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We report on the experimental implementation of a polarimeter based on a scheme known to be optimal for
obtaining the polarization vector of ensembles of spin-1

2 quantum systems and the alignment procedure for this
polarimeter. We also show how to use this polarimeter to estimate the polarization state for identically prepared
ensembles of single photons and photon pairs and extend the method to obtain the density matrix for generic
multiphoton states. State reconstruction and performance of the polarimeter is illustrated by actual measure-
ments on identically prepared ensembles of single photons and polarization entangled photon pairs.
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I. INTRODUCTION

Many promising applications in quantum information
�e.g., quantum computation and quantum communication�
demand accurate state estimation. For many of them it is
compelling to implement state estimation techniques that are
both fast and consume as few copies of the state as possible.
Research in improving the efficiency of quantum state esti-
mation techniques is an area of active theoretical study �1–7�
with much focus on spin-1

2 systems �qubits�. Experimental
reports on state estimation are fewer �8�, partly because
many schemes call for a joint measurement of an ensemble
of qubits which is not always possible to implement.

One way to realize qubits experimentally is to use single
photons and consider their polarization degree of freedom, as
this can be described by a two-dimensional Hilbert space.
Estimating the polarization state of an ensemble of single
photons �called polarimetry in classical optics� is equivalent
to estimating the state of the qubit ensemble. This makes
efficient polarimetry interesting to quantum information.

Polarimetry that uses the least number of measurement
outcomes is said to be minimal. Minimal polarimetry tech-
niques in classical optics have been known for a long time,
and a lot of work in their optimization has been done �9–13�.
While these classical methods perform well in estimating the
polarization state for single-photon ensembles in the limit of
large numbers, their performance in the regime of extremely
low light intensity �single-photon level� was uncertain and it
was not obvious how to use them in estimating nonclassical
states of light. For this reason, progress in polarimetry at the
single-photon limit will assist in many areas, including char-
acterization of faint sources of light, classical ellipsometry
�9�, advanced quantum key distribution protocols �14–16�,
and studies of the fundamental aspects of quantum theory
�17�.

In discriminating between different estimation techniques
we distinguish between methods that are minimal and those
that are minimal and optimal �3,7�: optimal methods have
the best asymptotic efficiency in determining an unknown
state when averaged over all possible input states. This can

be used for an operational definition of minimal and optimal
state estimation for ensembles of prepared quantum systems.
It is the technique that provides the best improvement to our
estimated state for each additional copy taken from the en-
semble. Recently Řeháček et al. proposed such a method for
state estimation of polarization-based single qubits �7�,
which can be viewed as an extension of classical techniques
�10,11,18� to quantum systems.

In this paper we address the experimental problem of
implementing the optimal state estimation method described
in �7� by using a complete four-output polarimeter with no
moving parts. We describe that polarimeter in Sec. II by
reviewing the theory of optimal polarization state estimation
and explain our implementation. In Sec. III polarization state
estimation of multiphoton states is addressed. In Sec. IV we
elaborate on the alignment procedure to make the polarime-
ter perform optimally. Experimental state reconstruction on
ensembles of single photons and photon pairs with high fi-
delity will be illustrated in Secs. V and VI.

II. STATE ESTIMATION USING THE OPTIMAL
POLARIMETER

The polarization state of light can be characterized using
the three Stokes parameters S1, S2, and S3, possibly aug-
mented by an intensity Sm. Together they form a Stokes

vector S� and, when normalized, it is written as S�

= �1,S1 /Sm ,S2 /Sm ,S3 /Sm�. A reduced Stokes vector S�r

= �S1 ,S2 ,S3� /Sm identifies a point in the Poincaré sphere �in
this paper reduced Stokes vectors are denoted by an r sub-
script� �19�.

A minimal scheme of estimating the Stokes vector re-
quires exactly four detector readings, which corresponds to
finding the overlap of the unknown Stokes vector with four
noncoplanar vectors that define a tetrahedron in the Poincaré
sphere �Fig. 1�. These four noncoplanar vectors define four
measurement operators Bj that govern the detector readings
and form a set of complete positive operator value measure-
ments �POVM’s� �20�. The tetrahedron geometry defines the
largest volume that can be enclosed by a vector quartet in the
Poincaré sphere, making it the optimal estimation technique
when using four POVM’s �11,21�. Such a state estimation
technique is also unbiased in the asymptotic limit because
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the total distance of any vector in the Poincaré sphere to all
four POVM vectors depends only on the vector’s magnitude.
In other words, the orientation of the unknown vector does
not affect the accuracy with which it is estimated �7�.

We shall denote the tetrahedron’s reduced Stokes vectors

by b�1r, b�2r, b�3r, and b4r
� as shown in Fig. 1 and write their

corresponding normalized vectors as b�1, b�2, b�3, and b�4. Each
measurement operator Bj may be expressed as

Bj =
1

4
�b� j · �� � , �1�

where �� = ��0 ,�1 ,�2 ,�3�, �0 being the unit matrix and �1,2,3

the Pauli matrices.
In an experiment we associate each operator Bj with a

detector bj. The average intensity falling on detector bj is
denoted as Ij. Thus expectation values of the tetrahedron
operators are related to detected intensities as follows:

Ij

It
= �Bj� =

1

4
�b� j · S�� , �2�

with

It = �
j=1

4

Ij .

Writing the intensities as a vector I�= �I1 , I2 , I3 , I4� / It gives
us the Stokes vector

I� = � · S� Û S� = �−1 · I�, �3�

where � is referred to as the instrument matrix. Each row of

this matrix is composed from a vector b� j. One possible in-
strument matrix of the ideal polarimeter is

� =
1

4�
1 	1

3
	2

3
0

1 	1

3
−	2

3
0

1 −	1

3
0 −	2

3

1 −	1

3
0 	2

3


 . �4�

Experimental realization of this instrument matrix is
achieved by the polarimeter shown in Fig. 2. The first
component of the polarimeter is a partially polarizing beam
splitter �PPBS� that has a particular amplitude splitting ratio
for incoming light, most easily determined using Jones vec-
tor notation for polarization. The amplitude division coeffi-
cients of the PPBS, x and y, obey energy conservation
�x2 � + �y2 � =1. The PPBS takes horizontally polarized �H�
light � 1

0
� to the polarizations � x

0
� and � y

0
� in the transmitted and

reflected arms, respectively, and vertically �V� polarized light
� 0

1
� to � 0

y
� in transmission and � 0

x
� in reflection.

If we project light in the transmitted arm of the PPBS on
the ±45° polarization basis and light in the reflected arm onto
the left and right circular polarization bases, the tetrahedral

arrangement of the vectors b� j is ensured with the following
relations:

x2 =
1

2
+

1

2	3
, y2 =

1

2
−

1

2	3
. �5�

Detailed steps are given in the Appendix .
Partially polarized light can be described using a density

matrix �or coherency matrix�. If we write the entries of the
density matrix as a column vector �� , we can determine them
from the Stokes vector �22� using the following transforma-
tion:

FIG. 1. Four �reduced� Stokes vectors in the Poincaré sphere
that form a tetrahedron define the optimal POVM operators used for
polarization state estimation. The tetrahedron gives the largest vol-
ume encompassable by a vector quartet in the sphere, making it the
optimal measurement when using four POVM’s.

FIG. 2. Practical implementation of the tetrahedron polarimeter
that achieves the ideal instrument matrix. Each detector bj is asso-

ciated to the tetrahedron vector b� j. The partially polarizing beam
splitter �PPBS� separates incoming light according to polarization,
and quartz plates remove unwanted phase shifts. Light leaving the
PPBS is passed through wave plates and polarizing beam splitters
�PBS� to be projected on two different bases �±45° basis for trans-
mitted light and the circular basis for reflected light�.
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�� =
1

2
�1 · S� =

1

2�
1 1 0 0

0 0 1 i

0 0 1 − i

1 − 1 0 0

 · S� . �6�

The columns of the matrix �1 are the Pauli operators writ-
ten as column vectors �1= ��� 0 ,�� 1 ,�� 2 ,�� 3�. The matrices B−1

and �1 can be combined into a single matrix

T ª

1

2
�1�−1 Þ �� = T · I�, �7�

which might be referred to as a tomography matrix as it
directly relates the detected intensities to the density matrix
of the state.

III. POLARIZATION STATE TOMOGRAPHY FOR
ENSEMBLES WITH MULTIPHOTONS

The instrument matrix scheme above can be extended to
perform polarization state tomography on ensembles of mul-
tiphoton states. James et al. �8� have described a similar state
estimation method. We follow their approach but use our
optimal and instrumentally motivated measurement opera-
tors, thereby reducing any ambiguity over the choice of op-
erators.

The simplest multiphoton system is a photon pair detected
by testing for coincidence in the detection time of their com-
ponent photons. In our measurement process each member of
the photon pair is passed through a polarimeter. Given two
polarimeters 1 and 2, each with four detectors bi1

and bi2
,

respectively �i1 , i2=0 ,1 ,2 ,3�, we will have 16 possible co-
incidence combinations between the detectors �see Fig. 3�.
Each coincidence rate is governed by an operator composed

from the individual detectors’ measurement operators. If we
denote again the measurement operator of detectors bi1

and
bi2

as Bi1
and Bi2

and the coincidence count between them as
ci1,i2

, we can express the coincidence rates as a linear func-
tion of a two-photon polarization state vector S2:

ci1,i2

ct
= �Bi1

� Bi2
� = �1

4
b� i1

�
1

4
b� i2 · S�2, �8�

with

ct = �
i1,i2=1

4

ci1,i2
.

Here, S�2 is the Stokes vector equivalent for a two-photon
system �8� and ct is the total number of observed coinci-
dences. We now have the set of measurement operators gov-
erning the coincidence pattern. The 16 coincidences ci1,i2

can

be written in column vector format C� 2= �c1,1 ,c1,2 , . . . ,c4,4�. If
we define the two-polarimeter instrument matrix as �2, we
obtain an instrument response analogous to �3�:

C� 2 = �2 · S�2 Û S�2 = �2
−1 · C2

� . �9�

Thus we obtain the density matrix of the two-photon state
by constructing the analogous two-photon expression for Eq.
�6�:

��2 =
1

22�2 · S�2 = T2 · C� 2. �10�

Each column of �2 is the product of two Pauli operators
�i1

� �i2
�i1 , i2=0 ,1 ,2 ,3� written in column vector format,

and T2 is the tomography matrix for the two-photon state.
It is now straightforward to generalize this concept to ob-

tain the density matrix for states of N correlated photons.
Using N polarimeters, we obtain the pattern of N-fold coin-

cidences to build up the coincidence vector C� N which is used
to find the N-photon Stokes vector and density matrix:

S�N = �N
−1 · C� N, �11�

��N =
1

2N�N · S�N = TN · C� N. �12�

Each row of the instrument matrix �N is given by
� 1

4b� i1
�

1
4b� i2

¯ �
1
4b� iN

� and each column of �N is the product

of N Pauli matrices �i1 � �i2
¯ � �in

�in=0,1 ,2 ,3 and n
=1,2 , . . . ,N�. This generalized approach will work for all
four-detector polarimeters in multiphoton analysis schemes
�Fig. 3�. We note that—although the polarimeters are optimal
for estimating single qubit states—it is an open question if
the scheme above is optimal in estimating multiphoton sys-
tems.

FIG. 3. Scheme for estimating the polarization state of an
ensemble of N-correlated photons using N polarimeters
�P1, P2, . . . , PN�. A multiple-coincidence circuit identifies the 4N

possible coincidence combinations. For photon pairs �N=2�, two
polarimeters are used, giving 16 possible coincidence combinations.
Several copies of the state are processed, giving a coincidence pat-
tern used in estimating the polarization state of the ensemble.
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IV. PHASE CORRECTION AND POLARIMETER
CALIBRATION

A. Removing unwanted phase shifts

In the presented polarimeter, an ideal PPBS has the nomi-
nal beam splitting ratio �5� and also rotates the polarization
state of light leaving the beam splitter into the correct polar-
ization basis �12�. Such beam splitters, however, are not eas-
ily available and their design is the focus of active research
�23�. We therefore use beam splitters with only the nominal
intensity splitting ratio.

A PPBS without a phase shift diverts light in state −b� jr

�which is conjugate to a tetrahedron vector b� jr� from detector
bj. General beam splitters, however, lack this phase-
preserving property. The result is that input of conjugate

states −b� jr does not stop light from reaching the associated
detectors. This suggests an easy alignment method for cor-
recting any unwanted phase shifts with birefringent compen-
sation plates.

For phase correction we first prepare high-quality
H-polarized light using polarizers of extinction ratio 105.
With one subsequent half-wave plate �HWP� and one
quarter-wave plate �QWP� we can then prepare any
polarization state on the surface of the Poincaré sphere.
Compensator plates �0.5-mm-thick quartz� mounted on rotat-
ing stages were placed at each output arm of the PPBS, and
light with a conjugate polarization state was sent to the po-

larimeter. For each polarization state −b� jr the compensator in
the relevant output arm was rotated until the detector bj
received no light. Two input states �one for each output arm�
were sufficient to compensate for the unwanted phase
shifts.

We verified the compensated polarimeter behavior with
linearly polarized light prepared using only the polarizer and
HWP �this reduces preparation errors due to residual errors
in the QWP�. The prepared states have a Stokes vector of the
form �1,cos 4� , sin 4� ,0�, where � is the angle of the HWP,
so the normalized response of detector 1, for example, will
be

I1 = 1 +	1

3
cos 4� +	2

3
sin 4� . �13�

Passively quenched silicon avalanche photodiodes were
used as detectors allowing us to perform photon counting.
The number of photons accumulated at each detector output
was noted for each angle of the HWP. The results are shown
in Fig. 4.

The results show that the response of the compensated
polarimeter is very close to ideal. The extrema of our mea-
sured intensities are less than 1° �of HWP angle� away from
their nominal positions. This means that our actual measure-
ment vectors are pointing in the same direction as the ideal
tetrahedron vectors, although their magnitudes will be differ-
ent due to imbalanced detection efficiencies. While this ren-
ders the asymptotic efficiency of our polarimeter less than
ideal, it still represents the optimal setup for the collection
efficiencies we can achieve. In other words, we are maximiz-
ing the volume defined by our experimental POVM vectors
�21�.

This measurement result is limited by the accuracy of our
rotation controllers. Our wave plates are mounted on rotary
motors with an accuracy of 0.3°. The polarizing beam split-
ters in the output arms have an extinction ratio of 104 and the
wave plates’ optical path lengths differ from their nominal
values by less than 2%.

B. Calibrating the polarimeter

We calibrate the instrument matrix of this polarimeter to
account for all residual phase shifts and coupling inefficien-
cies. A general calibration technique for four detector pola-
rimeters �“equator-pole method”� was described by Azzam et
al. �18�. Incidentally, the phase dependence measurement
shown in Fig. 4 was an essential part of this calibration.

Using this technique we are able to find the correction
terms needed to be made to our ideal instrument matrix. A
typical corrected instrument matrix is

FIG. 4. Instrument response of the polarimeter to linearly polarized light. The data points show the variation in relative intensity at each
detector with respect to the angle of the half-wave plate �HWP� in the polarization state preparation. The solid lines show the expected
intensity modulation for an ideal device for each HWP setting ��13��, scaled for appropriate detector efficiencies. Error bars are smaller than
the point markers. Panel �a� shows the relative intensity at detector 2 without compensation plates. Panels �b� and �c� are taken with
compensation for phase shifts. The oscillation in �a� is out of phase and also of lower amplitude compared to the phase-corrected behavior
of detector 2 in panel �b�. Plots in �c� shows a lower amplitude because light in the reflected arm is not projected on a linear polarization
basis.
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�c =
1

4�
0.962 1.051	1

3
0.920	2

3
0.005

0.991 1.031	1

3
− 0.956	2

3
− 0.005

1.010 − 1.045	1

3
0.005 − 0.945	2

3

1.032 − 1.009	1

3
0.029 1.011	2

3


 .

The uncertainty for each of the correction terms above is on
the order of 0.002. We see that the deviation from entries in
the ideal instrument matrix �4� is on the order of a few per-
cent.

The phase correction and calibration steps presented
above must take into account the wavelength of the input
light because optical elements are specified to perform only
within a certain bandwidth. The polarimeter was built to
study the polarization state of light coming from a spontane-
ous parametric down-conversion �SPDC� source �24� with a
spectral bandwidth of 4.740±0.014 nm centered around
702 nm. The same light source was used for phase correction
and polarimeter calibration and the experiments described in
the remaining sections.

V. EXPERIMENTAL STATE TOMOGRAPHY FOR
ENSEMBLES OF SINGLE PHOTONS

The ability of the tetrahedron polarimeter to estimate po-
larization states without bias was tested by preparing a set of
pure polarization states equally distributed over the Poincaré
sphere. In this way we could better identify regions that suf-
fer poor state estimation �if any�.

Computer-controlled motors were used to rotate wave
plates �after a H filter� in preparing the set of polarization
states. The Stokes vector of a pure polarization state can be

expressed as S� = �1,cos 2� cos 2��+�� ,−cos 2��+��sin 2� ,
−sin 2��+���, where � and � are the QWP and HWP angles,
respectively. Thus any set of coordinates �characterized by
the polar and azimuthal angles� on the Poincaré sphere can
be expressed in terms of the wave plate angles.

For each set of angles, the detectors accumulated photon

detection events for 1 s giving a particular vector I� from

which an estimated Stokes vector S�e and probability density
matrix �e can be obtained via Eqs. �3� and �6�. To calculate
the distance of the estimated state from the �ideal� prepared

state �i �S� i�, we use the Uhlmann fidelity, defined as

�tr�		�i�e
	�i��2 �25,26�. For pure states this quantity reduces

to the overlap of their Stokes vectors 1
2 �S� i ·S�e�.

The fidelity was mapped to the appropriate polar and azi-
muthal coordinates on the Poincaré sphere �Fig. 5�; linear
polarization states correspond to a polar angle of 0°. The
average fidelity for the whole map is 99.8% with a minimum

fidelity of 98.4% ±0.9% �the cumulative photon count per
point is approximately 2000�. There are no systematic areas
of low fidelity even when wedge errors in the state prepara-
tion wave plates cause count rates to drop. This indicates that
the polarimeter estimates all pure polarization states equally
well.

Fidelity does not distinguish between errors introduced in
state preparation from errors in the state estimation process.
Therefore we have characterized our state preparation appa-
ratus independently and are confident that their contribution
to the error in calculated fidelity above is on the order of
±0.01%. Thus we assign the residual difference in fidelity to
imperfections in the detection apparatus.

VI. EXPERIMENTAL STATE TOMOGRAPHY FOR A
TWO-PHOTON ENSEMBLE

We will now illustrate how to use two polarimeters to
perform polarization state tomography on a two-photon state
generated from an SPDC source. First, two polarimeters
were correctly aligned and after calibration their instrument
matrices were found to be

FIG. 5. �Color online� A set of polarization states �S� i� equally
distributed over the Poincaré sphere surface was generated; photons
from each of these states were sent to the polarimeter, from which

an estimated state �S�e� is obtained. The figure shows the fidelity of

the estimated state to the prepared state, 1
2 �S�e ·S� i�. It is roughly

constant over the Poincaré sphere, showing that the polarimeter is
an unbiased polarization state estimator.
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1

4�
0.903 0.927	1

3
0.9997	2

3
− 0.041

1.124 1.135	1

3
− 1.014	2

3
0.0602

0.995 − 1.079	1

3
0.001 0.913	2

3

0.978 − 0.983	1

3
0.003 − 0.936	2

3



and

1

4�
1.074 1.171	1

3
0.913	2

3
− 0.082

0.983 0.8804	1

3
− 1.044	2

3
0.004

1.082 − 1.172	1

3
0.001 − 0.9625	2

3

0.862 − 0.88	1

3
− 0.002 0.867	2

3


 .

We then arranged for the SPDC source to generate photon
pairs that are detected as a maximally entangled Bell state
��+�. Bell states created via SPDC are typically character-
ized by a polarization correlation experiment, from which a
visibility value can be obtained �24�. The visibility measured
in the HV and ±45° basis was above 97.7% ±2%; such a
high value is usually taken as evidence of a high degree of
entanglement.

The photon pairs were passed through the polarimeters
and the pattern of coincidences between them was observed.
The 16 observed coincidence rates �collected using the
scheme similar to �27�� make up the coincidence vector

C� =�21444, 1505, 24104, 26002, 979, 24716, 23210, 22447,
21661, 30752, 24061, 268, 19010, 23692, 339, 17695�.

Using this vector with Eqs. �9� and �10� we obtain the
density matrix whose real components are

Re��� =�
− 0.002 − 0.01 − 0.03 − 0.024

− 0.01 0.506 0.485 0.025

− 0.03 0.485 0.498 0.009

− 0.024 − 0.024 0.009 − 0.003

 ,

while the magnitude of the imaginary components are below
a value of 0.04 �see Fig. 6�.

The uncertainty in each of the above terms is on the order
of 0.011. The Uhlmann fidelity of this state to the ideal ��+�
state was found to be 0.990±0.014. Error bars in all cases
were computed by numerical derivation and propagated
Poissonian counting noise. The propagated error bars result
in an estimated density matrix compatible with the ideal
��+���+� state.

VII. CONCLUSION

In this paper we have illustrated a simple alignment pro-
cedure for optimizing the tetrahedron polarimeter. Phase

shifts introduced by a commercially available PPBS were
easily corrected by phase compensation plates in the output
arms. The response of the compensated polarimeter was
measured over a dense sampling of states on the Poincaré
sphere and found to be similar to that of an ideal device. This
shows that beam splitters need only have the nominal inten-
sity splitting ratio, making optimal polarimeters more acces-
sible.

We also described an instrumentally motivated method for
constructing the measurement operators governing light dis-
tribution to each output of the polarimeter. This instrument-
based approach also allows a convenient generalization to
obtain measurement operators governing multiphoton coinci-
dences. These operators can then be applied to the linear
reconstruction of multiphoton Stokes vectors and their den-
sity matrices.

Optimal polarimeters were then used for estimating the
polarization state of experimentally prepared ensembles of
single photons and photon pairs in a Bell state. The estimated
states were evaluated by computing their fidelity to the
�ideal� prepared states. We found an average fidelity above
99.8% in all our experiments. Thus we have built and dem-
onstrated the use of optimal four-output polarimeters in mul-
tiphoton polarization state tomography.

While preparing this document, it came to our attention
that a similar four output polarimeter was suggested indepen-
dently in a recent paper �17�.
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APPENDIX

To derive the intensity splitting ratio of the PPBS, we first
express the polarization states are expressed using Jones vec-

tors unless we are describing the tetrahedron vectors b� j. The

tetrahedron �Stokes� vectors b� j,k have the scalar product
property

b� j · b�k =
2

3
+

4

3
� jk. �A1�

FIG. 6. �Color online� The density matrix of a Bell state
��+���+� obtained by linear reconstruction from photon pairs.
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Recalling the parameters of the intensity splitting ratio of
the PPBS, x and y, we see that a general input polarization
state � 	



� leads to the polarizations � x	

y

� and � y	

x

� in the trans-

mitted and reflected arms of the PPBS, respectively. In our
polarimeter, light leaving the arms of the PPBS must be ana-
lyzed in two different polarization bases. Two orthogonal
vectors that form a basis may be expressed as � cos �

ei�sin �
� and

� −e−i�sin �
cos �

�. This leads, for example, to the normalized light
intensity falling on detector b1:

I1/It = �	x cos � + 
ye−i�sin ��2. �A2�

We choose a different measurement basis for detectors 3
and 4: for example, light reaching detector 3 is

I3/It = �	y cos �� + 
xe−i��sin ���2. �A3�

Using the vector b�1 as an example, Eq. �2� allows us to
express the operator B1 in terms of the measurement basis to
fulfill Eq. �A2�:

�B1� = �	x cos � + 
ye−i�sin ��2 �A4�

=��x cos � ye−i�sin ���	



�2

. �A5�

The following choice of B1 fulfills this condition:

B1 = � x cos �

y sin �ei� �x cos � y sin �e−i�� . �A6�

Since the tetrahedron can be oriented arbitrarily we
choose for convenience to measure the 45° linear polariza-
tion basis ��= /4, �=0� in the transmitted arm and the
circular polarization basis ���= /4 ��= /2� in the reflected
arm. This reduces the measurement operators to only the
beam splitting parameters x and y,

�B1

B2
� =

1

2
� x2 ±xy

±xy y2 , �B3

B4
� =

1

2
� y2 �ixy

±ixy x2  ,

which together with Eq. �2� allows us to express all tetrahe-
dron vectors in terms of x and y:

�b�1

b�2

� =�
1

x2 − y2

±2xy

0

, �b�3

b�4

� =�
1

y2 − x2

0

�2xy

 . �A7�

From Eq. �A1�, we can write

b�1 · b�2 =
2

3
, b�1 · b�3 =

2

3
. �A8�

This allows us to obtain an equation in x alone:

36x8 − 24x4 + 1 = 0. �A9�

The last equation gives two solution sets; we choose the
set where x2= 1

2 + 1
2	3

Þy2= 1
2 − 1

2	3
.
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