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Many papers have proven the security of quantum key distribution (QKD) systems in the asymptotic
framework. The degree of the security has not been discussed in the finite coding-length framework, suffi-
ciently. However, to guarantee any implemented QKD system required, it is needed to evaluate a protocol with
a finite coding length. For this purpose, we derive a tight upper bound of the eavesdropper’s information. This
bound is better than existing bounds. We also obtain the exponential rate of the eavesdropper’s information.
Further, we approximate our bound by using the normal distribution.
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I. INTRODUCTION

The quantum key distribution (QKD) was proposed by
Bennett and Brassard in 1984 [1] as a protocol (BB84 pro-
tocol) sharing secret keys by using a quantum communica-
tion channel. Their original protocol assumes a noiseless
quantum channel, but any quantum channel has noise in the
realistic case. Hence, the security of the BB84 protocol in
this realistic case had been an open problem for a long time
and was proved by Mayers [2]. He showed that the protocol
becomes secure when the protocol is constructed by combin-
ing classical error correction and randomly choosing a code
for privacy amplification. In his proof, the secure generation
key rate is 1 —h(2p)—h(p) where p is the qubit error rate and
h(p) is the binary entropy —p log p—(1—p)log(1—p) and the
base of the logarithm is 2. He also gave a bound of Eve’s
information for a finite-length code. His discussion was ex-
tended to a more realistic framework by Inamori, Liitken-
haus, and Mayers [3].

After Mayers’ proof, Shor and Preskill [4] proved the se-
curity based on the method of Calderbank-Shor-Steane
(CSS) codes [5,6]. Then, they proved the existence of a code
achieving the secure generation key rate 1-2h(2p) and
pointed out the possibility of the secure generation key rate
1-2h(p). After their discussion, treating the reliability of
CSS codes, Hamada [7] showed the existence of a code at-
taining the secure generation key rate 1-24(p). He also
derived a bound of Eve’s information for a finite-length
code, which yields the asymptotic secure generation key
rate 1-2h(p). However, he did not discuss the complexity of
the encoding and decoding [4,7], while the complexity of
privacy amplification is not so large in Mayers’ proof [2].

Following these researches, Christandl, Renner, and Ekert
[8], Renner, Gisin, and Kraus [9], and Koashi [10] showed
that the asymptotic secure generation key rate 1-2h(p) is
attained when the protocol is constructed by combining clas-
sical error correction and randomly choosing. However, they
did not give the bound of Eve’s information of the finite-
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length code, explicitly. S. Watanabe, R. Matsumoto, and
Uyematsu [11] considered Eve’s information for a finite-
length code based on random privacy amplification, which
yields the asymptotic secure generation key rate 1-24(p).
Renner [12] obtained a similar tact in a more general frame-
work. While Watanabe et al.’s bound goes to zero exponen-
tially, his bound does only polynomially.

On the other hand, Stucki et al. [13] demonstrated a quan-
tum key distribution over 67 km between Geneva and Lau-
sanne. Kimura et al. [14] succeeded with a 150-km QKD
transmission with an error rate of 8%—9%. Also Gobby et al.
[15] produced a 122-km QKD transmission with an error rate
of 8.9%. Tanaka et al. [16] demonstrated a continuous quan-
tum key distribution over 16.3-km commercial use fiber over
14 days, and Yuan and Shields [17] did it over 20.3-km in-
stalled telecom fiber in 19 h. In these experiments, they suc-
ceeded in realizing a real system that could become truly
secure if it had a coding system with infinite coding length.
Hence, there is no implemented system whose security is
guaranteed. Thus, it is required to realize the error-correcting
code and privacy amplification for guaranteeing the security
of the implemented QKD system.

However, the required sizes of the error-correcting code
and random privacy amplification are not clarified for a
given quantum bit error rate—e.g., 8%. Therefore, many
QKD experimental researchers want to find a tighter upper
bound of Eve’s information for given sizes of the classical
error-correcting code and random privacy amplification.

In this paper, we derive an upper bound of Eve’s informa-
tion satisfying the following conditions: (i) The upper bound
depends only on the size of random privacy amplification.
(ii) By using this bound, the key generation rate 1-2k(p) can
be attained. In fact, Mayers’ discussion [2] gives the upper
bound in the finite-length case, but his discussion yields the
rate 1 —h(2p)—h(p) not the rate 1—2h(p). The discussion by
Watanabe et al. [11] yields the rate 1—2k(p), but the bound
depends on the error correction. Koashi’s discussion [10] sat-
isfies conditions (i) and (ii), but his discussion does not
clearly give the bound in the finite-length case. Further, the
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protocol in his paper [10] and his older paper [18] is slightly
different from the simple combination of the classical error
correction and random privacy amplification. Our upper
bound is also better than that by Watanabe et al. [11].

Moreover, it is shown that our evaluation cannot be fur-
ther improved in the sense of the exponential rate when the
classical error-correcting code satisfies a specific condition.
(For example, several degenerate codes do not satisfy this
condition.) In this case, the exponential rate of our upper
bound of Eve’s information can be attained by a collective
attack, which is realized by an individual operation to the
channel and the collective operation to Eve’s local memory,
while our bound is valid even for the coherent attack, which
includes any of Eve’s attacks allowed by the physical prin-
ciple. That is, any coherent attack cannot improve the best
collective attack in the sense of the exponential rate of Eve’s
information. Indeed, Renner er al. [9] proved that it is suffi-
cient to show the security for collective attacks for the treat-
ment of the asymptotic key generation rate since any channel
can be approximated by a separable channel by using ran-
dom permutation. This result can be regarded as the exten-
sion of the result of Renner et al. to the exponential frame-
work. Also, this implies that our evaluation gives the optimal
(minimum) exponential rate of Eve’s information.

There is another type of asymptotic treatment other than
the exponential treatment. In statistics, when the variable
obeys the independent and identical distribution, its distribu-
tion can be approximated by the normal distribution. We also
succeeded in approximating our upper bound by using the
normal distribution. In this approximation, we treat the
asymptotic behavior when the size of the random privacy
amplification is given as the form 2"1Px+€Px)] for the esti-
mate p, of the phase error rate while in the large-deviation
case (the exponential-rate case) we treat it when the size is
given as the form 2P +Ep)! \“‘”], where € and € are functions
of p.

Here, we should remark that our results cannot be ob-
tained by a combination of existing results. The main tech-
nical point is the relation between Eve’s information and the
phase error probability, which is given in lemma 2. Owing to
this lemma, Eve’s information can be bounded without any
discussion of the classical error-correcting code for bit er-
rors. Further, in association with the error correction of the
phase error, we obtain an upper bound of the average error
probability of a modified random coding when minimum
Hamming distance decoding is applied (lemma 1). Combin-
ing these techniques, we obtain the upper bounds (theorems
1 and 2) through a long careful derivation.

In the following, the organization of this paper is ex-
plained. First, we briefly explain classical error-correcting
code and describe our protocol using this knowledge in Sec.
II. In Sec. III, we give an upper bound of Eve’s information
per one code and that of Eve’s information per one bit. The
random privacy amplification corresponds to the random
coding concerning the phase error. Hence, we treat the aver-
age error of random coding in Sec. IV. The generalized Pauli
channel is known as an important class of noisy channels. In
the quantum key distribution, the noisy channel does not
necessarily belong to this class. However, if we use linear
codes, we can treat any noisy channel as a generalized Pauli
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channel. We summarize the notations and properties of the
generalized Pauli channel in Sec. V. In Sec. VI, we prove the
main theorem by assuming an upper bound of Eve’s infor-
mation when Eve’s attack is known. In Sec. VII, we derive a
relation between the phase error and Eve’s information. In
Sec. VIII, the bound used in Sec. VI is proved by using the
properties of a generalized Pauli channel, the bound of the
average error, and the relation obtained in Sec. VIIL.

Further, we give the asymptotic behavior in the two
asymptotic frameworks in Sec. III. Asymptotic formulas for
a large deviation and limiting distribution are proved in Ap-
pendixes A and B, respectively. Based on this evaluation, we
compare our large-deviation bound with the bound by Wa-
tanabe, Matsumoto, and Uyematsu [11]. Further, in Sec. IX,
we prove that the exponential rate of our bound of Eve’s
information can be attained by a collective attack under a
specific condition.

II. PROTOCOL

In this section, we describe our protocol. Since our proto-
col employs the method of the classical error-correcting
code, we first explain the classical error-correcting code in
preparation of a description of our protocol.

A. Classical error-correcting code

When the noise in a binary signal F,={0, 1} is symmetric,
the binary channel is described by a probability distribution
{p,1-p}. In this case, when we send a binary string (in F?),
the noise can be described by a binary string N and is char-
acterized by the distribution P on Fj. Then, when the input
signal is described by the random variable X, the output sig-
nal is described by the random variable X+N. The error-
correcting code is a method removing the difference N. In an
error-correcting code with n  bits, we prepare an
m-dimensional linear subspace C of F5, and the sender (Al-
ice) and the receiver (Bob) agree that only elements of C is
sent before the communication. This linear subspace is called
a code or a [n,m] code. In this case, an encoding is given by
a linear map G(C) from F3' to C. Of course, the map G(C) is
given as an m X n matrix with 0,1 entries. Hence, when Bob
receives an element out of C, he can find that there exists a
noise and choose the most probable element among C based
on the obtained binary string. Here, we can correct only one
element among each equivalent class [X] e F3/C. More pre-
cisely, we choose the most likely noise I'([X]) among each
equivalent class [X]. This element is often called the repre-
sentative, and the set of representatives is denoted by I'.
More generally, the decoding process is described by a map
D:F,—F}.

Hence, when Bob receives X+N, he decodes it to X+N
~-I'((X+N])=X+N-T'([N]). Thus, the decoding error is de-
scribed by the behavior of the random variable N-I'([N])
and does not depend on the input signal X. When the noise
belongs to the set I', we can properly correct the error. The
error probability is equal to 1—P(I).

Suppose that there exists an eavesdropper (Eve) obtaining
some information concerning the original signal X. In this
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case, we prepare a linear subspace C’ of C and Alice sends
the information as an element of C/C’. That is, when he
sends a piece of information corresponding to [X]e C/C’,
he chooses one element among [X] with equal probability
and sends it. This operation is called privacy amplification.

B. Our protocol

Using this method, we can reduce Eve’s information.
However, it is not easy to evaluate how much information
Eve has in this case. The purpose of this paper is evaluating
Eve’s information. In this case, the probability that Bob re-
covers the original information correctly is equal to P(I"
+C"), where T'+C":=={T'([X])+X'|X e F4,X' € C'}. In addi-
tion, when we choose each linear subspace C’ of C wit~h
equal probability and we regard C as F3' and C/C" as F3™",
the function from F5' to F?"ﬁ is called the universal hashing
function. For example, this function is can be constructed as
an (m—m) X m matrix by choosing elements with a uniform
distribution.

Using this preparation, we briefly describe our protocol
for the quantum key distribution that can be realized by
small complexity. After this description, we present it pre-
cisely. In our protocol, after quantum communication, Alice
and Bob check their basis by using a public channel, an-
nounce a part of the obtained bits, and estimate the bit error
rate p, and phase error rate p.. Here, we denote Alice’s
remaining bit string with the + basis and the X basis by X,
and X, respectively. Similarly, we denote Bob’s remaining

bit string by X , and X . These bit strings are called raw keys.
Hence, the rates of 1 in the difference N,=X +—§ + and the

difference NX=XX—§X are almost equal to p, and p,, re-
spectively.

Using the following process, Alice and Bob remove their
errors and share the bit string with almost no error. Alice
generates another bit string X' and sends the bit string K
:=X"+X, to Bob. Based on the information K, Bob obtains
the information X”:= K —f+=X "+N,. Using this method, we
can realize a classical channel with input X’ and output X”.
The error rate of this channel is almost equal to p,. By ap-
plying a classical error correction to this channel, Alice and
Bob can share a bit string with almost zero error. In this case,
Alice generates an element X' € F7'=C and Bob recovers
X"=D(X"). Then, X" coincides with X’ in a high probability.
Finally, Alice and Bob perform the above-mentioned hashing
function for their respective keys. That is, Alice generates a
(m—1) X m matrix A with rank m—[ randomly and sends this
matrix. Then, Alice and Bob obtain their final keys AX' and
AXII/'

Therefore, the rate of the final key to the raw key is equal
to R =ml—1_l. Roughly speaking, it is suitable to choose m as an
integer a little smaller than [1—A(p,)]n and /7 as an integer a
little larger than h(py)n. Then, the generation rate R is al-
most equal to 1-h(p,)—h(py).

In the following, we describe our protocol more precisely.
For this purpose, we need some mathematical notations. The
quantum system of each quantum signal is the two-
dimensional Hilbert space H,, which is spanned by {|a)}, ey
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We need to fix the integers n,, [, m,, ny, I«, and my, which
describe the size of our code. For a classical error correction,
we choose an m,-dimensional classical code C, , in F5* (an
m-dimensional linear space C;, of F3*) and an
my-dimensional classical code C; x in F5*. We also fix the

thresholds k,, la, kx, and ky and the allowable statistical
fluctuation &, for each count k of error.

(i) The sender, Alice, and the receiver, Bob, repeat steps
(i1)-(iv) for each i.

(ii) Alice chooses a random bit a; and a random bit b;.

(iii) Bob chooses a random bit ¢;.

(iv) When b;=0, Alice sends the quantum state |a,), oth-
erwise the state %( 0)+(=1)%|1). In the following, {|0), [1)}
is called the + basis and {%(|0>+|1>),é(|0>—|1>)} is called
the X basis.

(v) Alice and Bob announce b; and ¢; and discard any
results for b;# ¢;. They obtain n, +1, bits sequence with b;
=¢;=0 and ny+[ bits sequence with b;=¢;=1.

(vi) Alice randomly chooses /, check bits X, .{,...,X vel,
among n,+I[, bits with the + basis and /4 check bits
X o152 Xx cg, among ny+1y bits with the + basis, an-
nounces the positions of these bits, and sends their informa-
tion. They obtain the estimates p, and py with the respective
basis. That is, they count the number of error bits k.

=[{iX 4 ci# Xo e and ke=[{ilX x c;# X o3|, where X, .
and Xy . ; are Bob’s check bits. However, when k, is greater

than the threshold k,, they discard their remaining bits with
the X basis. When k is greater than the threshold ky, they
discard their remaining bits with the + basis. Further, when
k, is less than the other threshold k,, they replace k, by k..
When k is less than the other threshold k., they replace &
by kx.

In the following, we treat only the bit string of the +
basis. We denote Alice’s (Bob’s) remaining n,-bit strings
with the + basis by X, (X,). After this process, they apply
the same procedure to the remaining bit strings with the X
basis.

(vii) Alice generates Z, € F7'* randomly and sends Bob
G(C,)Z,+X,.

(viii) Bob obtains the signal G(CH)ZJr+X+—)?Jr e F)+.
Performing the decoding of the code C; ,~F3", he obtains
Z, e F7'+.

(ix) Alice chooses m:=nyh(ky/ly+ 6k><) dimensional sub-
code C, (Y, ky) CF5* based on random variables Y, such
that any element x # 0 € F5* belongs to C, (Y, k) with the
probability _znw(k;:j:ka)_I

(x) Alice obtains the secret
= [Z+]C2,+(Y+,k><) € F?*/C2,+(Y+,kx)~

(xi) Bob obtains the secret
= [Z+]C2Y+(Y+,kx) eFy+/ C2,+(Y+’k><)-

For example, an s-dimensional code C,(Y,s) in F5* is
constructed based on k random variables Y:=(X|,...,X;) in
F7+ as Cyo(Y,s):=(X;, -+, X,), where Y obeys the uniform
distribution on the set {Y|X,,...,X, are linearly indepen-
dent.}.

information Z,

information Z,
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C. Extension of our protocol

Indeed, in the realistic case, the bottleneck is often the
estimation error of the error rate. Hence, in order to decrease
the error of the estimation of the phase error rate py, we
propose the following the modified protocol for any integer
a. In the modified protocol, we repace steps (v) and (vi) by
the following and add step (xii).

(v) Alice and Bob announce b; and ¢; and discard any
results for b, # ¢;. They obtain an (an, +1,)-bit sequence with
b,=¢;=0 and an (any+1,)-bit sequence with b;=¢;=1.

(vi) Alice randomly chooses 7, bits among remaining an,
bits with + basis and obtain n, bit string X,. She also sends
the her positions to Bob. Bob obtains the n,-bit string )?Jr.
They do the same procedure for the X basis.

(xii) They repeat steps (vii)-(xi) a times.

In the above protocol, the estimation of the phase error py
has the same accuracy as that of the first protocol with al
check bits of the X basis.

III. SECURITY

In this section, we evaluate the security of our protocol. In
the following, for simplicity, we abbreviate [, and n, by [
and n, respectively.

A. Finite-length case

The security of this protocol is evaluated by the mutual

information 1(Z, , Z) between Alice’s final key Z, and eaves-
dropper (Eve)’s information Zg. It is mathematically defined
by

Z,,Zp) =~ 2, P(Zp)log P(Zg)

Zg
+ 2 P(Z,) X P(Zi|Z,)log P(Z,|Z,).
Z, ZE

In order to evaluate this value, we have to treat the hyper-
geometric distribution

k k
P(8,n,1,k,k) = max E(E Pk, L) f(G = kkln,.8) + 2 Pk
] k=0

J k=k+1
k

P (k

n’l’J)f(.] - l_(’l_(
J k=0

and

flk' k

_ h(x) x <172,
h(x) =
1 x=1/2,

Further, Eve’s information per one bit is evaluated as follows.
Theorem 2. When R is the rate of the code C;, we have

(Z,,Zg)

n,L,3)n[R = h(kIl+ 5)]+ 2 P,k
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o

This is because the random sampling obeys
the hypergeometric distribution. It is known that its

Phg(k|n’l’.]) =

; . . L)
n—’fl and its variance is (nj+1)2(T—1)
focus on the average of Eve’s
Epos, ko7 Jpos kv, [I(Z, . Zp)] for each n,l, where pos, and
posyx are the random variables indicating the positions of the
check bit of X basis and + basis, respectively. Some papers
[2,4,10,11,18] guarantee the security by proving that for any
€,>0 and €,>0 there exist integers n and [ such that

average is In this paper,

we information

PU(Z,.Zp) = &) < €. (1)

Indeed, when Ejo i v [pos, kv [I(Z:.Zp)]< €&, Mark-
ov’s inequality guarantees the inequality (1). Hence, we can
recover the probabilistic behavior (1) of Eve’s information
from an evaluation of the average of Eve’s information.
Therefore, in this paper, we concentrate the evaluation of the
average of Eve’s information.

Theorem 1. When R is the rate of the code C, and the

threshold k is less than %, we have
Eposx,kX,Y+|p05+,k+,Y><[I(Z+’ZE)] = P(&,I’l,l,l_{,l;), (2)

where

n,Lj)f(j—k,k

n,l, 5]{))

k

n, L) = k.kln,1,8)n[R - h(k/l + &,)]

k=k+1

if k' =n/2.

min{zn[h(k'/n)—h(k/l+6)] l} if k' <nl2,
n,l,0) = ’

E
DOS ks ¥ D08, Ky Y [ n[R — h(kylly + & )]

] < P(8,n,L,k.k),
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where

P(8.n,1,k.k) := max —————————
i n(R=h(kil+ &)

k=0

k
+max| >, P (k
J k=0

I’l,l,])f(j - ]_{,]_{

The proofs of these theorems are divided into two parts:
(i) The security of the known channel (Sec. VII) and (ii) the
security of the unknown channel, which is given by estimat-
ing the channel and employing part (i) (Sec. VI). For a treat-
ment of the quantum channel, we prepare the notations of the
generalized Pauli channel in Sec. V. For a discussion of part
(i), we derive a bound of the average error concerning the
classical error-correcting code in Sec. IV and a bound of
Eve’s information using the phase error in Sec. VIIL.

B. Approximation using the normal distribution

In the following, we calculate the above value approxi-
mately. For this purpose, we choose two probabilities p<p

<% and a continuous function p~> &(p). When k=pl, k=pl,

n é(p) . . .
=" and 6,{:7%, as shown in Appendix A, we obtain
~ - Vr(l =r
lim P(8,n,l,k,k) = max @(— %E(p)), (3)
n— pelp.pl \p(1=p)

where the distribution function @ is the standard Gaussian
distribution:

]
D(x) := f ,:e_"zlzdx.
—w 27T

Hence, in order to keep the security level e per one bit, it is
suitable to choose & to be

n,l,5k)+ E Phg(k
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k k
. N
h(E Pkl LG = kKm0, 8) + 2 Py(kln L j)f(j — k.k n,l,5k))

k=k+1

k

n, L)) f(j - k,k|n,l,5)

k=k+1

k<l E)

1 l l [ |k k

- = q)_l(e):—\lu\/—<l——)<b—1(s)
Vn+l n 1 nl [ l

n+ln+l

when P(8,n,1,k,k) can be approximated by the right-hand
side (RHS) of Eq. (3). That is, our upper bound is almost
determined by [ynl/(n+0)(k/1)(1-k/1)]8,.

Now, we consider the case when we use a low-density
parity-check (LDPC) code as the code C, [19]. In this case,
the case of R=0.5 and n=10 000 is one realistic case. As a
realistic case, let us consider the case [=1000, p=0.075,
ﬁkX:O.Ol. Then, we have

The security level

is not sufficient.

However, it is not easy to increase the size n. Hence, we
adopt the modified protocol. In this case, we replace only [
by the following values (in the case of /=20 000, the security
level is almost 0.001):

I 1000 10 000 20 000 30 000 40 000 50 000
- & ~1.14 2.68 3.10 3.29 4.00 3.47
Vi0D
nl
of - Jﬁﬁ 0.126 0.00363 0.000968 0.000505 0.000342 0.000264
U
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C. Large deviation

Next, we focus on the large-deviation-type evaluation.
Choose a function p € [p,p]— €(p) and define

E(er,p,p):= min  (h{p+rle(p) - €]} - (1 -r)h(p)

pelp.ple'=0

—2rh[p + e(p) — €' ]+ rh[p + €(p)]).

When k=pl, r=-5, and 5,(:6(1?), as shown in Appendix B,
we obtain

E(e,r,p,p) = lim -’ log P(8,n,1,k,k). (4)
- n

n—o

Further,

P(8,n,Lk,k) < k(n+1+ )n[R - h(p + 5,)]2"Eer2D

+ hlk(n + 1+ 1)2CEereD ©)

Hence, given a fixed real number E, it is suitable to choose
€(p) satisfying that

E=min(h{p + rle(p) - €']} = (1 = r)h(p)

€'=0

—2rh[p + e(p) — € 1+ rh[p + €(p)])

for any probability pe[p,p]. Further, when e(p) is
sufficiently small, using the relation d(plq):= plogg

_ (p—9) . .
+(1-p)log i_q = p(1-—pq)1nz’ we have the approximation

Mp +rlelp) — €1} = (1 = nh(p) - rh{p + [e(p) — €']}
+rhlp + €elp)]-rh{p +[e(p) — €1}
=(1=rdiplp +rle(p) - € I} + ra{p + e(p)|p + re(p)
— €l +r(hlp+ep)]-h{p +[ep) - €'1})
rle(p) - €T (1-r)[elp)- €T
p(1-p) p(1-p)

=(1-r) +rh'(p)e’.

In this approximation, when €(p) is small enough, the mini-
mum is attained at € =0. Hence,

min(h{p + {e(p) — €' 1} — (1 = r)h(p) — rh[p + €(p) — €']

€'=0
+rh[p + €elp)]—rh[p + e(p) — €'])
=hlp +re(p)]- (1 =r)h(p) — rh[p + €(p)]. (6)

The maximum value of €(p) satisfying Eq. (6) corresponds to
the critical rate in the classical channel-coding theory [20].
Therefore, when the number €(p) is sufficiently small for
each p € [p,p], we obtain
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E=h[p+re(p)]- (1 =r)h(p) —rh[p + €(p)]

_ (1= e(p)® i
= log 2+ re@l - ey 727
(7)

Hence, in this case, in order to keep the exponential rate E,
we choose €(p) as

B (In2)Er(1-2p)
" 2[r(1=7) + (In2)EF?]

V(In 2)2E%2 +4p(1 = p)r(1 — r)(In 2)E
2[r(1 -r) + (In 2)Er?]

q 1_
ELJ\/(IHZ)E as E—0.
Vr(l=7)

e(p)

Here, we compare our bound with that by Watanabe, Mat-
sumoto, Uyematsu [11]. Since their protocol is different from
our protocol, we compare our protocol with their protocol
with the same size of code. This is because the size of the
code almost corresponds to the cost of its realization. Then,
their case corresponds to our case with p=p=p and [=n.
They derived the following upper bound (8) of the security
in their protocol when the codes C, C C; satisfy the follow-
ing conditions: The codes C,/C, and C;/Cj have the de-
coding error probability € when the channel is the binary
symmetric channel with error probability p:

Epos>< Ky |pos+,k+[l(z+,ZE)]

2
< h(Z(g + 1) e+4(n+ l)ze‘[f(l’)z/“]")
n 2 2
+4n| ~ +1] e+ 8n(n+ 1)%e 1w/, (8)
2

However, even if the error probability & is zero, our evalua-
tion (5) is better than their evaluation (8). In particular, when
€(p) is sufficiently small, we can use Eq. (6). From Pinsker’s
inequality (In 2)d(p||q) = (p—q)?, [20] our exponential rate is
evaluated as

20+ re(p)] - (1= (o)~ rhlp + (o))

=21 = ndplp + re(p)] + ralp + )l + re(p)])

2
= (1-nepr= "2

L . e(p)’ .
which is greater than their rate —— even in the case of
€' =0. Further, our coefficient is smaller than their coefficient

in this case as follows:
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k(n+1+1)n[R- h(p+ 6,)] < pn(n+n+1)nR < 8n(n+ 1)%,

k(n+l+1)=pn(n+n+1)<4(n+1)>

because p<1/2.
Hence, in order to obtain a tighter bound, it is better to use
our formula (2).

IV. ERROR-CORRECTING CODE
A. Type method

In this section, we treat the classical error-correcting code.
For this purpose, we review the type method for binary
strings. For any element x € F3, we define |x|:=[{i|x;=1}|
and T¥:={x e F}||x| =k}. Further, the number of elements is
evaluated by

1
n+1

Znh(k/n) < |Tﬁ| _ (Z) < |Uk/gk7—k’| < 2nh(k/n) (9)

for k<n/2. For any distribution P on F’, we define the dis-
tribution P on {0,...,n} and P, on Tfj as

P(x)
3 —, ifxeT,
P(k) = P(T),  Pyx) = P(k)

0, otherwise.

Hence, we have

P(x)= 2 P(k)Py(x).
k=0

B. Bound for random coding

In this paper, we focus on linear codes, which are defined
as linear subspaces of F’. For the preoperation of the follow-
ing section, we consider the error probability when the noise
of the classical communication channel is given as a classical
channel W (a stochastic transition matrix) on F7. If a channel
W is written by a distribution Py, on F as

W(y|X) =Py(y-x),

it is called an additive channel. For an additive channel W,
we define the following distribution:

Pyy(k) = Pyfx||x| = k}.

In order to protect our message from noise, we often restrict
our message to be sent in a subset of F;. This subset is called
a code. When the noise is given by an additive channel, a
linear subspace C of F is suitable for our code because of
the symmetry of the noise. Hence, in the following, we call a
linear subspace C of F’ a code.

Now, for a preoperation of the following section, we con-
sider the error-correcting code using a pair of codes C| C C,.
In order to send any information [x,], € C,/C,, we send x,
+x, by choosing x; € C| with a uniform distribution, where

PHYSICAL REVIEW A 74, 022307 (2006)

[x]; denotes the equivalent class divided by C;. In this case,
the decoder is described by the map D from F} to itself.
When the channel is given by W, the average error probabil-
ity is

S LS S Wolnmen.

P,y(D)= "
‘ |CZ/C1|[X2]1€C2/C| |C1|)CIEC| D(y)#[x,]

However, we often describe our decoder by the coset repre-
sentative I'([x],) for each [x], € F5/C,. That is, when the

decoder receives the element y, he decodes it to
D" (y)=[y-T([y],)];. When the channel is given by a addi-
tive channel W, the error probability is

P,w(D")=1-Py(T+C)),

where T:={[([x],)|[x]; e F5/C5} and T+C;={x+x|xeT,
x; € C,}. For example, when we choose the minimum Ham-
ming distance decoding Dcc,»

Dcyc,(v) = argmin  min [y - (x; +x,)|.
x]1€C,H/Cy x1€Cy

By using the map I'([x],),

I'([x],) = x + argmin|x + x,
xpeCy

)

it can be written as
Deye, ) =ly-T(y1)]-

In the following, we denote the above I' by Fcz'

Now, we consider the average error when we choose the
larger code C, randomly.

Lemma 1. Let C; be a arbitrary [n,7] code (C; CF3). We
randomly choose the (7+1)-dimensional code C,(X)D C,
such that any element x € F5\C| belongs to C,(X) with prob-
ability % Then, any additive channel W satisfies

Ex[Pe,W(DFCZ(X))] =E4[1- PW(FCZ(X) +C))]

n

< 2 Pylk)g(2""
k=0

n,k),

where

min{2"® )y 1}, k<|n/2],
1, k> n/2).

Proof. Let T} be the set {xeF}||x|=k}. Then, P(x)
=3/_oP(k)P(x). Hence, P(Fcz(x)*‘C1)=EZ=0P(k)Pk(Fc2(X)
+C)).

Indeed, if y e T CF} does not belong to Fcz(x)+C1s there
exists an element x € C,(X)\C; such that |[y—x|<k. Hence,
the probability that at least one element belongs to the set
{x[[x—=y| <k} is less than 2”’1("/”)% for k<n/2 because
[{xllx=y| <k} =[{zllz| <k}/<2"®" [see Eq. (9)]. There-
fore,

g(xln.k) =

022307-7
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21+t _ 2t
i
=< 211h(k/n) -2
2n 2!
I+t
h(kin)Z__
<" h(k/n) >

for k=<n/2, where the last inequality follows from [+ft<n.
This value is also bounded by 1. Hence,

Ey1- Py + C)]=2 P(KEL[1 - PiT ey + Cy]
k=0

< E ﬁ(k)g(f”_" n,k). u

k=0

V. GENERALIZED PAULI CHANNEL

In this section, for the preparation of our proof, we give
some notations concerning generalized Pauli channels. In or-
der to describe it, for any two elements x=(x;,...,x,) and
y=1,-..,y,) € Fy, we use the product

n
X-yi= E XiYi-
i=1
Thus, the space H3"=(C2)®" is spanned by the {|x)}x€Fg.
Now, we define the unitary matrices X* and Z*° for x, z
eF) as

XYx') = |x" = x),

Z)y= (- 1"

x').
From the definition, we have the relation [21]
(szz)(xx’zz’) =(- 1)x-z'—x'-z(Xx'Zz')(szz)'

When the channel A has the form

Ap)= 2 Pax2)(XZY)p(XZY),

X,Z ng

it is called a generalized Pauli channel. Indeed, a generalized
Pauli channel is the quantum analog of an additive channel.
In fact, it is known [22,23] that the channel A is a general-
ized Pauli channel if and only if

A(p) = (X*Z) A(X*Z)p(X*Z))(XZ7), Vx,zeF,.

(10)

For any channel A, we often focus on its twirling A, defined
as

PHYSICAL REVIEW A 74, 022307 (2006)

1
Ap) = Py > A%(p),

X,2 eF'zl

A¥(p) = (X A(XZ)p(XZ) ) (X'Z),

From Eq. (10), the twirling A, is always a generalized Pauli
channel.

In the treatment of generalized Pauli channels, the distri-
bution P,(x,z) is important. Hence, we introduce some no-
tations for this distribution. We define the distributions
P x(x) and Py 4(z) as

PA,X(-x) = 2 PA(.X,Z), PA,Z(Z) = 2 PA()C,Z).
Zng xng
These are called marginal distributions. We also define the
conditional distribution as
Py (x,2)
P A,x(x) .
Next, we treat a generalized Pauli channel A on the tensor

product system (C?)®"1® (C?)®"2. In this case, we use the
following notation:

Py 7x(zlx) =

PA,l(-xlle) = 2 P(x1X2,2122),
xz,zzeFZZ
PA,z(xz,Zz) = 2 P(x1X2,2122),

XI,ZIEF;]

PA,X,i(xi) = 2 PA,i(xi»Zi)’

z,eFZ"

PA,Z,[(Zi) = 2 PA,i(xi’Zi),

xieF;’

Pyziolknky) = 2 1"/\,2(7?l X 7%) (11)

x;:F;”

2x2:=F;2 PA,I\Z,z(xlxz,Zﬂz)

s

P jza(x1.21]20) = P
Az2(22

Py z1122(z1]20) = > P 1z2(x1.21]20).
x1==F;|

Note that P A.z.12 1s different from P A.z- These notations will
be used in the following sections.

VI. PROOF OF THE MAIN THEOREM

A. Modified protocol

In this section, we prove theorem 1 by treating the secu-
rity of the following protocol. In the following protocol, we
fix the generalized Pauli channel A from an n-qubit system
to itself.
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(i) Alice generates Z, € Fy randomly and sends Bob
G(Cy)Z, e F}, with the + basis through the n-qubit general-
ized Pauli channel A.

(ii) Bob measures the received n qubits with the + basis.
Performmg the decoding of the code C;=F7, he obtains
Z, eF.

(iii) They do processes (ix)—(xi) of the previous protocol.
In this case, we assume that the dimension of the code C,
[the subcode C, (Y,)] is 1(s).

This protocol is the special case that the channel is
known.

For any channel A from the system H to itself, the state
of the environment system can be described by using its
Stinespring representation (Hy, U

Alp) =

That is, the state of the environment system is characterized
by another channel Ag(p):= TrypUp® |0)5(0|U".

In this above protocol, the distribution of Eve’s signal Zp
is described by a positive-operator-valued measure (POVM)
My, on Hp as P(Zg|Z)=Tr M ZEAE(pZ). Therefore, in order
to evaluate the classical mutual information /(Z,Z) it is suf-
ficient to evaluate the quantum mutual information (Holevo
information)

1(z] € CYCy(Y),pS2 M ([2])
1

Try, Up ® |0)p(0|U".

— > T (2D (log 5 ([2])
2" e ceyy)

~log p§152Y), (12)
where
pCie (v)
A2 =2y Asle+ )+ zal)
and
CICH(Y CICH(Y
PAlE o 2' s &[] C/CH(Y) PAlE 2 )([Z])-

In the following, we often abbreviate (12) as Iy(Z,Z).
Theorem 3. We can evaluate Eve’s information as follows:

Ey [I([z] € C/Cy(Y,.9).p55 2" ([2]))]

n
D -5
S My B s ,
k=0

where m=dim C, and 7, is defined as

(x) = h(x) + kx.
This theorem will be proved in Sec. VIIL

B. Proof of theorem 1

Now, we back to our main protocol. First, we fix the ran-
dom variables pos, ,k,,Y . Then, it is sufficient to treat the
quantum system of n,+/x qubits. In the following, we char-
acterize the system of raw keys C” by the subscript k and the

PHYSICAL REVIEW A 74, 022307 (2006)

other system of check qubits C’< by the subscript c.

Hence, we denote the quantum channel of this system by
A. Note that A is not necessarily a generalized Pauli channel.
In the following, we abbreviate [y«,posx,kx,Y, by
l,pos,k,Y, respectively.

In this case, the variable pos takes a subset of / elements
{iy,...,ipC{1,...,n+I}, where i; <--- <i, Then, we define
the unitary matrix U, as

Upos(tj, ® == @ u; @ u; ® *+ ® Uy

where {j;,...,j,}={i;,..., i} and j, <---<j,. Every subset
is chosen with the probablhty 1/ ("”) We also define the
channel AP for any channel A as

Apos(p) = pos(A(UpospUpos))Upos
Then, we can show that

(AP%), = (AP, (13)

Quj)=u;® -

Hence, any generalized Pauli channel A satisfies

Epos[ﬁAP"S,Z,k,c(kk’kc)] = ﬁA,Z(kk + kc)Phg
(14)
where we used the notation given in Eq. (11).

Now, we consider the case where Alice and Bob choose a
variable pos and obtain the difference z. between their check

bit with the X basis. When k< |z,|<k, the average of Eve’s
final information is evaluated as

o fceroalion))

n
<h ( > P (o ypos zklz.c(k |z,
k=0

Pz ]))]

'||n’lv 5]())

+n[R - h(|Zc|/l + 5k)]2 ﬁ(A,)POS,Z,k\Z,C(HZc)
k=0

). (15)

When |z.| <k, we obtain

{ ([z] eC /CQ(Y+,nh(k + 5k)) p(CA’f;%fY)E([z]))]

n
< E(E P yoos zijz.o(Klzo) f(k, k|, 1, 5 )
k=0

n

+n[R = h(k/l+ 812 Pa yoos zijz.e(klzo)
k=0

(16)

Of course, when |z.| >k, the average of Eve’s final informa-
tion is equal to zero because any information is discarded in
this case. Inequalities (15) and (16) will be shown in Appen-
dix C by using theorem 3.

Finally, we take the expectation concerning z,. and pos:
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Epos By [1([2] & CUCHY [z i1+ 8, ), p( D p([2])]

J

k
+max| >, P, (ke
i Li=o

k

+ E Phg(kc
k=k+1

k
i L k=0
n,Lj)n[R = h(k/l + S)1f(j - k.k

nL)n[R = h(k I+ 811G ~ k..k,

i
nlL&)+ 2 Pyglicc|n, L) FG = keokeln. 1 8;) )
k=k+1

n, l, 5]5,)

I’l,l, 6k+c) . (17)

This inequality will be proved in Appendix D. Hence, we obtain theorem 1. Similarly, we have

1([z] € CUCKY nh([z 11+ 8, ). p 2 (D)

E...E.E
posEz. y+[ n[R = h(kx/lx + 8 )]

k

| ~ k

< — h(max > P (k.
n[R - h(k/lx + &;)] J Lk=0

k k

+max| X Py (k|n,Lj)f(k.k
J L k=0

This inequality will be proved in Appendix D. Hence, we
obtain theorem 2.

VII. SECURITY AND PHASE ERROR

In this section, we treat the relation between Eve’s infor-
mation and the phase error. This relation is one of essential
parts for theorem 3. The purpose of this section is proving
the following lemmas [29].

Lemma 2. Let A be a generalized Pauli channel on the
system (C2)®". Then, we have

I(x € F3, Ap(|xXx])) < m,[1 = Pp £(0)]. (19)

Since 1-P, z(0) can be regarded as the phase error, this
lemma gives a relation between the phase error and Eve’s
information.

Proof. The Stinespring representation of A is given as

(CH*2, U, [¢)):

()= 2 VP(x,2)

1
x,zeF;

X,2),

U= > XZ*®

X,Z€E€ Fg

x,2)(x,2].

Since

n,l,5k)+ E Phg(kc
T kkel

k
n9l9,l)f(kk’]_( n7l7 5]_{) + E Phg(kc n’l’j)f(kk7kc n,l’ 5k£) )

ko=k+1

n, L) f(kp.k,

1, 8.0) |» (18)

UxY®|d)= 2 VPy(r2)(- D' —x) @ |x.2)
x,zEFg
= 2 |x, _x> ® |¢x,x’> ® \"PA,X(X)|x>s
xEFg

Eve’s state can be written as

ki

A ) = 2 Py X yor] ® )

1
xeF,

where |¢, /)= 3w\ Pazx( |x)(=1)*'%|z). Since x’ obeys a
uniform distribution,

I(X € Fn,AE(|X><X|))= 2 PA,X(x)H(% 2 |¢x,x’><¢x,x’|)

n ’ n
xeF, x eF;

= P x(X)H(P 7x(-|x)) < H(P) 7).
xeF’zl
Hence, using lemma 3, we obtain (19). [ |
Lemma 3. Let P={P(i)} be a distribution on {0,...,
d—1}. Then, H(P)<h[1-P(0)]+log(d—-1)[1-P(0)].
Proof:
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H(P) = - P(0)log P(0) - [1 - P(0)]log[1 - P(0)]

PG P(i)
PO 2 G 8 [ )
< h[1 = P(0)] +log(d - )1 = P(O)]. m

VIII. SECURITY OF THE KNOWN CHANNEL

In this section, we treat the security when the channel is
known—i.e., prove theorem 3 using lemmas 2 and 1. To
prove it, for any code CCF, and any elements [z]
e F3/C* and [x] e F5/C, we define

=2 ¥

V| |x eC

x+x'). (20)

Note that this definition does not depend on the choice of the
coset representative elements z (x) of [z] ([x]). When we
choose F} as C, the above is the discrete Fourier transform.

PHYSICAL REVIEW A 74, 022307 (2006)

Vievel v

X2y +22)
1T C\/Co[xy1yc,

( 1)(ZI+Z2)X1|X+X1,Z2>C2.

21

Note that the RHS does not depend of the choice of the coset
representative elements x; of [x;].

Proof:
; (_ 1)(zl+zz)x1|x+xl’zz>c
\'|C1/C2| [x]eC/Cy ’
1 (_ 1)(zl+zz)x]+zzx2| >
= ——|x+ X+ xy).
\’|C1/C2|[x1]EC1/C2 xpeCy \’/@
Since  (z,+22)(x;+x,)=(z;+22)x,+22x,, we obtain Eq.
(21). |
Lemma 5:

X+ x X +x|= x,zi|. (22
Then, we have the following lemma. x|§C1 b2+ . ]EEFn/C | cwal. (22)
Lemma 4. When two codes C and C, satisfy C, C C;, any e
elements x € F3, [z,] € Cy /C{, and [z,] € F3/C; satisfy ;» we have
|
l 1o 1 ,
> ieal=igr X2 X DI )]
[z]eFyCy [z]eFyCi x' eCy ¥ eC
1 ’ ’ " ’
:m > DD (=)l Mo +x" + 2" = x" Yo + x|
[Z|]EF2/C1 x'eC ¥"eC
1 21y ! !
—ﬁ 2 2 2 EDPrx y)a+r|
]EFS/CIL xec; YeC
= > |x+xMx+x'],
x/eCl
because y € C, satisfies
N o
| 1|[z1]ng/clL hy 75 -
Now, we define the minimum error
TrM 0,2 +22]))
[ c\U%21 T2
P((z;] € CyICY, = min(l - > o — ,
M [z]eCyict [eylery
where M is a POVM {M[zl]}[zl]eczl/cll- Then, we have the following evaluation.
Lemma 6:
1
1([)61] € Cl/CZ:AE< > |x1+x2><x1+x2|)) <My X 7P e GICTA(
Cal sy ec, ey RYCE |C2|
(23)

where m=dim C; and s=dim C,.
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Proof. Using lemma 5 and the convexity of mutual information, we have

1
I([_Xl] S Cl/Cz’AE(E
2

>+ +x2|>) =I([x1] € CI/C2aAE< :

X eCy |C2| [,]

> |x1712>c2c2<x1712|))

ny~L
eF5/Cy

1
s— 2 I(x]e Ci/Co A(lx1. 22, ¢, (11 22])). (24)

€l [z]eFUCy

Applying lemma 2, we have

I(x) € Cl/CouAp(¥1,22) ¢ (¥1,22])) < 7 P21 € C3/C L A(

0,2, + Zz>01c1<0’21 +2)).

From Eq. (24), the concavity of 7,,_, implies

1 1
I([xl] € CI/CZ’AE<_ 2 e+ xn)x +x2|)) < ol 2 BuPlz € GICH A0,z +22)¢,¢,0:21 + 22])
>

C
| 2|xzeC2 [Zz]EF;/Czl
1

icl > Pz e GICHA(
2
[22]

ny~L
eF,/C5

< Moy 0,z; +Zz>c1cl<0’21 +2,))).

Since A is a generalized Pauli channel, any coset [xy] € F5/C, satisfies

A|xg,z1 + Zz)c1 c1<xo,zl +2,]) = XA (

0,21 +22)¢, ¢,{0.z1 + ) (X0)T.
Hence,

P([zy] € Co/C A([0,2) + 22)¢, 0 (0,21 + 1)) = P([z1] € C3/CT Allx0,21 + 2)c, ¢, (0,21 + 22])).-
Thus,

P(z, € Cy/Cy,A(

0,z; + Zz>clcl<0,21 +2))

€4
=1 E P(z; € C2L/C%’A(|x09zl +Zz>c1cl<x0,21 +2,[))
[XO]EFZ/CI
= 1L |C1| E
<P|z € GIC}, > A(|xg,24 +zz>clcl<x0,zl+12|)
[xo]eF;/Cl

C
=P(Zl e C;/C%,A(lzj 2 |ZO+Z1+Z2>FEFS<Z0+Z1+Z2|)). (25)

Z()ch_

Now, we focus on the step (ix) and the subcode G(C,)C,(Y,s) C C; and abbreviate G(C;)C,(Y,s) to C,(Y,s). Then, the dual
code C,(Y,s)* satisfies C;” C C5(Y,s)* and the condition of C,(X) in lemma 1 when ¢, , and C; in lemma 1 are given by n—v,

v—s,and C li, respectively. Then, n—(/+1) in lemma 1 is given by s. Since the generalized Pauli channel can be regarded as the
additive channel, we can apply lemma 1. Hence,

! [o o > ]
Ey > Pz e Cy(Y,5)*/CT Ay ,1 > otz + 2o)prpnlZo + 21 + 22 <> Py (k)g(2™
|C2(Y7S)|[ 2 20 k=0

2] eF5/Cy(Y,9)F

n,k).

€
Z()ECI

(26)
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From (25), (26), and (23), the convexity of 7,,_, yields that

1
EY[? 2

Cal [2]eFlCy

1
< Mss| By| T 2
( Y[|C2|

[zp]e Fg/ C. 2L

P(z, € Cy/Cy,A(

Therefore, from (24), we obtain theorem 3.

IX. OPTIMAL ATTACK

In this section, we prove that there exists a collective
attack attaining the the exponential rate (4) under a condi-

tion. Indeed, it is not so easy to evaluate max I(Z,Zy).

Hence, we treat I;,(Z,Z;) instead of 1(Z,Z;).
Lemma 7. Assume that the sequence of codes C 1k, Sat-
isfies

max P,y (C,)—0, (27)
k<[p+e(p)In o ’
where the channel W, , is defined on F; as Py _(j)=6;
Then, we have ’

. —-r —
lim 7 IOg El<><|pos><,Y+,pos+,k+,Y>< [m{/&‘lX IH(Z’ZE)]

< min hp+re(p)]- (1 =r)h(p) —rh[p + €(p)], (28)
pelp.pr]

where the maximum is taken concerning Eve’s operation
£. Note that the above inequality holds for any fixed variable
Y,.

Hence, if €(p) is sufficiently small and the sequence of
codes C , satisfies the condition (27), we have

.- =
lim 7 lOg EpnsX,kX,Y+\pos+,k+,Y><[max IH(ZsZE)]

=h[p+re(p)]- (1 -r)h(p)—rh[p+e(p)]. (29)

This indicates that the method of randomly choosing the
code C, is optimal in the sense of large deviation.

In this lemma, we assume the condition (27). Indeed, we
need some conditions in lemma 7. For example, consider the
code C;, which consists of the elements x whose first n—m
components are zero. In this case, the following proof is not
valid. Indeed, when the limit lirn,Hm% log|C,,| is greater
than h[p+€(p)] and we choose C;, randomly, the condition
(27) holds. Hence, the condition (27) is not so unnatural.
However, a more natural condition is needed.

As is shown later, the exponential rate min,p, 5/i[p

+re(p)]-(1=r)h(p)—rh[p+€(p)] can be attained by a col-
lective attack, in which Eve’s is allowed only individual uni-

I([x;] € CI/C2’AE(|x1’Z2>C2C2<x1’22|)):|

[n/2)
0,21+ 22)¢, ¢, 0,21 + Zz|))] ) < ﬂm_s( 2 Py (kg2 n,k)) :
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k=0

tary operations to quantum states sent by Alice and any glo-
bal generalized measurement on the Eve’s local states.
Hence, the exponential rate of Eve’s information cannot be
improved by any collective attack, in which Eve’s is allowed
to use any unitary operation to all quantum states sent by
Alice.

Now, we construct Eve’s strategy attaining the bound

min,, ., 51A[p+re(p)]-(1-r)h(p)—rh[p+e(p)] and prove
(28).  Choose  pg:=argmin, [, 51a[p+re(p)]-(1-r)h(p)
—rh[p+€(p)]. Eve performs a unitary action Upytre(py)®
Uyl ® [0} 2= Vplx) ® [0}z + (= 1)VT = pl) & | Dy,
for a every qubit, where |x) is Eve’s state.
We define the unitary U fx

LS

Uplx) ® |0)z = " (= Py ® [y)g.
( ) y eF'zl:M:k
k

We can easily show that

H(A’g,k( > |x><x|))

xeCy,

=H(A’g,k( > |y+x><y+x|)) for y e Fj.

xeCy,

Hence, applying lemma 6 to the case of C,=F;,C,=C,,, we
have

ol ) (2 3 o)) (s 3 o)),

xeCyy xel,

~H(N 3 )

xe CL”
= E[Pe,WkJ,(Cin)] + 10g|Cl,n|Pe,Wk’n(Ctn)’

where

Agulp) = TrgUg(p ® |0)p£(ON (T

Now, we evaluate Eve’s information. In this case, the sub-
code €y, ¢, depends on the outcome k. Taking the pinching
map p—>2;P,;pP,, (P,; is the projection to the space
spanned by {|x)};j-t), we have
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E«E&{A?T 23|»@U])— )

xeCy,

= (x| A 2 od))-

xeCy,

H(A?”( >
[X]2 eCy ,n/CZ,n,k><
> H (Ag,k( >

[xl,eC, ,n/CZ,n,kX

PHYSICAL REVIEW A 74, 022307 (2006)

IX+y><X+y|))

VeConk,

h+yXx+ﬂ>>

ye Cln.k><

where k is the random variable with distribution P(k) := (") po+re(po) {1 - po—re(po) " ™*.

When k=n[p,+ €e(py) + €], kx=py, we have

(8 S ) 3

xeCy,

H(z%< >

M[xheCr/Coni,

IX+y><X+y|>)

yeConk,

1 n _
= ; |:10g<k> - h[Pe,Wk,n(Cli,n)] - 10g|C1,n|Pe,Wk’n(C1l,n) - 10g|C2,n,kX|:|

1 n k k —
= —{log( ) - nh{—x + e(—x)] —h[P.y, (Ci,)]=1og|Cy,|Pew, (Cl{n)}
n k n n n

n

— hlpo+ €(py) + €] — h[py+ €(py)] as n— oo.

Hence, Eve’s information can be bounded as

Ew[H(A?( 3 o))~ 3

XECI,n [X]ZECI,il/CZ,nJcX

>( n
" \n(po+ elpo) + €

H(A?"( > +y><X+y|))}
yeConk,

)wwm%wwwwﬁhm—merwwﬂ

1
X <lp0 )[Po + FG(PO)]ZPO[I - Po— re(po)]l(l—po)(n{h[po + e(py) + €] — hpo + €(po) ]} + o(n))

> nihlpo + e(po) + €] = hlpo + e(po) I} + o(n) o -nd{po+e(po)+elpotrepo) -ldlpo|lpo+repo)]

(n+1)?

Thus, we obtain

. -r —~
lim 7 log Ekx\posx,Y+,pos+,k+,Y><[maX IH(Z+aZE)] < h[p0 + re(pO)] - (1 - ")h(Po) - Fh[l’o + 6([70) + 6]-

Taking the limit e— 0, we obtain (28).

X. CONCLUSION

In this paper, we obtained a practical evaluation of secu-
rity of the quantum key distribution. This bound improves
existing bounds. In order to guarantee the security of the
implemented QKD system, we need a tighter bound in the
finite coding length. Hence, our bound is useful for guaran-
teeing the security of the quantum key distribution with a
perfect single-photon source. However, for a precise evalua-
tion, we have to treat hypergeometric distributions, because
our bound contains hypergeometric distributions. Hence, it is
needed to calculate these bounds by a numerical analysis
based on several calculations of hypergeometric distribu-
tions.

We also derived the exponential rate of our bound as Eq.
(4) and proved its optimality with in the sense of Holevo
information with a class of one-way communication when
C, is less than the critical case. However, our condition for
our code is not sufficiently natural. Hence, it is required to
prove this optimality under a more natural condition. One
candidate of a more natural condition is

max Pe,Wk n(Ctn) — 0. (30)
k<h~Y1-n[p+e(p)in '

Hence, it is a future problem to show optimality under the
above condition.

Further, we assumed a perfect single-photon source. One
idea for the weak coherent case is the decoy method [24],
which is based on the observation of security with imperfect
devices [25]. However, any existing paper [26-28] of the
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decoy method does not discuss the degree of Eve’s informa-
tion in the framework of a finite coding length, precisely-
.Hence, it is required to extend our result to the weak coher-
ent case with the decoy method.
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APPENDIX A: DERIVATION OF (3)
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) - h<kp(lm) " 5k>’

we have k,(m) =pl—";l5k. Using the relation 5,;\%” and the
continuity of C,, we have

I’l(pm _ kp(m)
n

k,(m)=(1-r)pm—r(1-r)ép) w@+ o(v’%).

s

The average of k is ;-5

=(1-r)pm and the variance of k is

jin(n+1-j) B r(1=r)p(1 = p)m

+0)2n+1-1) 1-1/
Now, we prove (3). In the following, we denote n+1 by m (n+ ) ) m
and fix p € [p,p]. We treat the case of j=pm and define the  Hepce
number k,(m):= max{k|h(’%_k)—h(]7‘+ 8)=0}. In this case,
the first term of P(8,n,1,k,k) goes to 0. Hence, we focus on k,(m) = (1 =r)pm Vr(l =r) )
L i — = ép).
the second term of P(8,n,l,k,k), which is divided as r(1-=r)p(1=p)m \Vp(1-p) d
k 1 l
Py(8.n,Lk.k) = 2 Py (kln.1j)f(j - k.kln.1.5; ) m
k=0
i Thus, we have
+ E Phg(k n7l7.])f(] - k’klnvlr 5k><) kp(m) \’m
k=k+1 2 . ' — )~
Py (kln,L,j) = <1>(— —e(p)) .
k() P Vp(1-p)
= P k ’l’ ] . .
Eo ekl L,J) When k=k,(m), we can approximate the difference as
k .
j—k k . d+n
+ 2 Pkl pfGi—kkn.Ls, ). h<—n ) - h(; + 5k> =-h (p)—ln [k = k,(m)].
k:kp(m)+1
Since Hence,
|
k
2 Pukn.Lj)f( —k.kln.L.5, )
K=k (m)+1
2
_ 1 f k exp| - W= (L= 0pm)” N )Lty (] g
= op(l=pim | Hr=np(=pim
7l
1
T 1-—
m m
+o0
L o=y’ QY= TPy T NPT ()}
2 ) [ = p(—p)lep)
_—
XNr(1 =r)p(1 =p)mdy — 0 as m — o,
where
x—(1=r)pm

Y- e -pm
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Next, we consider the case when nJ; is strictly smaller than
p. The value —h(j—;/f)+h(§+5,_{) is strictly positive and
:h(%)+h(§+5k) is smaller than this value if k=k. Hence,
1-52(5,n,l,l_c,l€) goes to 0.

Finally, we consider the case when i is strictly greater

Hence, in this case ﬁ(&,n,l,l_c,lz) goes to 0. Therefore, we
obtain (3).

than p. In this case, as is mentioned in Appendix B, the APPENDIX B: DERIVATION OF (4)

probability that k is greater than k exponentially goes to 0. From (9), we have

1
n+1)U+1)

k/\j—k
=T
( J )

o Ih(elD)+nh{ (j=kim) 1= (n+ DAL () (n+D)] < Phg(k <(n+l+ 1)21h(k/l)+nh[(/’—k)/n]—(n+l)h[j/(n+l)].

Hence,
k k
max 2 Phg(k n’l’J)f(.] - ]_(,]_( nal’ 5k><) + E Phg(k n,l,])f(] - k,k n9l9 5k><)
7 k=0 k=k+1
< E(n +1+ 1)2maxj’klh(kll)+nh[(j—k)/n]—(n+l)h[j/(n+l)]—n{h(k/l +8)—h[(j- k)/n]}+.
Further,

k
k k
n,l,c‘)‘kx)n{R—h(:+5kX)]+ > Phg(kn,l,j)f(j—k,kn,l,ﬁkx)n[R—h(—+5kx>] ,

! k=k+1 !

I’l,l,])f(] - ]fslf

k
max EPhg(k
i L k=0

J

gl’l{R _ h[p + e(p)]}E(n +1+ 1)2maxj’klh(k/l)+nh[(j—k)/n]—(n+l)h[j/(n+l)]—n{h(k/l +68)—h[(j- k)/n]}+'

Thus, substituting p=l7c, r=-5, é(p)=6, and 6’=/§—5k—1;—k, we obtain Eq. (5). Since

- max{lh(l—c) +nh<];k> —(n+ l)h(L) —n{h(l—c + 5k) —h(j;k” } < E(e,r,p.p), (B1)
noojk [ n n+l [ n + -

we obtain the part < in (4).

Conversely,
k k
max | X Py (kln.Lj)fG = kkln.l.& )+ 20 Puo(kln.Lj)f( — k.KIn.L 3, )
J k=0 k=k+1

ymax; lh(KID+nh(=k)m]=(n+ DAL D 1=kl + 8 = WG = R/},

(n+1)(I+1)

=

Since the equality in (B1) holds in the limit n— o, we obtain the part = in Eq. (4).

APPENDIX C: PROOF OF (15) and (16)

When Alice sends the classical information x+X, [x=G(C,)Z], the probability that Bob obtains the local signal x,:=x
+X +—)? L 1S
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Tr

> D Al © 2! >FnFn 2D|xp + x = )0 +x = x| ® |z) Z>F’;F’;<Zc,' -z

2n+l
Xk EF2 Z; EFI

1
TI‘? E Apos(pmix,n ® |Zé>F;Fg<Zé|)I ® |Zé - Z>F'21F§<Zé - Z|
X, EFI

2,,+, E E APOS(|X - xb><xZ - xb| ® |z£>F;F;<zé|)le - xb><x;<’ - xb| ® |Zé - Z>F3F3<Zé - Z|
xk EF’ZZ z’ EFZ

Trz > AP (priea ® |z, >FnFn<Z NI ® |z - z)FgF;;(ZC' -z

X er

2,l+1 S (AP (- ) - x| ® |0>FnFn<0|)| xp)(= x| ® |- Z>FnFn 7|

xkeF; ZIEFZ

1
TI‘? 2 Apos(Pmix,n ® |O>F’21Fg<0|)1 ® |_ Z>FSF;<_ Z|

’ !
xcer

1 mno_m
T 2 A= 5 5] © [0pyesl0pyODl- 5,0 0] @ = Dyt

X” e Fn+1

l no_m
Tr22(n+l) E (APOS)(x * )(pmix,n ® |O>FZF;<O|)I ® |_ Z>F3Fg<_ Z|

e F;-f—l

Tr(Az)posq_ x) (= x| ® |0>F§FZ<O|)|— xp) (= xb| ® |_ Z>F3Fg<_ Z|

Tr(At)pOS(pmix,n ® |0>F;F§<O|)I ® |_ Z>FZF§<_ Z|

= Tr(A)P(|= )= x])|= xp)(= (C1)

where

(At)Pos,z(-(p) = E P(A[)Pos,k|z,c(xk,Zk|ZL-)Xkasz(Xkazk)T.

1
X Zhe er

In the derivation of (C1), we use (13).
In this case, we can regard that Bob measures the state (A,)P°%(|-x){(—x|). Hence, Eve’s state can be regarded as
((A)P*5?) (|—x)(—x|). Hence, applying theorem 3, we obtain (15) and (16).
APPENDIX D: PROOF OF (17) and (18)

. e
First, we evaluate E,E. By [1([z] € C,/Cy(Y,,,nh(|z |/1+ 5|ZC‘)),p(/\'t)pf,gg?E([z]))] as

EposE: Ey [I([2] € CUCKY bz )i+ 8, 0).p( 2 (D))

= Epos 2 P(A )pOSZL(ZC)h< 2 P(A )POs, Z(kk|zc)f(kk’ m,l, 5k))
k=0

Jzc|<k

+ 2 P(At)POS,Z,L‘(Zc)E< 2 ﬁ(At)pos,Z(kkkc)f(kk’ Zel sty ZL.|)>

ke<lz <k k=0

+Epos > Py ypos zo(ze)n[ R = h(kll + 5]()]2 PA)POSZ(kk|Zc)f(kk’

‘ZL|<k k=0

nlﬁk)

+ > Py ypos zo(ze)n[ R — h(|zc|11+ &, |)]E Py ypos, kil ze) (ks |2

k<lz <k

) (D1)
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sﬁ( { 2 Pogposzelz )E P yoos kil ) flko Kl 1, 5)

‘Zc | <k kk_

+ 2 P (A )POS Z, L(ZC) E P (A )P‘“ Z(kk|zc)f(kk’ Zc| Z |):| )

k<le|<k k=0

[ 2 PiayposzozIn[R = h(kl+ 8)] 2 Py ywos okilz) fkio Kl 1, 8)

|Zc‘<k kk_
+ E P (A )pUSZc(ZL)n[R h(|Zc|/l + 5z |)] E P(A Pos Z(kk|zc)f(kk’ e ] (Dz)
k<lz <k
k n k
2 2 Epo P s 2tk k) ki kL, 3T+ 20 20 Epol Py yoos e (ki) f Uk,
k=0 k=0 k=0 k=k+1
nok
+ 20 2 Epod Pia oo 2 ok InLR = (k11 + 8) 1f Uk k. 1, 8}
k=0 k=0
nok
+ 2 2 Epod P yeos zc(kikn[R = h(k 1+ 8 )1 (koK ln. L, 8)} (D3)
k=0 k=k+1

Further, the RHS of (D3) is evaluated as

k

[RHS of (D3>]=E< 2 2 P alki+ k) Prglien, L,
k=0 k=0

I_( n’l’ 5]_{)

n ok
+ E E ﬁ(A’),Z(kkJ"kc)Phg clftts k+kc)f(kk’kc n’l’ 5kc)>

k=0 k =k+1
no ok

+ E 2 ﬁ(At),Z(kk+kc)Phg clftsts
k=0 k=0

]_C n3l, 5]_()

n k
) (D4)

k=0 k=k+1

k k
sﬁ(max[EPhg A Lflakln, 1,80 + 2 Pyo(kcln.Lj)f(kikln.L. )])
J k=0 ke=k+1

L j)n[R = h(KIL+ 3) 1f (ky. k

n7l, 5]_()

k
+max|: 2 Pk,

J Lk=0

K
+ 2 Pyglkcln, L j)n[R = h(kJ1+ 8 )1 (kiok [, 1, )]. (D5)
k=k+1

In the above relations, (D1) follows from (15), (16), and (D2) follows from the convexity of /, (D4) follows from (14) and
(D5) follows by replacing k;+k, by j. Hence, we obtain (17).
Similarly, we have
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1(2] & CUCY nhfz i1+ 8, )).p A (12D)

E E.E
posEz Ey, nlR = h(kx/lx + & )]

1
= Epos

n[R - h(klly + &)]

|zr‘<k k=0

n

+ 2 P (A,)pos,z,c(zc)f_l( 2P apos 2kl ze) ke

k=0

k<lz <k

E P(A )poszc(Zc)h< E P(A pos z(kk|ZL)f(kk,
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n,l, 5k))

e

zrl))

+ Epos 2 P (A)POS.Z,c Zc) E P (A,)Pos, Z(kk|zc)f(kk’ n,l, 5/() + E P(A )POS Z, C(ZC) 2 P(A )POs, Z(kk|zc)f(kkv Z(‘| |n L 5|Z \)
‘~c|<k k=0 k<|Z ‘<k k=0
] k
< - h{ max E Pyg(keln, 1)) f(ki k|n, 1, &) + > Pyg(keln, 1)) f(ky. ke )

n[R —h(kl/ly + &)] J o Lk=0 ko=k+1
k k

+max E Phg s ’])f(klal_( I’l,l, 5]_{) + E Phg s ’j)f(kk’kc )

i Lk=0 ko=ke+1

Hence, we obtain (18).
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