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We suggest a type of attack on quantum cryptosystems that exploits variations in detector efficiency as a
function of a control parameter accessible to an eavesdropper. With gated single-photon detectors, this control
parameter can be the timing of the incoming pulse. When the eavesdropper sends short pulses using the
appropriate timing so that the two gated detectors in Bob’s setup have different efficiencies, the security of
quantum key distribution can be compromised. Specifically, we show for the Bennett-Brassard 1984 �BB84�
protocol that if the efficiency mismatch between 0 and 1 detectors for some value of the control parameter gets
large enough �roughly 15:1 or larger�, Eve can construct a successful faked-states attack causing a quantum bit
error rate lower than 11%. We also derive a general security bound as a function of the detector sensitivity
mismatch for the BB84 protocol. Experimental data for two different detectors are presented, and protection
measures against this attack are discussed.
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I. INTRODUCTION

Quantum cryptography enables secure communication be-
tween two parties Alice and Bob, given a quantum channel
and an authentic public channel �1–4�. The security is guar-
anteed by the laws of quantum mechanics �5–8� rather than
assumptions about the resources available to a potential ad-
versary. Although the protocol for secret key distribution,
quantum key distribution �QKD�, can be proved secure in
principle, in the real world the system is not perfect. Flaws in
the source and/or detector may be exploited by an eavesdrop-
per �commonly called Eve� to collect information about the
key without being discovered. Intuitively, it seems clear that
when the imperfections are sufficiently small, the QKD pro-
tocol may still be secure. The impact of several imperfec-
tions has been discussed previously, and corresponding secu-
rity bounds have been established �6,9–11�.

Before we go on to consider a specific detector imperfec-
tion, let us discuss the place of our studies in the picture of
security. For any system where security is required, the set of
all possible input signals can be divided into three subsets
�Fig. 1�. The subset A are the input signals for which the
system is guaranteed to function normally �e.g., for a key
distribution system, generate a secret key�. The subset C are
the input signals for which the system fails to perform the
required function explicitly �e.g., fails to generate the secret
key and alarms legitimate users about it�. The subset B are
input signals for which the system behaves in a way the
developers are not quite sure about, thus potentially includ-
ing subversions by a third party �e.g., generation of a key
known to Eve while not raising an alarm�. The last subset
ideally should not exist and subsets A and C should ideally
border one another, or at least the developers should be rea-
sonably sure they do.

With classical digital systems requiring security, input
data are binary strings, and the situation where the system is

reasonably guaranteed to have empty subset B is achievable.
For example, implementations of common cryptographic
primitives are usually known to be reasonably secure. How-
ever, developers of protocols and applications with more
complex functionality �e.g., most software for personal com-
puters� often release them knowing that the subset B is likely
nonempty; successful attacks would be found with time, and
closed by applying patches on an ad hoc basis. The latter
situation is clearly not acceptable for QKD.

The problem is that input data for Bob in a QKD system
are not binary strings which are well defined and could be
directly checked by an algorithm running on a classical com-
puter. The input data for Bob are states of light that we, at the
present level of technology, are having considerable diffi-
culty detecting at all, and that have more degrees of freedom
than binary data. This makes the important task of develop-
ing a complete security proof �and building a QKD system
that fully corresponds to the model in the proof� intricate. We
contribute to this effort by first showing that the subset B is
still nonempty in the currently used model: some subset B1
of input light states exists that results in a compromise of
security, or that has merely not been considered before.
Then, we try to find ways to expand the subsets A and C to
cover B1 via both extending the model in the proof and sug-
gesting modifications to QKD setups.

More concretely, we will consider a specific imperfection
at the detector; a mismatch in detector timing that occurs in
most practical implementations of QKD over optical fibers.
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FIG. 1. Set of all possible input signals for a secure system.
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Most of today’s quantum cryptosystems operating in the
1300 and 1550 nm telecommunication windows use gated
avalanche photodiodes �APDs� as single-photon detectors.
The detector is sensitive to an incoming photon for a short
time �a few nanoseconds� called the detection window, and
has practically zero sensitivity outside the detection window.
The systems operate in a pulsed mode, where the expected
time of photon arrival is synchronized with the middle part
of the detection window. The systems have at least two sepa-
rate detection windows or two separate detectors at Bob’s
side �for 0 and 1 bit values�. These detection windows, while
both covering the time when the photon comes, are inevita-
bly shifted relative to each other, due to finite manu facturing
tolerances. The shift may arise due to small optical path
length differences or wire length differences, as well as other
imperfections and variations in the detector electronics. Al-
though the detector sensitivities might seem well matched
when characterized with Alice’s pulses, there may exist rap-
idly varying differences at the edges that can only be re-
solved with extremely short pulses.

Eve may exploit a detector timing mismatch by using a
version of the so-called faked-states attack �12�. A faked-
states attack on a quantum cryptosystem is an intercept-
resend attack where Eve does not try to reconstruct the origi-
nal states, but instead generates �quantum mechanical or
classical� light pulses that get detected by the legitimate par-
ties in a way controlled by her while not setting off any
alarms. In this case, she may adjust the timing of her states in
order to change the sensitivity of the 0 detector relative to
that of the 1 detector, and vice versa. By using very short
pulses she may take advantage of any rapidly varying fea-
tures in the detector sensitivity curves not visible to Alice
and Bob.

The paper is organized as follows. In Sec. II we introduce
the faked-states attack in the “ideal” case where either detec-
tor can be totally blinded on Eve’s choice. This attack gives
Eve full information about the key while Bob registers no
increase in the quantum bit error rate �QBER�. In Sec. III we
derive efficiency figures of a practically possible intercept-
resend attack in a more realistic situation with partial effi-
ciency mismatch. Section IV contains a discussion of the
security for any eavesdropping attempts. Measurements of
detector sensitivity curves for two different detectors are pre-
sented in Sec. V. Finally, we discuss protection measures
against this attack and conclude the paper in Sec. VI. Al-
though the attack is exemplified using the Bennett-Brassard
1984 �BB84� protocol �1�, other protocols that use four states
in two bases may also be vulnerable.

II. TOTAL DETECTOR SENSITIVITY MISMATCH

To explain the attack, let us consider an ideal case when
the detector sensitivity curves are significantly shifted in
time relative to one another, so that time zones exist when
one detector is completely blind while the other remains sen-
sitive. Such a situation is depicted in Fig. 2. The figure also
shows the last part of the scheme with a Mach-Zehnder in-
terferometer, a scheme example on which we will consider

this attack1. During normal operation, Alice’s pulse �denoted
“Normal signal”� is timed to the middle of the detector sen-
sitivity curves, and both detectors are sensitive to it. Now if
Eve mounts a faked-states attack, she cuts into the line and
measures Alice’s quantum states �choosing the basis ran-
domly�, and replaces them with faked states. She can con-
struct faked states of pulses shifted in time to the sides of
Bob’s detector sensitivity curves, so that only one of the two
detectors can fire in each case �the other one is blinded by
timing�. Thus she can set her bit value for Bob. Unlike the bit
value, she has no direct control over which basis Bob applies
with his phase modulator. However, Eve can make sure Bob
never detects anything if he chooses a basis incompatible
with Eve’s measurement �which happens randomly in 50%
of the cases�. To do this, she sets the relative phase of the
pulses in the two arms of the interferometer such that, if Bob
chooses an incompatible basis and applies the corresponding
phase shift to his phase modulator �PM�, the interference
outcome at the 50-50 coupler �BS� leads all light toward the
detector that is blinded by timing. If, however, Bob chooses
another basis �compatible with Eve’s�, the interference out-
come at the coupler will be 50%-50% and the other detector
will click. This trick works because, with today’s compo-
nents and transmission lines, Bob detects only a small frac-
tion of the photons sent by Alice. The click at Bob’s detector
in the case of attack occurs with a reduced probability, but
Eve can easily compensate by increasing the brightness of
her faked states and thus keeping Bob’s average detection
rate the same as before mounting the attack. It is also easy to
see that the bit statistics obtained by Bob is the same as that
obtained in the absence of the attack. As you see, Eve now
gets a complete copy of the key, and remains hidden.

The case of total detector sensitivity mismatch is not only
convenient for explaining the principle of the attack, but can
also occur in practice, as the experimental data later show.
However, much more common and, indeed, unavoidable in
reality would be the case when the detector sensitivities vary
relative to each other in time but the ratio between them does

1Although a scheme with phase encoding is given as an example
in Sec. II, the attack and all obtained results equally apply to polar-
ization encoding, owing to the formal isomorphism between the two
encodings �4�.

FIG. 2. �Color online� Bob’s part of the setup. Bob chooses the
basis with the phase modulator �PM�. The large detector efficiency
mismatch is shown on the plot to the right.
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not get very large. The implications of this property of de-
tectors for security are analyzed in the rest of the paper.

III. PARTIAL DETECTOR SENSITIVITY
MISMATCH

We will now consider the case when the sensitivity curves
are slightly shifted, i.e., the detectors can only be partially
blinded. For analysis in this section, we shall choose an
eavesdropping strategy that is not necessarily optimal, but

could clearly be implemented today. Let us simply adopt the
intercept-resend strategy as described in the previous section
for that.

Having chosen the strategy, let us consider all the possible
basis and bit combinations during the attack. If we look at
the relative phase of the pulses that Eve generates, we can
note that, formally, she always chooses to resend to Bob the
opposite bit value in the opposite basis compared to her de-
tection. For example, if Eve detects a 0 in the Z basis, she
sends a 1 bit in the X basis to Bob. She also chooses the
timing so as to suppress 1 detection, i.e., a timing t= t0 for
which the ratio �1�t� /�0�t� is small, where �0�t� and �1�t�
denote the time-dependent detector efficiencies. The different
events are shown in Table I for the special case where Alice
sends a 0 in the Z basis �the other three cases are symmetri-
cal to this case�. Initially, we assume that all states involved
in the protocol and the attack are single-photon states. Later
we will discuss the case where Alice and Eve use states with
other photon statistics, e.g., faint laser pulses. Also, for now
it is assumed that Bob’s detectors have no dark counts
�which is of course not true but we account for that later on�.
We assume that Eve’s detectors and optical alignment are
perfect, and that Eve generates faked states that match the
optical alignment in Bob’s setup perfectly. Based on the
probabilities in the table we can now estimate the efficiency
figures for this strategy in terms of the QBER and the mutual
information between Eve and Alice, and Bob and Alice.

We discard all cases where Alice and Bob have chosen
incompatible bases. When Alice sends a 0 in the Z basis, the
probability that the qubit arrives at Bob is

P�arrive�A = Z0� =
1

4
��0�t0� + �0�t1� + 2�1�t0�� . �1�

The probability of arrival averaged over Alice’s four choices
is found by symmetrization of this expression, yielding

P�arrive� =
1

8
��0�t0� + 3�0�t1� + 3�1�t0� + �1�t1�� . �2�

Similarly, we find the QBER,

�QBER� =
P�error�
P�arrive�

=
2�0�t1� + 2�1�t0�

�0�t0� + 3�0�t1� + 3�1�t0� + �1�t1�
,

�3�

where P�error� accounts for the cases when Bob detects a bit
value different from what Alice has sent.

Having established the QBER, we will now compare
Bob’s and Eve’s amount of relevant information �13�. Denot-
ing the mutual information between Alice and Bob H�A :B�,
and the mutual information between Alice and Eve H�A :E�,
the security is guaranteed when H�A :B��H�A :E� �14�. This
condition is sufficient and necessary for protocols with only
one-way classical communications �no advantage distillation
�15�; with advantage distillation it is not necessary�. For
intercept-resend attacks, it is clear that A→E→B is a Mar-
kov chain. Hence, H�A :B��H�A :E�, so Bob’s key is gener-
ally not secure. Note that advantage distillation is not pos-

TABLE I. The intercept-resend attack when Alice sends a 0 in
the Z basis �as indicated in the first column�. The second column
contains the basis chosen by Eve and the measurement result; the
third column shows the basis, bit, and timing as resent by Eve. In
the next columns Bob’s basis choice and measurement results are
given. For the case with partial detector sensitivity mismatch, the
probabilities for the different results are shown, given Eve’s basis,
bit value, and timing in addition to Bob’s basis. Note that, for ease
of discussion, the first two rows are repeated so that each row in the
table occurs with probability 1/8.

Alice →Eve Eve→ Bob Results, Probability Sifting

Z0 Z0 X1t0 Z 0,
1

2
�0�t0� Keep

1,
1

2
�1�t0� Keep

—, 1−
1

2
�0�t0�−

1

2
�1�t0� Lost

Z0 Z0 X1t0 X 0, 0 Discard

1, �1�t0� Discard

—, 1−�1�t0� Lost

Z0 Z0 X1t0 Z 0,
1

2
�0�t0� Keep

1,
1

2
�1�t0� Keep

—, 1−
1

2
�0�t0�−

1

2
�1�t0� Lost

Z0 Z0 X1t0 X 0, 0 Discard

1 , �1�t0� Discard

—, 1−�1�t0� Lost

Z0 X0 Z1t0 Z 0, 0 Keep

1, �1�t0� Keep

—, 1−�1�t0� Lost

Z0 X0 Z1t0 X 0,
1

2
�0�t0� Discard

1 ,
1

2
�1�t0� Discard

—, 1−
1

2
�0�t0�−

1

2
�1�t0� Lost

Z0 X1 Z0t1 Z 0, �0�t1� Keep

1, 0 Keep

—, 1−�0�t1� Lost

Z0 X1 Z0t1 X
0,

1

2
�0�t1�

Discard

1 ,
1

2
�1�t1�

Discard

—, 1−
1

2
�0�t1�−

1

2
�1�t1�

Lost
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sible because intercept-resend attacks remove any
entanglement between Alice’s and Bob’s qubit.

To analyze in more detail how this particular attack per-
forms we will evaluate the mutual information between Alice
and Eve H�A :E��H�A�−H�A �E�. After the basis has been
revealed, A takes only two possible values �0 and 1� while
Eve’s result is Z0, Z1, X0, or X1. We assume that Alice and
Bob have used the Z basis �by symmetry in the QKD proto-
col and the eavesdropping strategy we need only consider
this basis choice�. The entropy H�A� is found from the prob-
abilities P�A�, which, in turn, can be calculated from the
arrival probabilities �1� and �2�:

P�A = 0� =
�0�t0� + �0�t1� + 2�1�t0�

�0�t0� + 3�0�t1� + 3�1�t0� + �1�t1�
, �4a�

P�A = 1� = 1 − P�A = 0� . �4b�

To identify the conditional entropy H�A �E�, we need the
conditional probabilities P�E �A�, and also P�A �E� which can
be found using Bayes’ rule:

P�A�E� =
P�A�
P�E�

P�E�A� . �5�

The conditional probabilities P�E �A� are calculated using
Table I:

P�E = Z0�A = 0� =
�0�t0� + �1�t0�

�0�t0� + �0�t1� + 2�1�t0�
, �6a�

P�E = Z1�A = 0� = 0, �6b�

P�E = X0�A = 0� =
�1�t0�

�0�t0� + �0�t1� + 2�1�t0�
, �6c�

P�E = X1�A = 0� =
�0�t1�

�0�t0� + �0�t1� + 2�1�t0�
. �6d�

In the case A=1 we find the conditional probabilities directly
from �6� using the symmetry. The probabilities P�E� are
found using the relation

P�E� = �
a

P�E�A = a�P�A = a� , �7�

and the conditional entropy is

H�A�E� = − �
e,a

P�A = a�P�E = e�A = a�log P�A = a�E = e� .

�8�

After substitution of the probabilities above, the result is
simple: H�A �E�= �QBER�, where the QBER is given by Eq.
�3�. Hence,

H�A:E� = H�A� − �QBER� . �9�

The mutual information between Alice and Bob,
H�A :B��H�A�−H�A �B�, is found by a similar procedure.
After the basis has been revealed A and also B take only two
values �0 and 1�. The conditional probabilities P�B �A� are

P�B = 0�A = 0� =
�0�t0� + �0�t1�

�0�t0� + �0�t1� + 2�1�t0�
, �10a�

P�B = 1�A = 0� = 1 − P�B = 0�A = 0� , �10b�

P�B = 1�A = 1� =
�1�t1� + �1�t0�

�1�t1� + �1�t0� + 2�0�t1�
, �10c�

P�B = 0�A = 1� = 1 − P�B = 1�A = 1� . �10d�

In the special case with symmetric detector efficiency
curves, i.e., �0�t0�=�1�t1� and �0�t1�=�1�t0�, we find
H�A :B�=1−h�QBER� and H�A :E�=1−QBER, where
h is the binary Shannon entropy function h�x�
=−x log2 x− �1−x�log2�1−x�. Thus all quantities, the QBER,
H�A :B�, and H�A :E�, depend only on one parameter; the
normalized efficiency ���1�t0� /�0�t0�. The result is plotted
in Fig. 3. As mentioned previously, it is apparent that Eve has
always more mutual information with Alice than does Bob.
For �=1/3 the difference H�A :E�−H�A :B� reaches its
maximum h�1/3�−1/3�0.58 for a corresponding QBER of
1/3. If Bob is not aware of his detector efficiency mismatch,
he thinks that the key is secure when the QBER is less than
0.11 �symmetric protocols with one-way classical communi-
cations �8��. Thus Eve can compromise the security of the
system if ��0.066. The privacy amplification �16� Alice and
Bob apply will not save them from this attack and will not
produce a secret key because the mutual information be-
tween Alice and Eve is always greater than that between
Alice and Bob.

In a real installation, Alice and Bob may expect the
QBER to stay at some level below 0.11, which leaves Eve
less room for the attack. Also in the practical scenario con-
sidered in this section, the contribution of dark counts in
Bob’s detectors to the total QBER is independent of other
error sources and is beyond the control of Eve. Only the part
of QBER not caused by dark counts in Bob’s detectors can
be used by Eve.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

η

H(A:B)
H(A:E)
QBER

FIG. 3. The QBER, the mutual information between Alice and
Bob, H�A :B�, and the mutual information between Alice and Eve,
H�A :E�, as functions of the normalized efficiency of the blinded
detector, �.
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Let us consider any side effects this attack may produce
that may divulge it. Although the attack may not give any
alarm in terms of the QBER, it might be detected as a result
of different measurement statistics at Bob’s detector. From
�4� and �10� and their analogs for the case where Bob used
the X basis �incompatible basis�, we observe that the mea-
surement statistics has changed as a result of Eve’s attack.
However, the changes may be reduced or even eliminated by
choosing suitable t0 and t1. �For example, the bit rates are
equal in the symmetric situation analyzed above.� Similar
skews in statistics may be produced in the absence of Eve’s
attack by random drifts and optical misalignments during
operation, and may lie within what Bob normally expects.

So far we have assumed that Alice and Eve use single-
photon states. Then Bob can detect the attack as a decreased
bit rate, because P�arrive� usually would be less than the
detection probability Bob has with no attack. Any reasonably
well implemented Bob would monitor the bit rate and raise
alarm if it drops significantly. To compensate for the reduced
detection probability, Eve could increase the brightness of
her pulses �several photons in each pulse, and possibly dif-
ferent photon statistics for the t0 and t1 pulses�. However,
this compensation might be possible to detect from the coin-
cidence count rates at Bob’s detectors. Alternatively, Eve
could place her intercept unit and resend unit at two separate
locations along the transmission line, thus winning the pho-
tons that would be lost in the line between these two loca-
tions. In the limit we have to assume she would place the
intercept unit near Alice and the resend unit near Bob, get-
ting the whole amount of normal loss in the line to cover for
the reduction in detection probability caused by her attack.

If Alice uses faint laser pulses, the attack is still possible.
However, now Eve must consider the basis-dependent coin-
cidence count rates at Bob’s detectors. If we grant Eve a
future technology, namely, the ability to do photon number
measurement, she would be able to retain the coincidence
rates: Eve could measure the photon number first, and run
the faked-states attack only on those pulses that contain one
photon, using a single-photon source to generate faked
states. Those of Alice’s pulses that contain two or more pho-
tons can be passed undisturbed to Bob at the expense of a
small part of the key becoming unavailable to Eve. Alterna-
tively they can be eavesdropped on using the photon number
splitting �PNS� attack �17–19�, provided a version of the
PNS attack that does not alter coincidence counts could be
constructed in this case �20�.

Watching the rates and coincidence statistics for different
bit-basis combinations is useful as a general precaution and
should be built into the key distribution protocol. But it does
not necessarily provide security against this attack.

IV. SECURITY BOUND

The intercept-resend attack described in the previous sec-
tion is not necessarily the optimal attack. Alice and Bob
want, of course, their protocol to be secure against any attack
permitted by quantum mechanics. Note that Eve can exploit
rapidly varying features in the detector sensitivity behavior
even though she does not regenerate the pulses. She may

perform a quantum nondemolition measurement of Bob’s
pulses to collapse them into much shorter ones, obtaining the
associated timing information of the resulting pulse. As
shown in the Appendix, this measurement will not disturb
the degrees of freedom encoding Bob’s qubit.

The following discussion of security will be based on the
proofs by Lo and Chau �7� and Shor and Preskill �8�. Here,
Eve is allowed to do collective attacks and perform arbitrary
quantum operations on each block of data. Alice and Bob use
only one-way classical communications in the QKD proto-
col. Note that higher bit error rates can be tolerated if they
use two-way classical communications �21� �advantage dis-
tillation�.

The critical point in the Lo-Chau and Shor-Preskill proofs
is to bound the so-called bit and phase error rates. In the
entanglement purification protocol used in the proof, this
corresponds to bounding the fidelity of the Bell pairs re-
ceived by Alice and Bob, and therefore the mutual informa-
tion Eve has with their measurement results. In the QKD
protocol, Alice and Bob measure the error rate by sampling a
subset of the qubits randomly. Bob measures the qubits in
two bases �chosen randomly for each qubit�. The error rate as
measured in the random sampling process is denoted the bit
error rate; the error rate if Bob had chosen the opposite basis
is denoted the phase error rate. In the case where Eve can
control the detector efficiencies, we distinguish between the
measured bit error rate �QBER� and the actual bit error rate.
The measured bit error rate �QBER� is the error rate as mea-
sured by Bob, while the actual bit error rate is the error rate
that Bob would measure if his detectors were perfect.

An analysis of several attacks where the eavesdropper has
some information on the basis used by Bob is described by
Gottesman et al. �11�. In the Trojan pony attack �Ref. �11��,
the eavesdropper can control the efficiency of the detectors
to create an asymmetry between the bit error rate �which is
measured by Bob� and the phase error rate �which is not
measured�. In the optimal case �as seen from Eve’s view-
point� all errors that Eve eliminates are bit errors. Note that,
in this case, the bit error rate as measured by Bob is the
actual bit error rate since Eve does not control the two de-
tector efficiencies separately �as opposed to the situation ana-
lyzed in this paper�. Bob’s problem is rather that he cannot
measure bit and phase errors on the same qubit.

Now, consider the case relevant to the present paper,
where Eve has no information on the basis used by Bob.
Instead she can control the 0 and 1 detector efficiencies sepa-
rately, by appropriate timing of the qubits. Since Eve does
not know Bob’s basis, the actual bit and phase error rates
will be equal. However, since Eve can force the efficiencies
of the two detectors to be different, the measured bit error
rate will be different from the actual bit error rate. Therefore,
Bob has to estimate the actual bit error rate from the mea-
sured bit error rate and a priori knowledge of Eve’s power
�that is, he must characterize his detector sensitivity curves�.

The available bit rate from the QKD after privacy ampli-
fication is �8�

R = 1 − 2h��� , �11�

where � is the actual bit error rate and h is the binary Shan-
non entropy function h�x�=−x log2 x− �1−x�log2�1−x�. The
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actual bit error rate is related to the measured error rate and
the detector efficiencies. The two detector efficiencies are
denoted �0�t� and �1�t�, and at a certain time t, they may be
different. For example, take �0�t���1�t�. In a worst-case
scenario, Eve minimizes the measured bit error rate �QBER�
for a given �. Assuming a large number N of qubits, �N of
them would be detected as errors if the detectors were per-
fect. For Bob’s detectors, in the worst case this number is
reduced to �1�t��N provided Eve uses the timing t. At the
same time, the number of qubits detected as correct bits is
only reduced from �1−��N to �0�t��1−��N. The associated
QBER becomes �1�t�� / ��1�t��+�0�t��1−���. Minimizing
with respect to t, we obtain2

�QBER� =
��

1 + �� − �
, �12�

where

� = min	min
t

�1�t�
�0�t�

,min
t

�0�t�
�1�t�
 . �13�

In other words, the estimate for �,

� =
�QBER�

� + �1 − ���QBER�
, �14�

and not the QBER, should be used to determine the required
amount of privacy amplification. The QKD protocol is se-
cure provided ��0.11 �0.11 is the zero of 1−2h����, which
means approximately that �QBER��0.11�.

The bound above might be a little pessimistic: Eve needs
at least a “partial” qubit measurement to decide which timing
to use for the pulses going to Bob. This measurement must
certainly be performed before Eve gets information on the
basis used by Alice and Bob. The Shor-Preskill bound as-
sumes that Eve may wait with her measurement until the
basis choice is made public.

The security findings that have been made in the paper are
summarized in Fig. 4.

V. EXPERIMENTAL DATA

In this section we present measured detector sensitivity
curves of two different single-photon detectors. Both devices
under test were laboratory prototypes of detectors that were a
part of or intended for use in quantum cryptography systems.

A. Detector model 1

The first detector we tested was a time-multiplexed detec-
tor, i.e., a single detector registering 0 and 1 counts in dif-
ferent time slots. The light pulses corresponding to the 0 and
1 bit values were combined into a single fiber �one of the

pulses was delayed in an optical delay line�, and fed to the
detector. The detector was gated at double the pulse rate,
with 0 pulses coming in odd gates and 1 pulses coming in
even gates. The model operated at 1310 nm and used a
Soviet-made Ge APD �standard part number FD312L, devel-
oped by NPO Orion� cooled to 77 K. Gate pulses at the APD
in this detector were made as narrow as practically possible,
around 2 ns full width at half maximum �FWHM�. The laser
pulse in the test was 100 ps wide �FWHM� and was actually
the same pulse normally used by Alice: we simply employed
the entire QKD setup described in Ref. �22� to do the detec-
tor test, only changing the time delay of the laser pulse in
order to measure the sensitivity curves. The measured curves
are presented in Fig. 5.

Since the same detector is used for 0 and 1 detections, we
would expect the shapes of sensitivity curves to be highly
identical. This is indeed the case. Also the curves have al-
most no time shift relative to one another, which means the
fiber optic delay line in our setup was cut and spliced with
good precision �from these data we can estimate the cutting
inaccuracy to be less than ±25 ps or ±5 mm�. Nevertheless
the time range �encircled on the chart� where the laser pulse
impinges the APD at the closing edge of the gate shows
sensitivity mismatch ��1/2. It is possible the mismatch is
actually larger than this, but we could not resolve it unless
we used narrower laser pulses and did a more detailed mea-
surement in this time range. The other side of the peak where
the laser pulse impinges the APD before and at the opening
edge of the gate shows no discernible sensitivity mismatch,
because the APD sensitivity in this time range rises
smoothly. This is consistent with the presence of a trailing
tail in a typical APD time response �23,24�.

The measured curves suggest that the practical attack de-
scribed in Sec. III would be impossible, but the general se-
curity bound �14� would impose a significant penalty on the

2Eve may certainly use several different t’s for different qubits.
However, since �ipi /�iqi�mini�pi /qi� for any positive pi and qi,
the minimum QBER is still given by the minimum of
�1�t�� / ��1�t��+�0�t��1−��� and �0�t�� / ��0�t��+�1�t��1−��� for
all t.

0 1
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(assumed insecure)
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0.0660
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with reduced key rate

FIG. 4. Security state of a QKD system as a function of the
normalized efficiency of the blinded detector � and the measured
QBER. In the “Secure” zone, the required amount of privacy am-
plification is larger than without considering this attack, being de-
termined by � given in Eq. �14�. In order to make this plot, we have
allowed for some simplifications. The border between “Not proven”
and “Insecure” zones is drawn assuming the special case of sym-
metric detector efficiency curves discussed in Sec. III. The QBER
for the “Insecure” zone is assumed to be without contribution from
dark counts in Bob’s detectors.
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key rate and maximum allowed QBER. It is also clear that a
better measurement with narrower laser pulse �no wider than
few tens of picoseconds�, smaller time increments, and ex-
tended time range would generally be desired for detector
testing.

The precision with which the fiber delay line was cut in
this setup was actually unnecessary for normal operation of
the QKD. Should less care be taken in cutting the delay line,
there would typically be larger mismatch at both sides of the
curve. In the worst possible case one of the curves could end
up shifted to the left by 1.1 ns, providing the same sensitivity
for Alice’s pulse as we have now while leaving sufficiently
large mismatch at the sides for Eve to attempt the practical
attack described in Sec. III.

B. Detector model 2

The second detector we tested was a dual detector, con-
sisting of two identical single-photon detectors registering 0
and 1 counts in parallel. This detector was one of the several
different test prototypes developed at the Radiophysics De-
partment at the St. Petersburg State Polytechnic University.
Each of the two detector channels had its own APD, gating,
and detection electronics, while the thermoelectric cooler for
the APDs, power supply, and external synchronization were
shared. JDS Uniphase EPM239BA �former Epitaxx
EPM239BA� single-mode fiber pigtailed APDs were used,
cooled to �−48 °C. The APDs were gated at 100 kHz, with
gate pulses having magnitude of 8 V and width of 3.5 ns
�FWHM�. The laser pulse in the test had wavelength of
1560 nm and was less than 200 ps wide �FWHM�. The de-
tector was set into a mode that would be suitable for its
operation in a QKD system. The peak efficiencies in both
channels were made to be roughly equal, by adjusting the
bias voltage separately on each APD. The laser pulses im-
pinged both APDs almost simultaneously; the remaining
small difference in the optical paths, 9 mm or 45 ps between
the channels, was later accounted for when plotting the

charts so they represent the response to a laser pulse imping-
ing both APDs at exactly the same time.

With this detector, we tried to do a more thorough mea-
surement than with the previous one. The sensitivity curves
are shown in Fig. 6. Although the curves overlap in a 1.6
-ns-wide zone �well enough for use in QKD�, there are sig-
nificant mismatches at the sides. Using the time t1 marked on
the chart, and a t0 where both detector efficiencies are small,
Eq. �3� gives QBER�0.061. This may give an impression
that the attack described in Sec. III is possible. However, any
properly implemented Bob would raise an alarm if the 0 and
1 detection rates were significantly different. To achieve
more similar detection rates, Eve can increase the brightness
of her t0 pulses and/or tune t0. In the limit where the two
detection rates are equal, she chooses the t0 as marked on the
chart to obtain the minimum QBER of 0.119. This means
that the attack would be discovered �however, it is close to
the threshold�. Nevertheless, the QKD system with this de-
tector will be rendered inoperative by the general security
bound �14�, which for �=1/30 allows a QBER of no more
than 0.0036. Note that shifting the curves relative to one
another never eliminates large sensitivity mismatch.

In the measurement above, we could not see the quantum
efficiency in the long tails, because it was masked by dark
counts. It was therefore natural to repeat the measurement
using three orders of magnitude brighter pulses. The ex-
pected result is complete saturation in the middle, and el-
evated, well-resolved tails. The result we obtained, however,
was quite surprising �Fig. 7�. Although the measurement did
resolve the tails �showing a significant mismatch around
1 ns�, the detector performance in the middle part of the
chart was erratic, with sensitivity plunging to zero where
there should have been saturation. Using this behavior of the
detector, Eve could likely run the attack in conditions close
to the total sensitivity mismatch described in Sec. II.

Forced to explain this detector behavior, we turned to the
schematic of its electronics. The feature of this particular test
prototype was that it used signal reflected from the APD, so
that only one electrical waveguide had to be connected to
each APD, thus reducing the thermal flow and easing cooling
�Fig. 8�. To split off the reflected signal, a microstrip coupler
was used, forming a circulator at frequencies above 1 GHz.
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FIG. 5. Detector model 1. Sensitivity curves for the 0 �open
squares� and 1 �filled squares� time slots, at low mean number of
photons at the APD ���1�. Dark counts were subtracted. The
curves, originally of different height, were scaled so that their peak
points coincide. t is the relative time of arrival of the laser pulse at
the APD; t=0 was the actual arrival time of Alice’s pulse in the
operational QKD setup before this measurement.
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FIG. 6. Detector model 2. Sensitivity curves for the 0 �open
squares� and 1 �filled squares� time slots, at mean number of pho-
tons at the APD �=0.5. Dark counts were subtracted.
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The following amplifier had the bandwidth of ca. 2.5 GHz.
Thus the whole tract for the reflected signal suppressed spec-
tral components outside the 1–2.5 GHz band. There was no
balancing circuit for spikes in the reflected signal that re-
sulted from the gate front and back edges causing current
through the APD capacitance, and also the spikes seeping
into the reflected signal tract through other electrical imper-
fections. These unwanted spikes were partially suppressed
spectrally: most of the spectrum of the spikes lay below
1 GHz, as the front and back edges of the gate pulse were
less steep than the front edge of the avalanche signal. The
comparator threshold was fine tuned to be lower than the
avalanche signal, but higher than the parasitic signal at the
output of the tract in the absence of avalanche. This all
worked fine for avalanches caused by absorption of 1-2 pho-

tons, as Fig. 6 illustrated. However, with avalanches caused
by almost simultaneous absorption of hundreds of photons
from every laser pulse, this spectral-selective circuit con-
nected to a finely tuned comparator produced the gaps seen
in Fig. 7. The use of a spectral-selective circuit was a neces-
sary condition for this abnormal behavior. The spectrum of
the avalanche pulse was a function of two varying param-
eters: the pulse length and the shape of its front edge. The
fraction of the avalanche pulse that passed through the
spectral-selective tract to the comparator thus depended on
these two parameters. Small changes in them due to the use
of brighter light pulses resulted in the observed behavior of
the output signal. Exact details of APD operation with
brighter pulses, however, proved to be elusive to measure
with the equipment we had.

Although we were able to eliminate the abnormal detector
behavior with �=500 laser pulses by making adjustments in
the electronics, this test prototype together with the idea of
using reflected signal and/or spectral-selective detection tract
had to be scrapped. It is simply too risky from the security
standpoint to use detectors based on this or any other “ad-
vanced” approach in QKD systems, even if you test them
well. More straightforward detection schemes have to be pre-
ferred.

VI. DISCUSSION AND CONCLUSION

We have seen that when the detection of 0 and 1 bits can
be blinded separately by timing, Eve can obtain full informa-
tion about the key while she is hidden. In the case with only
partial sensitivity mismatch, a similar attack is possible
which will not provide alarm to Alice and Bob in terms of
the QBER when the mismatch is sufficiently large. Although
the specific intercept-resend attack given in Sec. III only
works in certain conditions, more sophisticated attacks may
exist which are able to exploit small sensitivity mismatches.
Hence, to ensure secure QKD it is crucial to characterize
Bob’s detectors and specify maximum sensitivity mismatch.
Based on this information, the worst-case estimate for �
given in �14�, and not the QBER, should be used to deter-
mine the required amount of privacy amplification.

Specific measures aimed to specify and/or limit the sensi-
tivity mismatch might be the following.

�1� Measure detector characteristics �especially sensitivity
vs time� over a variety of input signals, including those well
beyond the normal operating range. Use sufficiently short
pulses so that all features of the sensitivity curves are cap-
tured. Employing a simple, straightforward detector circuitry
can help lower the likelihood of hidden surprises, both dis-
covered and undiscovered by testing.

�2� Introduce intentional random jitter in the detector syn-
chronization to “smear” the curves and lower the mismatch.

�3� Implement active protection by checking timing of
incoming pulses at Bob. This can be done through random
shifting of Bob’s detection time window, by registering the
time of avalanche onset within the window, or with addi-
tional detectors.

In the future it would be desirable to see if the general
security bound, as implied by �14�, can be narrowed. The
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FIG. 7. Detector model 2. Sensitivity curves for the 0 �open
squares� and 1 �filled squares� time slots, at mean number of pho-
tons at the APD �=500. In the encircled time range �4.65–5.30 ns�
the clicking probability in both detectors measured exactly zero �0
counts registered per �105 gates�. Unfortunately the time reference
in this plot is not accurately matched with that in Fig. 6, and the
curves’ features cannot be directly compared between the two
figures.
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FIG. 8. Detector model 2. Equivalent diagram of a single chan-
nel. G is a single-shot generator that forms the gate pulse for the
APD. BPF is an equivalent band-pass filter representing the fre-
quency bandwidth of the tract for the reflection signal.
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security bound as it stays now is rather strict, and requires
the amount of privacy amplification to be corrected in most
practical quantum cryptosystems that use four-state proto-
cols.

Not all QKD protocols are vulnerable to this attack. For
example, the Bennett 1992 �B92� protocol �25–28� is not
affected, because it uses just one detector for quantum states
�however, Bob should be careful not to allow Eve to make a
“faked” reference pulse which is accepted by Bob’s classical
detector but causes no clicks at his single-photon detector;
using a local oscillator as proposed in Ref. �26� is a good
solution to this problem; insecure implementations of B92
that do not use homodyne measurement have to be avoided
�29,30��. The modification of the BB84 protocol in Refs.
�31,32�, with a single detector randomly chosen via phase
modulator setting to detect either a 0 or 1 bit, is not vulner-
able for the same reason.3 The six-state protocol �33–35�
seems not to be vulnerable �though we note that a faked-
states attack along the lines of Sec. II on the six-state proto-
col gives 25% QBER in the case of total efficiency mis-
match, while the straight intercept-resend attack results in
33.3% QBER�.

On the other hand, the SARG04 protocol �36–38� is vul-
nerable to this attack. Also, faked states exploiting detector
efficiency mismatch can be constructed for energy-time en-
coding and differential phase shift keying QKD schemes
�39–43�; see examples of faked states in Ref. �44�.

Implementations with a source of entangled pairs placed
outside of Alice and Bob �as opposed to using it inside Alice
to prepare the states� give Eve additional degrees of freedom
to run this attack. When photons travel from Alice to Bob,
Eve can completely block only one of Bob’s bases �one de-
tector is blocked by timing and the other by destructive in-
terference in this basis�. This allows to eavesdrop on the
protocols that use two bases �BB84, SARG04�, but not on
the protocols that use three bases �six-state protocol, Ekert
protocol �3� if it is implemented with an entangled pair
source inside Alice�. However when photons travel from the
entangled pair source to Alice and Bob with both paths ac-
cessible to Eve, she can replace the entangled pair source
with a faked one, generating two faked states synchronously:
one for Alice and one for Bob. She can generate a pair of
faked states that block completely one basis at Alice and
another basis at Bob. Then Alice and Bob only get coinci-
dence clicks in the same basis when they choose the third
basis in the protocol. This allows to eavesdrop on the six-
state protocol �33,34� if it is implemented in an entangled

pair version, with the source of entangled pairs placed be-
tween Alice and Bob. Also a set of faked states can be con-
structed for the Ekert protocol �at least if it is implemented as
described in Ref. �3� with no additional consistency checks
besides checking that S=−2�2 �44��.

Throughout the paper, Eve used time t as a control param-
eter to alter detector efficiencies. We note that t could in
principle be regarded as a general control parameter allowing
Eve to change Bob’s detector efficiencies. It could be not
necessarily time but, e.g., polarization or wavelength. For
instance, in up-conversion single-photon detectors �45–47�
hardware gating of detectors is removed, but a narrow wave-
length selectivity is introduced instead. Eve could try to use
the wavelength of pulses instead of time to run this attack.

Finally we note that Qi et al. have recently proposed an
interesting modification of our attack �48�.

APPENDIX: QUANTUM NONDEMOLITION
MEASUREMENT OF QUBIT TIMING

Here we will show that Eve can perform quantum non-
demolition measurements of the timing of the qubits, and
collapse Alice’s photon pulses into arbitrarily narrow pulses.
This measurement does not affect the degrees of freedom
encoding the qubit. While �time-bin� phase-encoded qubits
are considered here, one may treat other encodings in a simi-
lar way.

The phase-encoded qubit is denoted �	�t0
. Here, 	 is the

phase difference between the two pulses �0°, 90°, 180°, or
270°�, and t0 is the �absolute� timing of the pulses, i.e., the
time of the peak of the first pulse. If we assume that �	�t0

is
a single-photon state,4 it can be expressed as

�	�t0
=

1
�2

�at0
† + ei	at0+


† ��0� , �A1�

where �0� is the vacuum state of the single optical mode, 
 is
the time delay between the two pulses, and

at0
† = dt ��t,t0�a†�t� . �A2�

In Eq. �A2�, a†�t� is the continuous-time creation operator
�49� of the optical mode. The operator satisfies the commu-
tator relation �a�t� ,a†�t���=��t− t��. The function ��t , t0� rep-
resents, for instance, a Gaussian pulse shape:

��t,t0� = �2�2/�1/4 exp�− i�0�t − t0� − �2�t − t0�2� .

�A3�

Here �0 and � are the central frequency and pulse band-
width, respectively. The duration t� of the pulse is of the
order 1 /�, and satisfies t��
.

If Eve wants to measure the timing of a qubit pulse pair,
she should do a nondemolition measurement that does not
affect the degrees of freedom encoding the qubit. She divides
the pulse time range �t0− t� /2 , t0+ t� /2� into small intervals
Ti= �t0− t� /2+ i�t , t0− t� /2+ �i+1��t�, where i is a positive

3Although the B92 protocol and the modification of the BB84
protocol in Refs. �31,32� are not affected by the attack described in
the present paper, they are instead vulnerable to another attack.
These protocols apply the key bit values directly at Bob’s phase
modulator, encoded in the phase shift settings. This makes them
vulnerable to the large-pulse attack �51,52�: The phase shift settings
could be read by Eve from Bob’s modulator using external light
pulses which do not have to be very bright. The Scarani-Acin-
Ribordy-Gisin 2004 �SARG04� protocol �36–38� also applies the
key bit values at Bob’s modulator. Other protocols only apply de-
tection bases at Bob’s modulator, which makes them less vulnerable
to the large-pulse attack. 4Coherent pulses can be treated along the same lines.
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integer and �t is her time resolution. �We assume that she
has rough estimates of t0 and t� a priori, with precision
better than �of the order of� t�. Moreover, she knows 
 with
precision better than �t.� The non-demolition measurement
is described formally by the projectors

P�Ti� = 
Ti

dt�a†�t��0��0�a�t� + a†�t + 
��0��0�a�t + 
�� .

�A4�

Note that P�Ti�P�Tj�=�ijP�Ti� and �iP�Ti�=1 in the Hilbert
space spanned by the signal states �A1�, so this is a valid
quantum mechanical projective measurement �50�. More-
over, when the projectors P�Ti� act on the state �A1� the
pulse width of each of the two pulses collapses to a smaller
pulse width �t; however the qubit encoding is not affected.

In other words, Eve compresses the pulses and obtains the
timing information i.

One way to implement this measurement is first to switch
the two pulses into two optical modes a and b. The first
pulse is then delayed by 
 so that the two pulses arrive
at the measuring device simultaneously. The signal state
�A1� can now be expressed as �	�= 1

�2
�a†+ei	b†��00�

= 1
�2

��10�+ei	�01��, omitting the time notation for simplicity.
Now, Eve lets a probe �a simple quantum computer� interact
unitarily with the signal state, described as follows:
�00��0�→ �00��0�, �01��0�→ �01��1�, �10��0�→ �10��1�. Here
the last state in the product denotes that of the probe. Since
�00��0�→ �00��0� and �	��0�→ �	��1�, Eve will detect the
presence of the qubit without disturbing it. Moreover, if her
measurement device is sufficiently fast, she is able to obtain
the timing �and the pulses will collapse into shorter ones�.
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