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Classical simulation of quantum many-body systems with a tree tensor network
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We show how to efficiently simulate a quantum many-body system with tree structure when its entanglement
(Schmidt number) is small for any bipartite split along an edge of the tree. As an application, we show that any
one-way quantum computation on a tree graph can be efficiently simulated with a classical computer.
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I. INTRODUCTION

Developing fast classical algorithms to simulate quantum
many-body systems is important for understanding the un-
derlying physical principles, as well as the limitations of
quantum computation. Furthermore, it provides powerful
tools for the analysis and engineering of quantum-
information-processing components. However, efficient
simulation is in general very difficult, due to the fundamental
difference between quantum and classical physical laws. For-
tunately, if the quantum evolution has certain restrictions, an
efficient classical simulation may be possible [1-8].

Indeed, efficient simulation algorithms are known for sev-
eral restricted quantum circuit models [1,2], while a general
connection between entanglement and the classical simulat-
ability of quantum lattice models has been unveiled [3-5]. In
one spatial dimension (1D), for instance, the state of a quan-
tum chain with a limited amount of entanglement between
any bipartition along the chain can be efficiently described
using a matrix product state (MPS) [9]. This is exploited by
the density matrix renormalization group algorithm [10] to
find the ground state of the chain and by the time-evolving
block decimation (TEBD) method [4] to simulate an evolu-
tion in time. Furthermore, projected entangled-pair states
(PEPSs) have been introduced as an extension of MPSs to
simulate two—dimensional (2D) systems [6].

In this work we consider the simulation of quantum
many-body systems with a restricted amount of entangle-
ment according to a tree structure. As in the 1D and 2D
approaches mentioned above, we express the d" complex
amplitudes ¢; .., of the state |W) of n qudits (or d-level
quantum systems),
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in terms of a network of tensors [11], but specialize to the
case where this tensor network (TN) has a tree structure.
Given a tree TN, we explain (i) how to simulate the response
of the system to local operations and classical communica-
tion (LOCC), that is, to generic manipulation of individual
qudits, including adaptive unitary transformations and mea-
surements, and (ii) how to simulate time evolution. The latter
is achieved by extending the TEBD algorithm [4], originally
proposed to simulate 1D quantum lattices, so that it applies
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to a much broader class of states and physical situations. As
in the 1D case, the key to an efficient simulation is that the
amount of entanglement in the system remains sufficiently
bounded during the time evolution.

From the perspective of theoretical computer science, our
results imply that one-way quantum computation with a tree-
graph cluster state can be efficiently simulated with a classi-
cal computer. One-way quantum computation with cluster
states [12], an interesting alternative to the quantum circuit
model, had previously been shown to be universal for quan-
tum computation in a 2D lattice [13] but classically simulat-
able in a 1D lattice [14]. By extending the classical simulat-
ability result to tree cluster states, we further sharpen the
boundary between the complexities for classical and quan-
tum computation.

From the perspective of computational physics, our re-
sults provide an algorithm both to find the ground state and
to simulate time evolution in complex quantum systems with
tree structure (see also [15]), such as dendrimers—a class of
highly branched polymers [16]. This algorithm, based solely
on tensor multiplications and singular value decompositions,
offers additional ways to simulate 1D systems with long-
range interactions.

II. CANONICAL FORM OF A TREE TN

We use a TN with n open indices and tree structure (see
Fig. 1), to express the d" complex coefficients of the n-qudit
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FIG. 1. (Color online) (i) A tree TN for state |¥') of n=7 qudits.
Each open index labels an orthonormal single-qudit basis [see Eq.
(1)]. Each vertex has three edges and corresponds to a tensor with
three indices. Pairs of tensors are connected in the network through
a shared index, over which there is an implicit summation. (ii)
Canonical form of the previous tree TN. For each bipartition, sub-
trees A and BB describe Schmidt bases [see Eq. (2)]. An empty circle
on top of an edge represents a set of Schmidt coefficients weighting
the corresponding index.
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state |W). More specifically, we consider a tree network
made of tensors with only three indices each [17], the net-
work therefore containing n—2 tensors. An index connecting
two tensors divides the network into two subtrees .4 and B
and the n qudits into two disjoint sets. We use the term
bipartition to refer only to such divisions. The rank of an
index is the number of values it takes. In what follows, y
denotes the largest rank among all indices in the network.
Notice that the tree TN depends on O(n)?) complex coeffi-
cients.

The Schmidt decomposition of |¥) according to biparti-
tion A: B reads

X(A:B)
W= X Aot @ |, )

a=1

where (q)[aA]|@E;L,‘])=<<DEIB]|<I)[51>=5,M,, 3.(\p)?=1, and the
Schmidt rank satisfies x(4.5 < . We next introduce the ca-
nonical form of a tree TN, which also consists of tensors
with three indices but where each index « shared by two
tensors carries weights (see Fig. 1).

Definition. A tree TN is in the canonical form for biparti-
tion A: B if (i) the weights on the connecting index « corre-
spond to the Schmidt coefficients {\ ,} and (ii) the subtrees A
and B describe a set of Schmidt bases {|CI>E:4])} and {|<I)[f])}.
A tree TN is in the canonical form if it is so for all biparti-
tions.

Theorem 1. The canonical form of an n-qudit tree TN n
can be obtained with O(nx*) basic operations.

Proof. Given a bipartition A: B, |¥) can be written as

)= ¢ @ |45, 3)

where the sets of states {|¢£:4])} and {|¢ELB])} for subtrees A
and B may not be orthonormal. Our goal is to turn Eq. (3)
into the Schmidt decomposition (2). Let

T A
M=XDX', M,, E<¢5{,]|¢Ej‘]> (4)

be the spectral decomposition of the matrix M of scalar prod-
ucts in A, where X'X=XX'=1I, and D, =6,,d,. Then the
vectors
NS s
6= =2 X, d,>0, (5)
Nd; o

form an orthonormal set. We define X=X\D. Analogous

considerations in B lead to an orthonormal set {]| f,])} and a
matrix Y. Equation (3) can be rewritten as

W)= (XTY),lé) @ |f,). (6)
™

From the singular value decomposition (SVD) of XY,
(XTY)=UAV, (7)

where U'U=VV'=I and A is a diagonal matrix, we obtain
the Schmidt coefficients A,=A,, and bases
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FIG. 2. (Color online) (i) Initial decomposition Eq. (3). (ii) In-
sertion of (X7)~!XT and YY~!, projectors onto the subspaces gener-
ated by {|é)} and {| f”)}. (iii) XY is replaced with its singular value
decomposition UAV, computed in O(x?) time. (iv) The Schmidt
decomposition Eq. (2) is obtained after contracting some indices
[0(x") time].

N =D (U Je), [@FN=X v, 7). (®

All the above steps, summarized in Fig. 2, take O(x*) time
and are repeated for each of the n—3 bipartitions of the tree
TN. It is not hard to see that the scalar product matrices M
for all edges can be computed sequentially in an appropriate
order also in time O(nx*).

III. MANIPULATING A TREE TN

We now describe some basic tasks involving a tree TN,
that is assumed to be in the canonical form. First, we can
compute the reduced density matrix for just one or two qu-
dits. Figure 3 shows how to proceed for one qudit.

Theorem 2. A two-qudit reduced density matrix can be
computed with O(md>x*) basic operations, where m is the
number of tensors in the path that connects the two qudits in
the tree TN (see Fig. 4).

Second, we can arbitrarily relocate a qudit within the tree
TN. This is achieved by swapping the index corresponding to
this qudit with other indices in the tree.

Theorem 3. Swapping a qudit index of a tensor with an
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FIG. 3. (Color online) A single-qudit reduced density matrix is
computed by contracting the TN in (i), which represents |¥){P|
with a partial trace over all qudits but one. This TN reduces to the
TN in (ii) thanks to the orthogonality of the Schmidt bases. In (iii)
the weights have been absorbed into the three-index tensors
[O(dx?) operations] and in (iv) the remaining shared indices have
been contracted [O(d?x?) operations].
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FIG. 4. (Color online) The reduced density matrix for two qudits
separated by m=3 tensors is computed by contracting the TN in (i).
This reduces to the TN in (ii) thanks to the orthogonality of the
Schmidt bases. In (iii) the Schmidt weights have been absorbed into
the tensors [O(dx?) operations], which in turn are reorganized on a
line made of m=3 columns. Networks (iv)—(vi) illustrate how to
reduce by one the number of columns [O(d?x*) operations]. By
iteration, a single tensor (vii) with four open indices is obtained.

index of a neighboring tensor can be achieved with O(d*x*)
basic operations (see Fig. 5).

Third, we can update the tree TN after a unitary gate U
has acted either on one qudit or on two neighboring qudits.
Unitarity preserves the orthogonality of the Schmidt bases
for most bipartitions, and as a result the update process in-
volves changing only one or two tensors. When U acts on
one qudit or on two qudits that are connected to the same
three-legged tensor, that tensor simply absorbs the gate
through index contraction.

Theorem 4. Consider a two-qudit gate U acting on a pair
of open indices of two tensors that are nearest neighbors in
the network. The tree TN can be updated by replacing these
two tensors, at a cost of O(d*x?) basic operations (see Fig.
6).

IV. EFFICIENT SIMULATION WITH A TREE TN

All the above manipulations require computational time
(and space as well) that scales at most linearly in the number
of qudits n and as a small power of the maximal Schmidt
rank Y. Therefore, in those systems where the amount of
entanglement across all relevant bipartitions, as characterized
by x, scales at most polynomially in 7, such manipulations
can be implemented efficiently. This opens up a number of
simulation possibilities.
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FIG. 5. (Color online) In order to exchange the positions of
indices B and 7 in (i), we contract the corresponding tensors (in-
cluding all neighboring weights) into the four-legged tensor in (ii).
After swapping the two indices, we split the resulting tensor (iii)
through a SVD (of a matrix of the dimension dy X dy or dy X x?)
that costs O(d”x*) basic operations. The singular values define the
new weights of the central index, whose initial rank xy may have
increased to at most dy. The old weights for lateral indices are
detached from the two tensors to leave the resulting tree TN in the
canonical form.
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FIG. 6. (Color online) The tensor subnetwork in (i) is contracted
into the four-legged tensor in (ii), which is then decomposed into
(iii) by using a SVD (of a dx X dy matrix) that takes O(d’x°>) basic
operations. Notice that, as in Fig. 5, special attention is paid to first
absorbing and then detaching the weights of the lateral indices. This
guarantees that the resulting tree TN is in its canonical form.

For instance, we can simulate the response of the system
to arbitrary local manipulation. Recall that LOCC manipula-
tion can be decomposed as an adaptive sequence of general-
ized local measurements mapping pure states into pure
states. Let £ denote one such measurement on a qudit, as
characterized by a set of operators {E,}, where r labels the
measurement outcome. Outcome r occurs with probability
p,=(V|EIE,|¥), in which case the state of the system be-
comes |V,)=E,|¥)/ \p,. To simulate &, first we randomly
draw an outcome r according to the probability p,
=t[E,pVE!], computed from the reduced density matrix p(
of the qudit to be measured. Then a tree TN for |W¥,) is
obtained from that of |¥) by simply absorbing operator E,
into it. The new maximal Schmidt rank y, satisfies y,=< y.

An implication of the above result is that one-way quan-
tum computation on a tree can be efficiently simulated. This
follows from two simple facts: (i) a tree-graph cluster state
has a very simple tree TN representation, with y=2, that can
be obtained by simulating its preparation, namely, a series of
two-qubit gates (according to the tree-graph pattern) applied

FIG. 7. (Color online) (i) Tree TN for a system with a genuine
tree structure, such as a dendrimer. The red circles represent atoms,
whose interaction pattern has a tree structure, represented by the red
dotted lines. (i), (iii) Two random qudits in a binary tree TN are
connected through O(log(n)) tensors, while in a linear TN (or MPS)
they are connected through O(n) tensors. Therefore, the time re-
quired to simulate a gate between two qudits is on average a factor
log(n)/n lower when using a tree TN. This is a substantial gain in
simulations involving long-range interactions. On the other hand, a
generic binary tree TN with rank y can be replaced with a MPS
with a Schmidt rank y’ =O(x°8")=0(n'°¢X). Thus, for constant y
(independent of n) the use of the binary tree TN is markedly more
convenient. For y=poly(n), using the binary tree TN requires poly-
nomial resources, while the cost of using a MPS is superpolyno-
mial, namely, O(n'°£™),
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to an initial product state; (ii) the manipulations involved in
a one-way computation consists of LOCC.

The simulation of a time evolution according to a two-
body Hamiltonian H=X; jh;; is also possible. As in the case
of a 1D system [4], we expand the evolution operator V
=exp(—iHr) into a series of two-qudit unitary gates U using a
Suzuki-Trotter expansion. But now, for each of these gates,
we first bring the indices of the two qudits together using
Theorem 3, then absorb U into the tree TN using Theorem 4,
and finally bring the qudit indices back into their initial po-
sition. This generalizes the TEBD algorithm [4] from 1D
systems to a generic tree TN. With minimal modifications to
deal with nonunitary gates, the TEBD algorithm can also be
used to simulate an evolution in imaginary time according to
V' =exp(—Hi1). In this way we can compute the ground state
of H, provided H has a finite gap A>0 in its spectrum.
Recall that the expectation value of local observables, such
as the energy E=(W|H|¥) or two-point correlators, can be
computed from two-qubit reduced density matrices, which
follow from Theorem 2.

A tree TN may be used to simulate a many-body system
with a genuine tree structure (determined, e.g., by the inter-
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action pattern) as is the case of dendrimers [16]. But it can
also be used to simulate a 1D system with long-range inter-
actions, including periodic boundary conditions (see Fig. 7).
In a realistic simulation, the tree TN will often be an approxi-
mate representation of |W) [18].

We conclude by noticing that in this paper we have ex-
plored the most general extension of the TEBD algorithm.
Indeed, it appears that a tree TN—not having closed
loops—is the most general TN to which we can associate a
Schmidt decomposition to each of its indices, a fundamental
ingredient of the simulation algorithm.
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