyy, phrasing the spins in terms of hard-core
bosonic operators: a=S", a'=S*, a'fa=S*+1/2. The relevant
energies t— j, (here j,=j,=1), U—j, and u— h+j, are the
hopping amplitude, the Coulomb interaction, and the chemi-
cal potential, respectively. By this mapping, the superfluid
and insulating behaviors of the quantum lattice gas at com-
mensurate filling are related to the quasiordered (partially
filled band) and fully polarized (filled band) phase of the
XXZ spin model, respectively; therefore, the band transition
observed at u=t+2U, corresponds to saturation occurring at
hy=(1+; z)~

Based on the above analysis, we state that the insulator-
superfluid band transition is characterized by the divergence
of the range of the concurrence. Remarkably, the antiparallel
character of the pairwise entanglement present in the XXZ
model reflects the fact that close to the superfluid-insulator
transition exclusively particle-hole entanglement plays a
role. Arguments along the same line can be applied to spin-
less fermion models obtained via a Jordan-Wigner transfor-
mation of Hyy, [29]: The band-transition there observed is
from an insulating regime to a gapless phase equivalent to a
Luttinger liquid.

B. Finite temperature

We now switch on a finite temperature in the system. We
consider questions like: What is the effect fanning out from
CGS on the thermal (mixed) states of the system? Particu-
larly: How meaningful is the characterization of the system
in terms of parallel or antiparallel pairwise entanglement for
mixed states? To answer these questions we consider the XY
model where both parallel and antiparallel entanglement are
present at 7=0. The analysis of 7, evidences that in the &
-T plane exists a region, fanning out from the CGS, where
pairwise entanglement vanishes (white region in Fig. 3) and
the entanglement, if present, is shared between three or more
parties. This means that a CGS may evolve into a quantum
mixed state with genuinely multipartite entanglement by in-
creasing temperature. In order to determine whether this
happens or not, we need to know if entanglement is present
in the system: the one-tangle, which accomplishes this task
at T=0, is not a proper estimator for the entanglement con-
tent of the system at finite temperature; therefore, we have to
refer to some entanglement witness. Following the results by
Té6th [30], entanglement is present if

PHYSICAL REVIEW A 74, 022322 (2006)

- . . . i 1
/3 ——— 10
0.3| 10
v ’// |
¥ 7~ _3
w 7 Q10
"4 2 -
s
S~ a : -~ - / - E
0.1 \\\‘\ /;" ,, /,’ 7-- = ]
\\.\ | £ ¥ e -
~ /
i \“v'\; _/ / -5
1 | . - g " ~10
0.8 098 1 11 1.2
h

FIG. 3. (Color online) Contour plot of 7, in the h-T plane, for
vy=0.3 (i.e., 1;=0.9539---). The white area indicates where 7,=0.
Condition (15) is fullfilled below the dashed line, which is defined
by <H>=Esep'

<H>_Esep<0’ (15)

where E is the ground state energy of the corresponding
classical model. The region below the dashed line in Fig. 3 is
where condition 15 is fulfilled, i.e., where entanglement
of whatever type is present in the system. We further observe
that, in contrast to the analysis of the ground state, at
finite temperature we cannot characterize the two separate
phases of parallel and antiparallel entanglement. In fact,
the two types of entanglement (though well defined also
for mixed states) can swap by varying T and/or r (see Fig. 4).
The exchange between parallel and antiparallel entanglement
occurs in a nontrivial way, that ultimately produces the
temperature “reentrance” of 7, seen in Fig. 3. We also find
a regime where C, can be a nonmonotonic function of r,
so that, for instance, one spin is not entangled with its
nearest neighbor while being entangled with its next-nearest
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FIG. 4. (Color online) C, versus r for y=0.01 and h=1.1.
Circles, squares, and triangles correspond to three different tem-
peratures: T,=4 1073, T,=4.71073, and T;=5 1073, respectively.
Full symbols mean C,=C, and empty symbols mean C,=C/.
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neighbor. Such situations occur in the vicinity of the region
where C, vanishes, as seen in Fig. 4 and it is due to the
nonmonotonic behavior [19] of the correlation functions.

IV. CONCLUSIONS AND PERSPECTIVES

Summarizing, we have studied the occurrence of CGS in
relation with pairwise entanglement, in a class of S=1/2 spin
chains. Our results show that at 7=0 the space of the Hamil-
tonian parameters is divided into regions where either exclu-
sively parallel or exclusively antiparallel pairwise entangle-
ment is present, no matter the distance between the
considered spins: Therefore, an entanglement phase diagram
can be unambiguously drawn. Transition lines in such a dia-
gram corresponds to separable ground states, and are further
characterized by the fact that the range of the concurrence
diverges while moving toward them. Due to the monogamy
of the entanglement, such divergence goes together with the
asymptotic vanishing of the value of the concurrence itself.

We further provide (to our knowledge for the first time)
an explanation of the phenomenon described by Kurmann e?
al. [2]: the factorization of the ground state is a necessary
step for antiparallel entanglement to be fully replaced by
parallel entanglement. We observe that in the global reshuf-
fling of the ground state which leads to a CGS, and involves
all the spins of the chain, a long range entanglement appears
as a crucial ingredient. Moreover, our results for the en-
tanglement ratio 7,/ 7, confirm that multipartite entanglement
dominates at a genuine quantum critical point, while pair-
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wise entanglement is essential for understanding the mecha-
nism leading to CGS in quantum systems.

Our analysis is of relevance also for bosonic systems
undergoing a superfluid-insulator transition. It is intriguing to
conjecture that the divergence of the range of C, at a
CGS goes beyond model dependency. In fact, Anfossi et al.
[11] have observed a similar divergence of the range of C,
also in the bond-charge extended Hubbard model at certain
transition lines.

For finite temperature the entanglement in the system can-
not be characterized by the single parameter 2 and a much
more complicated scenario emerges: In particular we find
that, by increasing T, the factorized (pure) ground state
evolves into a thermal (mixed) state with null pairwise en-
tanglement: This opens the possibility for the existence of an
experimentally accessible finite-temperature region where
entanglement, if present, is genuinely multipartite.

Finally, we notice that the possibility of controlling via a
proper tuning of the external magnetic field whether two
spins are entangled or not, and whether they share parallel or
antiparallel entanglement, might be of interest both from the
experimental point of view and for applicative purposes.
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