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When comparing quantum states to each other, it is possible to obtain an unambiguous answer, indicating
that the states are definitely different, already after a single measurement. In this paper we investigate com-
parison of coherent states, which is the simplest example of quantum state comparison for continuous vari-
ables. The method we present has a high success probability, and is experimentally feasible to realize as the
only required components are beam splitters and photon detectors. An easily realizable method for quantum
state comparison could be important for real applications. As examples of such applications we present a “lock
and key” scheme and a simple scheme for quantum public key distribution.
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I. INTRODUCTION

The generation, manipulation, and measurement of indi-
vidual quantum objects has become everyday practice in the
laboratory. Many experiments have proven that we have the
technological means to perform a wide range of manipula-
tions, which, just after the advent of quantum mechanics, one
could only dream of.

Because of fundamental differences between classical and
quantum objects, certain operations cannot be performed in
the quantum domain at all, or they can be performed only
with a fidelity less than 1. The list of such operations is
already quite long, including, for instance, cloning �1� and
entangling. Neither of these processes can be performed per-
fectly unless we know the initial state �or which set of or-
thogonal states the initial state belongs to�. Such operations
are universal, in the sense that we are aiming at performing a
transformation or manipulation of the quantum object, inde-
pendent of the exact form of the input. Another example of
such a universal process would be state comparison. We can
ask whether two given �pure� quantum states are identical or
not. If no a priori information about the states is available,
we have to limit ourselves to looking at the inherent symme-
try of our two particle system with respect to permutation.
The total state for two identical quantum states is always
symmetric, and therefore asymmetry is the unambiguous in-
dicator of dissimilarity. Comparison of unknown as well as
completely known quantum states has been analyzed in de-
tail �2–5�, as well as comparison of unitary transforms �6�.
Not much attention, however, was paid to cases where partial
knowledge about the possible states on which the compari-
son should be performed is available. In the present paper we
wish to concentrate on this particular case. We choose to
look at comparison of coherent states. The unknown param-
eter in the states to be compared is the coherent state ampli-
tude �, specified by two numbers—its absolute value and its
phase �7�. The reason for choosing coherent states is that
they are easy to generate and convenient to use. Another
aspect is that present suggestions for realizing quantum com-
parison either require nontrivial components �controlled-NOT

�CNOT� gates as in the swap test �9,10�� or destroy the states
to be compared �multiport implementation of universal com-
parison �3��. Coherent states, on the other hand, may be com-
pared noninvasively, using only linear optics and photon de-
tectors, if they are identical �meaning that they are equal both
in phase and in amplitude�. In the following we discuss not
only the question of comparing two or more coherent states
to each other, but we also analyze two possible applications.
We present a simple “lock and key” scheme and a public key
distribution scheme using coherent state comparison as an
essential ingredient.

II. COMPARISON OF COHERENT STATES

A. Two coherent states

Let us first see how to determine whether two Glauber
coherent states ��� and ��� �7� are different from each other.
A coherent state is a state for which â ���=� ���, where â is
the annihilation operator for the concerned electromagnetic
field mode. Here we have no knowledge of the amplitude or
phase of � and �, but we do know that the states are coher-
ent. The two states can be compared using a 50/50 beam
splitter in the following way. It is well known, that if two
coherent states ��� and ��� are incident on a balanced beam
splitter, as shown in Fig. 1, then the output states will be
���+�� /�2� and ���−�� /�2� �8�. This follows since the

FIG. 1. The beam splitter mixes the two input fields in a linear
way into two output fields. The relations between input and output
creation operators are expressed in Eq. �1�.
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beam splitter relations between the input and output creation
operators are

âout
† =

1
�2

�âin
† + b̂in

† � ,

b̂out
† =

1
�2

�âin
† − b̂in

† � . �1�

Using these relations, we can confirm that the coherent states
��� and ��� transform as

���a,in � ���b,in = e−�1/2����2exp��âin
† �e−�1/2����2exp��b̂in

† ��0�

= e−�1/2�����2+���2�exp� �

�2
�âout

† + b̂out
† �

+
�

�2
�âout

† − b̂out
† �	�0� = e−�1/2�����2+���2�

�exp� 1
�2

�� + ��âout
† +

1
�2

�� − ��b̂out
† 	�0�

= 
� + �

�2
�

a,out

� 
� − �

�2
�

b,out

. �2�

If � and � are equal, output mode b will contain only the
vacuum. Therefore, if we detect any number of photons in
this mode, we can be certain that � and � cannot have been
identical both in phase and amplitude. We have of course
assumed that there are no dark counts in the detectors. If the
probability for dark counts is nonzero, we cannot anymore
infer with certainty that � and � were different. Detector
inefficiency is not as crucial as dark counts. An efficiency
less than one will of course degrade the probability of de-
tecting a difference, but will not prevent us from drawing the
conclusion that � and � must have been different. This is
because each detector click in output mode b, which is not a
dark count, is a valid indicator of difference between the
input states. If some of photons in output mode b are not
detected, this will decrease the efficiency of difference detec-
tion, but does not make it impossible to infer that ���.

The success probability of detecting a difference between
� and � is equal to the probability to detect at least one
photon in output mode b, where we have the coherent state
���−�� /�2�. As the probability to detect zero photons in this
mode is p�0�=exp�−1/2 ��−��2�, the success probability is

psucc = 1 − p�0� = 1 − e−�1/2��� − ��2. �3�

The success probability increases exponentially to its maxi-
mum value of 1 as shown in Fig. 2.

A nice feature of this method is that we do not need
to place any detector in output mode a. This means that
we can again split the state in output mode a, ���+�� /�2�,
with a second 50/50 beam splitter, giving the output
���+�� /2� � ��+�� /2�. If no photons were found in mode b,
and � and � were indeed equal both in phase and amplitude,
we recover the original states undisturbed. The fact that the
states emerge undisturbed indicates a nondemolition aspect
of the state comparison procedure, which could be useful for

applications where quantum state comparison is needed. It
should be pointed out, however, that if no photons are de-
tected in mode b, we cannot actually be sure that the coher-
ent states were really identical. If they are not, and the output
state is again split by the second beam splitter, the resulting
states will differ from ��� and ���. They will both be equal to
���+�� /2�.

In a similar way, if we choose to detect photons in output
mode a instead of b, we can conclude that � and −� cannot
have been identical. The success probability for this is psucc�
=1−exp�−��+��2 /2�. No matter in which output we detect
one or more photons, a detector click will give us informa-
tion about the input states. If we know, for instance, that
�� � = ���, the detector clicks will give information about the
relative phase � of � and �. Using the just described method,
we obtain the success probability

psucc = 1 − p�0� = 1 − e−���2 sin2��/2�. �4�

This result indicates that if the phase difference is large,
moderate coherent amplitudes are already sufficient to yield
a high success probability for the comparison test. For small
phase differences, this is possible only for large amplitudes.
To obtain a sufficient success probability, the phase differ-
ence should scale according to ��c /�, where c is a con-
stant, and � is the coherent state amplitude. Hence the com-
parison strategy does not offer any particular advantage
when searching for optimal phase measurements �11�.

Finally, we could instead use a beam splitter which is not
balanced, but has different transmission and reflection coef-
ficients T and R. In this case, the output state is given by
��T�+�R�� � ��R�−�T��. Finding photons in the first out-
put mode determines that �T�+�R��0, and photons in the
second output mode means that �R�−�T��0. With phase
shifters before the input ports of the beam splitter, we can
more generally test whether �Tei��+�R��0.

We can also compare the success probability �3� with the
success probability for the universal comparison strategy. If
we want to compare two general pure quantum states ��� and
���, but we have no information about the states, the best we
can do is to check whether the overall state ��� � ��� is sym-
metric with respect to permutation or not �2,3�. If ��� and ���

FIG. 2. The success probability of comparing two coherent
states as a function of the absolute value of the difference between
the coherent states’ amplitudes ��−��. The knowledge that we deal
with an a priori known class of states enables us to reach the ideal
limit of 1.
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are equal, the overall state is necessarily symmetric. There-
fore, if the state is found not to be symmetric, we can be sure
that the states were not equal. The success probability is the
probability of finding the states in the asymmetric subspace,
which is

pasymm = 1 − psymm =
1

2
�1 − ������2� . �5�

For the two coherent states, this success probability becomes

pasymm =
1

2
�1 − e−�� − ��2� . �6�

The success probability �3� for the coherent state comparison
is larger than that of the optimal universal comparison strat-
egy, since

�1 − e−�1/2��� − ��2�2 	 0

Ûpsucc = 1 − e−�1/2��� − ��2 	
1

2
�1 − e−�� − ��2� = pasymm,

�7�

with equality only when both probabilities are zero, i.e.,
when �=�. We are able to obtain a “better than optimal”
success probability since, in the above beam splitter scheme,
we made use of the additional knowledge that the states are
coherent. If we would not have this knowledge, we would
have to revert to the universal comparison strategy. The suc-
cess probability of the optimal universal strategy is always
below 1/2, whereas when ��−�� becomes large, the success
probability of the beam splitter strategy approaches 1. This
reflects the fact, that when ��−�� is large, we enter the clas-
sical regime. Here we have not addressed the question
whether the beam splitter strategy is optimal for coherent
states. It certainly has the appealing feature that it is easy to
implement experimentally, which is very important.

B. Comparing squeezed vacua

Squeezed vacua may also be compared to each other us-
ing a beam splitter. A beam splitter transforms two squeezed

vacua s1 exp�
1âin
†2� �0� and s2 exp�
2b̂in

†2� �0�, where s1 and s2

are normalization constants, according to

s1s2 exp�
1âin
†2 + 
2b̂in

†2��0� = s1s2 exp�1

2
�
1�âout

† + b̂out
† �2

+ 
2�âout
† − b̂out

† �2���0�

= s1s2 exp�1

2
�
1 + 
2��âout

†2 + b̂out
†2 �

+ �
1 − 
2�âout
† b̂out

† 	�0� . �8�

From this expression, we see that when 
1=
2, both output
modes will contain only even numbers of photons. Detecting
an odd number of photons in either of the outputs �assuming
perfect detectors� therefore indicates that 
1�
2. Corre-
spondingly, detecting an even number of photons indicates
that 
1�−
2. The expression for the probability to detect an
odd number of photons is rather cumbersome. It takes the
explicit form

p2l+1,2m+1 = s1s2�
i

�
k=0

min�l,m�
�
1 − 
2�k

k!
��2l + 1 − k� ! �2m + 1 − k�!

� �
1+
2�
2 �2l+1−k

� 2l+1−k
2 �!

� ��2l + 1 − k�!
� �
1+
2�

2 �2m+1−k

� 2m+1−k
2 �!

��2m + 1 − k�!�2i,2m+1−k�2i,2l+1−k. �9�

Counting photons is more demanding experimentally than
not resolving photon numbers, but photon chopping �12� as
realized by a time resolved multiport splitter �13� may be
possible, and could be used at least for small photon num-
bers, implying that the weakly squeezed states could be com-
pared. In the following we will limit our considerations to
coherent states.

C. Several coherent states

The beam splitter method of comparing two coherent
states can easily be generalized to more than two states.
For this we need to use a balanced multiport �see Fig. 3�,
effecting the transform

FIG. 3. The balanced multiport is a passive device distributing
an incoming photon with equal probability among all the outputs.
The device can be constructed using beam splitters and phase
shifters.

EXPERIMENTALLY REALIZABLE QUANTUM¼ PHYSICAL REVIEW A 74, 022304 �2006�

022304-3



b̂k
† = �

l=0

N−1

uklâl
†, �10�

where âl
† are now the creation operators for the N input

modes and b̂k
† are the creation operators for the output

modes. The elements ukl of the transformation matrix of the
balanced multiport are given by

ukl =
1

�N
exp�2�ikl

N
�, k,l = 0,1, . . . ,N − 1. �11�

We may also think of this as a discrete Fourier transform.
The N coherent states ��0� � ��1� � ¯ � ��N−1� will
transform as

��0� � ��1� � ¯ � ��N−1�

= exp�−
1

2 �
j=0

N−1

�� j�2�exp��
l=0

N−1

�lâl
†��0�

= exp�−
1

2 �
j=0

N−1

�� j�2�exp��
l=0

N−1

�l�
k=0

N−1

ulk
* b̂k

†��0�

= exp�−
1

2 �
j=0

N−1

�� j�2�exp��
k=0

N−1 ��
l=0

N−1

�lulk
* �b̂k

†	�0�

= 
�
l=0

N−1

�lul0
*� � 
�

l=0

N−1

�lul1
*� � ¯ � 
�

l=0

N−1

�lul,N−1
* � .

�12�

If all � j are equal, only the zeroth output mode will contain
any photons. All the other modes will contain vacuum,
since �l=0

N−1ulk
* =0 unless k=0. Therefore, if any photons

are detected in any of the modes 1 to N−1, all the coherent
input states cannot have been identical. The probability of
detecting zero photons in the kth output mode will be

pk�0� = exp�− 
�
l=0

N−1

�lulk
* 
2� . �13�

The probability to detect no photons in any of the output
modes 1 to N−1 is

p�0� = p1�0�p2�0� ¯ pN−1�0� , �14�

and the success probability will thus be

psucc = 1 − p�0� = 1 − exp�− �
k=1

N−1 
�
l=0

N−1

�lulk
* 
2�

= 1 − exp�−
1

2N
�
j,l=0

N−1

�� j − �l�2� , �15�

where the second line is obtained after a straightforward and
not too lengthy calculation. An alternative way of writing the
success probability is

psucc = 1 − ��
j,l=0

N−1

� j��l��1/N

. �16�

This success probability will again always be larger than that
of the optimal universal comparison strategy; this statement
is proved in the Appendix.

The multiport setup does not only give knowledge of
when all the coherent input states are not identical. Detection
of photons in output mode k means that the sum

�
l=0

N−1

�lulk
* �17�

must be nonzero. Conversely, if �l= �� ��Nulk for some k,
then output mode k must be the only mode containing pho-
tons. Detection of a photon in any other mode than mode k
indicates that �l� �� ��Nulk for at least one �l. Setting k=0
we again obtain comparison, i.e., a test whether all �l are
nonidentical.

Although the experimental realization of a balanced
multiport for large N is nontrivial, the suggested scheme
should be feasible to implement for small N. A multiport
may be built up using 2�2 beam splitters �14�, alternatively
a fiber coupler could be used, at least for N=3 �15�. It might
also be possible to use the time-resolved realization of
a multiport that we already mentioned in connection with
photon counting �13�.

D. States which will always pass the comparison test

In the quantum state comparison schemes for two or
more coherent states and for squeezed states proposed above,
it is guaranteed that if the input states are identical and of the
required form, then they will always pass the test. There are,
however, also other quantum states which are guaranteed to
pass the test, even if they are not coherent or squeezed states.
The same situation arises also for universal quantum com-
parison �2,3�. There, in order to compare the states, we test
whether the total state is symmetric or not. Therefore, any
total state which is completely symmetric will always pass
the universal comparison test, even if the states of the indi-
vidual quantum states may not be the same. For two quantum
systems, this would be any state of the form 1/�2���� ���
+ ��� ����. This can be easily generalized to universal
quantum comparison of more than two states.

When comparing two coherent states, we associate pho-
tons detected in output mode b with the input states being
different. Any input state, which results in photons exiting
only in mode a, will always pass the comparison test. It
follows, that a complete basis for the input states which will
always pass the test, is given by evolving the number states
�n�a �0�b backwards through the beam splitter. The input
states take the form of SU�2� coherent states, which are
entangled,

��in� =
1

2n/2�
k=0

n ��n

k
��n − k�a�k�b. �18�

These states, as well as linear combinations and mixtures of
them, will always pass the comparison test. For comparison
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of many coherent states, a complete basis for the states
which will always pass the multiport test is likewise given by
evolving linear combinations of the number states
�n�0 �0�1 �0�2¯ �0�N−1 back through the multiport.

As for quantum comparison of squeezed states, the corre-
sponding states are obtained by evolving number states
�m�a �n�b, where m and n are even, back through the beam
splitter. A basis for the input states which always would pass
the squeezed state comparison is given by the states

��in� =
1

�2mm!�2nn!
�
k,l
�m

k
��n

l
�

��− 1�l��m + n − k − l�!��k + l�!

��m + n − k − l�a�k + l�b. �19�

These states are again entangled states of the input modes.
Linear combinations of and statistical mixtures of these
states �and statistical mixtures of linear combinations of
these states� will always pass the comparison test for
squeezed states.

Next, we analyze two simple quantum cryptographic pro-
tocols where quantum state comparison of coherent states is
needed. The first scheme, denoted as a quantum “lock and
key” scheme, is based on the seminal work of Wiesner �16�,
which sparked the field of quantum cryptography. The sec-
ond example we consider is based on ideas for public-key
cryptography. More precisely, we introduce a protocol to
distribute and test quantum public keys.

III. A QUANTUM “LOCK AND KEY” SCHEME

In his original proposal, Wiesner showed how to use
quantum-mechanical systems in order to create a secret key
that is impossible to counterfeit, but which can be validated
by means of a lock �16�. The main idea behind this scheme is
to use, as a secret key, a sequence of M quantum systems,
each one prepared in a state that is selected, randomly and
independently, within a given set of N nonorthogonal quan-
tum states. Here we will consider a set of nonorthogonal
states composed only of coherent states �� j�, as we have in
mind the experimental realization described in the previous
section, i.e.,

��key� = ��1� � ��2� � ¯ � ��M� . �20�

Each quantum key ��key� is associated with a unique
quantum lock state ��lock�, composed of an identical string
of coherent states, i.e., ��lock�= ��key�. In order to check if
a given key is valid and opens the lock, one needs to com-
pare the key string with the lock string. All the key states
must match the corresponding lock states, or more precisely,
none of the key states may be detected as different from the
corresponding lock state. As a result, a possible adversary
who is ignorant of the key states has absolutely no way of
counterfeiting them faithfully.

Note that this protocol could just as well be implemented
by using a classical lock instead of a quantum lock. In this
case, the lock would contain a classical record of the actual
states in the key string. Now, in order to test whether the key

fits in the lock, one can measure each state in the key string,
projecting it onto the projectors �� j�� j� and 1− �� j�� j�. This
measurement can be effected using the classical record of the
state ��key�, which is stored in the lock. Quantum comparison
of two unknown quantum states would not be needed in this
scenario, only measurements performed on single quantum
states. The version where the lock contains no classical
record, but only the quantum states �� j�, has, however, the
advantage that in this case, it is impossible for an adversary
to make new perfect key copies based on the information
stored in a lock.

We will assume that all the coherent states �� j� included in
the key have the same amplitude ���, while the phase of each
individual state is chosen randomly and independently as
2�k /N, where k� �0,1 ,2 , . . . ,N−1�, with equal probability
for each k. Other choices are of course possible. Next, we
analyze, in more detail, the security of this “lock and key”
scheme against a possible adversary with unlimited quantum
computational power.

A. Forcing the lock open without a key

An adversary who does not have a key, and who does not
know the phase of each individual � j, could still try to open
the lock. We will assume that the information about the am-
plitude ��� is public. The adversary is not limited to using
coherent states in order to try to counterfeit a key, but can
prepare any general quantum state, where the states of the
individual positions might be entangled. Note, however, that
since the phases of the coherent states in each lock position
are random and uncorrelated, and the comparison test is per-
formed for each position of the lock string individually, he or
she cannot get any advantage from using entangled states.
Assuming that the states in the individual key positions are
not entangled, then, for each position in the key, the adver-
sary can prepare a general state �−�

� d2�P��� �����. Here
�−�

� d2�=�−�
� �−�

� d�rd�i, with �r=Re � and �i=Im �, and the
adversary is choosing P��� so that the probability to pass the
comparison test is as high as possible. P��� is the P function
of the state, and any state can be written in this way with a
suitably chosen �albeit sometimes highly singular� P func-
tion. The probability for the false key state to pass the com-
parison test with the lock state in one position, which is
�� j�= ��� �ei��, is, on average,

ppass = 1 − psucc =
1

2�
�

0

2�

d��
−�

�

d2�P���

�exp�−
1

2
����ei� − ��2� , �21�

where we integrate over �, since the phase � is chosen ran-
domly with a uniform distribution, and the adversary does
not know the phase, only the amplitude, of � j. For simplicity,
the number N of possible phase angles is infinite in the ex-
pression above, but one could also calculate ppass for a spe-
cific N. In a real protocol, N should, in any case, be large.
The adversary wants to maximize the probability ppass. Writ-
ing �= �� �ei��, and assuming that we can switch the order of
integration, we obtain
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ppass =
1

2�
�

0

2�

d��
−�

�

d2�P���exp�−
1

2
����ei� − ���ei���2�

=
1

2�
�

−�

�

d2�P����
0

2�

d� exp�−
1

2
����2 + ���2

− 2����cos�� − ����	
= �

−�

�

d2�P���exp�−
1

2
����2 + ���2�	I0������ , �22�

where the function I0���� � �= 1
2��0

2�d� exp���� �cos ��
= 1

2��0
2�d� exp���� �cos��−���� is a modified Bessel function

of the first kind. It turns out that, for ��2, ppass is maxi-
mized if we choose P���=��0�, that is, the best false key
state is a vacuum state and the maximum probability to pass
the comparison test is given by

ppass = exp�−
1

2
���2� . �23�

For �	�2, the maximum probability to pass occurs if the
adversary chooses ��� closer to ���, but still with �� � � ���.
For large values of ����, I0���� � ��e���� /�2� ����, and
therefore

exp�−
1

2
����2 + ���2�	I0������ �

1
�2�����

�exp�−
1

2
���� − ����2	 .

�24�

Therefore, for large �, the adversary should choose
�� � ���� to maximise the probability to pass the comparison
test. This probability will decrease as a function of �
approximately as

ppass �
1

�2����
. �25�

For a key string containing M coherent states, the probability
for a false key state to pass the comparison test for all M
positions is ppass

M , so that the probability decreases exponen-
tially with M. As long as � is not too small, we find that the
probability of the adversary successfully cheating is severely
restricted. In addition, if the total average number of key and
lock photons at the output is measured �or the number of key
photons is measured directly at the input�, then any cheating
strategy where a false key state contains the wrong average
number of photons would be discovered.

B. Obtaining information about a key

Let us now suppose that an adversary has access to one
valid copy of the key, and that he or she tries to extract
information from it. Of course, it is clear that once an adver-
sary has a valid key, then this key can always be used to open
the lock. But if a key copy is missing, this may be noticed by

the rightful owner of the key. Obtaining a full classical de-
scription of the quantum state of the key, on the other hand,
would allow the adversary to prepare as many valid keys for
a given lock as he/she wishes. In particular, the adversary
could make one copy for returning to the rightful owner, so
that it is perhaps not noticed that a key copy has been stolen,
as well as extra “illegal” key copies. We will now show that
the information that can be obtained by measurements on
one or more copies of a key is limited.

The maximum information that the adversary can obtain
by measurements on one single copy of the key string, called
accessible information and denoted as Iacc, is limited by the
Holevo quantity ���key�. Here �key=�npn�n is the state of the
key string according to the information available to the ad-
versary before the measurement; in other words, �n are the
possible states of the key string, and pn their respective prob-
abilities. The possible key states �� j� in each position are
given by ��� �exp�2�ik /N��, where k takes the values
0 ,1 ,2 , . . . ,N−1. If there are M positions in the key string,
then, as far as the adversary knows, there are NM possible
pure states �n, all equiprobable, with pn=1/ �NM�, that the
total key string could have. The accessible information about
which of these NMstates the key state actually is, is bounded
according to

Iacc  ���key� = S��key� − �
n

pnS��n� , �26�

where S��key�=−Tr��key log2�key� is the von Neumann en-
tropy of �key. The quantity �npnS��n� is always positive or
zero. When the different possible states �n are pure, as in our
case, it is zero.

As the M coherent states in different positions in the
key string are completely uncorrelated, the accessible
information of the whole key string is bounded by M times
the accessible information for each position in the key string.
Let us therefore look at the state in a single key position.
Since the adversary does not know the phase of the coherent
key state �� j�, in this position, the density matrix according
to the information available about the state prior to the
measurement is

�single =
1

N
�
k=0

N−1

��eik2�/N��eik2�/N� . �27�

For this state, the von Neumann entropy, which limits the
accessible information since the different possible states are
pure, can be found to be

S��single� = �
m=0

N−1
1

NKm
2 log2�NKm

2 � , �28�

where

Km
−2 = �

k=0

N−1

exp�− ���2�1 − exp�ik2�/N�� + imk2�/N� .

�29�

When �� � =0, �single= �0�0�. As there is only one possible
state, the information stored in the key state is zero in this
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case. The von Neumann entropy and the accessible informa-
tion for the key state are also zero. For a useful key scheme,
we need to choose ��� larger than zero, but not too large, for
a given number of states N. For instance, when the amplitude
��� goes to infinity, the accessible information for each key
position approaches log2N, which is the information that can
be obtained from N distinguishable states, or from N classi-
cal states. This reflects the fact that, for larger ���, the N
possible key states become more distinguishable. A coherent
state with a larger amplitude becomes more “classical.” In
Fig. 4, the von Neumann entropy, which bounds the acces-
sible information, is plotted as a function of ���2 for some
values of N.

We should choose the amplitude ��� small enough, and N
large enough, for the accessible information not to be too
large compared to log2N, but ��� large enough for the prob-
ability to detect a difference in the key and lock states to be
sufficiently large. In particular, as we have seen that the best
false key state is a vacuum state, we have to adjust ��� so that
there is a reasonable probability to detect this cheating strat-
egy. As we saw previously, the probability to detect a differ-
ence in key and lock can also always be increased by
increasing the length M of the key string.

When N goes to infinity, the state in Eq. �27� becomes a
phase-randomized state, which is diagonal in the number
state basis and can be written as

�single
� = e−���2�

k=0

� ���2k

k!
�k�k� . �30�

The von Neumann entropy for this state is

S��single
� � = ���2 − e−���2�

k=0

� ���2k

k!
log2� ���2k

k!
� . �31�

As before, this quantity also bounds the accessible informa-
tion. We can obtain an approximation for this expression
using the Stirling formula for the factorial. The result takes
the rather simple form

S��single
� � � log2�2�e���2� . �32�

The entropy increases in a logarithmic way with the coherent
state amplitude ���.

Until now, we have considered a “lock and key” scheme
where only one single copy of each key may exist. However,
it is possible to design a protocol which uses as many copies
of the key as we like. The security of the scheme will nec-
essarily decrease with the number of key copies. An adver-
sary wanting to fabricate illegal key copies could get hold of
all the keys in circulation, and using these, will be able to
fabricate a better false key than if just one or very few key
copies are in circulation. However, the information an adver-
sary can obtain per key copy is still limited by the Holevo
bound. If it is possible to obtain at most K bits of information
about the state in one position of the key when one copy is
available, then at most TK bits can be obtained if T copies
are available. In this last case, we need to guarantee that
log2N�TK.

Finally, let us briefly mention that the adversary might try
to make a copy of the single existing key. For this, he would
need to make a clone of each individual coherent state. This
is only possible with a certain degree of fidelity, as making
perfect copies is forbidden by the no-cloning theorem. We
should, however, bear in mind that we do not deal with com-
pletely unknown states but with a known class of states—
large enough amplitude coherent states can be copied almost
perfectly. Cheating by this method can, however, be pre-
vented by choosing a long enough string of states, or by
choosing N large enough.

IV. QUANTUM PUBLIC KEY DISTRIBUTION

Public key cryptography requires two keys—the public
key and the private key, which form a key pair. The sender,
usually called Alice, generates the key pair, makes the public
key public and keeps her private key in a secret place to
ensure its private possession. The key generation algorithm
is designed in such a way that anyone having a public key
can, for instance, use it in order to encrypt a message for
Alice �public key encryption schemes�, or certify that a mes-
sage originates from Alice �digital signature schemes�. How-
ever, only Alice can decrypt or sign a message using her
private key �17�.

Unfortunately, the security of classical public key cryp-
tography rests on unproven assumptions related to the intrac-
tability of certain difficult mathematical problems. The
key generation algorithm utilizes so-called one-way func-
tions to guarantee that the public keys do not reveal informa-
tion about the private key. This kind of mathematical func-
tions are easy to evaluate in one direction, but their inverse is
very difficult to compute �18,19�. However, these computa-
tional assumptions may be defeated by exhaustive computer
analysis, or by the discovery of better algorithms for solving
the problems on which they are based. If a quantum com-
puter is ever built, many classical public key cryptosystems
in use today will become unsafe, leading also to a retroactive
security break �20�.

Quantum-mechanical systems can be used to create one-
way functions which are provably secure from an
information-theoretic point of view. For instance, one can
obtain a quantum one-way function by defining a quantum
map F :k� �0,1�n→ ��k�, whose input is a classical n-bit

FIG. 4. The von Neumann entropy as a function of the mean
photon number ���2 for N=2,3 ,4 ,5 ,6. The asymptotic value of the
entropy increases with the number of states N.
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string k, and whose output is a quantum state ��k� �10�. As in
the previous section, we will here consider that ��k� is of the
form ��k�= ��1

k� � ��2
k� � ¯ � ��M

k �, where the state of each
coherent state �� j

k� belongs to a given public set of N possible
coherent states. In this case, we have that n=M log2N. The
impossibility of inverting the function F can be guaranteed
by means of the Holevo bound, which limits the amount of
classical information that can be extracted from a quantum
state. In particular, and assuming that there are T copies
available of each public key ��k�, we find that an adversary
can obtain, at most, TS��public� bits of information by mea-
suring all the copies of the public key, where �public
=1/ �NM��k ��k��k� represents the state of the public key ac-
cording to the information available about it before the mea-
surement, and S is the von Neumann entropy. That is, if we
assure that n=M log2N�TS��public�, then the probability of
successfully guessing the classical private key k, given all
the public keys, remains small. Note that in the case of quan-
tum public keys, this means that only a limited number T of
them can be in circulation to guarantee unconditional
security.

Next, we present two possible schemes that use balanced
multiports to securely distribute quantum public keys. The
first scheme assumes the availability of a trusted key distri-
bution center which has authenticated links �21� to all the
participants. In the second scheme, we consider the scenario
where all the recipients obtain their public keys directly from
Alice via an authenticated quantum channel, and no trusted
key distribution center is available. We study the security of
both schemes against two scenarios of cheating, motivated
from the key distribution phase which is needed in the quan-
tum digital signature scheme introduced in Ref. �10�. For
simplicity, in the security analysis we will consider the case
where there are only two recipients, called Bob and Charlie.
The extension to a higher number of recipients is straightfor-
ward. In the first cheating scenario, only Alice is dishonest;
her objective, once the public key distribution phase is com-
pleted, is to get Bob and Charlie to disagree about the valid-
ity of the private key when this key is revealed. In a digital
signature scheme, this case corresponds to Alice trying to
repudiate the signature of a message with her private key. In
the second cheating scenario, Alice and at least Bob are hon-
est, while Charlie can be dishonest. The goal of Charlie is to
make Bob accept as valid a false public key that does not
come from Alice, but comes from Charlie. This corresponds
to the standard forging scenario. Note that Charlie could al-
ways prevent Bob from receiving any public key coming
from Alice just by cutting the line, but we do not consider
this to be a success for the cheaters.

A. Public key distribution with trusted center

The goal is to generate and distribute T copies of the
quantum public key ��k� selected by Alice. One straightfor-
ward solution in order to do this is to assume the existence of
a trusted key distribution center composed by M balanced
multiports with T inputs each. Alice prepares and sends to
the key distribution center the quantum state ��k

T�= ��T�1
k�

� ��T�2
k� � ¯ � ��T�M

k � as a starting point for generating the

public keys. Once this state is received by the trusted center,
each coherent state ��T� j

k�, with j=1¯M, is used as one
input for the jth balanced multiport, while the remaining
T−1 inputs of each multiport contain vacuum. As a result,
the output state of the jth multiport is given by �� j

k��T, i.e., it
contains T copies of the coherent state �� j

k�. Combining all
the output states of the M multiports in the trusted center one
obtains the state ��k��T. To conclude, the trusted center sends
each receiver one copy of the public key ��k� through an
authenticated quantum channel.

Let us now analyze the security of this public key distri-
bution scheme according to the cheating strategies intro-
duced above. A reader who is not interested in the security
proof may go directly to Sec. IV B. Since each public
key ��k� is sent to each receiver via an authenticated quantum
channel established with the trusted center, it is clear that a
dishonest Charlie cannot make Bob receive a false public
key. We need, therefore, to consider only the case where
Alice is dishonest. That is, we have to evaluate the probabil-
ity of Bob and Charlie to disagree about the validity of
the private key after using the public key distribution scheme
introduced above. Here we consider the case where the
private key is made public in a later step of the particular
quantum cryptographic protocol that uses the public
keys obtained from the trusted center �10�. Note that we are
only interested in the security of the quantum public key
distribution protocol.

After Alice announces her private key k� �or a function of
it�, Bob and Charlie can compute the function F and obtain a
classical description of the corresponding public key ��k��.
We use a different index k�, since Alice, or somebody else,
could try to distribute a private key that does not match the
previously distributed public key. Now, in order to evaluate
whether k� is correct and originates from Alice, they can test
whether the state ��k�� is equal to the public keys obtained
previously from the trusted center. This test can be done, for
instance, by projecting each single position j in the string of

states of the public key onto the projectors �� j
k��� j

k�� and

1− �� j
k��� j

k�� coming from the knowledge of ��k��. Then each
recipient can count the number of positions j where the
measurement test provides an incorrect result, i.e., a result

associated with the projector 1− �� j
k��� j

k��. We denote the
number of incorrect results by e.

When all the parties are honest, all the recipients obtain
e=0. If Alice is dishonest, then the quantum public key dis-
tribution protocol presented above cannot prevent a situation
where one recipient obtains e=0, while others obtain e�0
with high probability. For instance, Alice could send to the
trusted center a quantum state ��k

T�, which differs from ��k��
in only one position. This position could contain a coherent
state ��T�� satisfying �� ��k���2=1/2, where the coherent

state ��k�� denotes the state of ��k�� in that position. For this
simple scenario, we find that Bob and Charlie will obtain,
respectively, e=0 and e=1 �or vice versa� with probability
1 /2. Moreover, note that a dishonest Alice is not restricted to
use coherent states in order to prepare ��k

T�, but she can use
any general quantum state. What this public key distribution
protocol can guarantee with high probability, however, is that
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if one receiver obtains e=0, then no other receiver will ob-
tain e�sM for s or M sufficiently large. Here s� �0,1� rep-
resents a security parameter of the key distribution protocol.
This result can be used in a cryptographic protocol, which
uses the public keys coming from the trusted center, to guar-
antee the following �10�. If no errors are found, i.e., e=0, the
recipient �e.g., Bob� can conclude that k� is correct, and he
can be sure �with high probability� that any other recipient
�e.g., Charlie� will also conclude that k� is correct. If 0�e
�sM, Bob can, also in this case, conclude that the key is
correct, but now he cannot be sure that a second recipient
�Charlie� will not conclude that k� is incorrect. Finally, if e
	sM, Bob can consider the private key to be incorrect, and
that Charlie would either also consider it to be incorrect, or
at least Charlie would know that Bob may conclude that k� is
incorrect.

Next we obtain an upper bound on the probability of Alice
to cheat. In order to do that, let us first consider the following
situation. Imagine that the trusted center knows the private
key k� that Alice is going to declare later on, and, instead of
distributing to Bob and Charlie the two quantum public keys
coming from the multiports, he sends them directly the clas-
sical results obtained from measuring each of these two
quantum public keys accordingly to the string of states con-
tained in ��k��. That is, he sends Bob and Charlie the classi-
cal results of projecting each position of the public keys onto

the projectors �� j
k��� j

k�� and 1− �� j
k��� j

k��. Moreover, for each
position j in the key string ��k��, the results obtained from
the measurements on the two public keys are distributed to
Bob and Charlie at random.

Note, now, that the fact that the trusted center, instead of
Bob and Charlie, measures the public keys, does not modify
the measurement statistics that Bob and Charlie would obtain
in the original scenario, once k� is known and they perform
their measurements according to ��k��. Moreover, the random
distribution of the classical results is guaranteed by the in-
trinsic random character of the multiport used by the center
to distribute the states to Bob and Charlie. Alice makes Bob
and Charlie disagree if one of them obtains e=0 �in absence
of noise� and the other obtains e	sM. This means that the
probability of Alice to cheat in this particular situation pcheat
is maximized if, in total, the trusted center finds only sM
errors in both public keys, and he sends all the errors to Bob
or to Charlie. We obtain, therefore,

pcheat  �1

2
�sM−1

. �33�

This upper bound also represents an upper bound on the
probability of Alice to cheat, in general.

B. Public key distribution without trusted center

Let us now analyze the scenario where no trusted center is
available. In this case, Alice sends one copy of the public key
��k� directly to each recipient, via an authenticated quantum
channel. Then, in order to prevent Alice from cheating, all
the recipients need to collaborate to verify that all the public
keys sent by Alice are equal. In order to do this, they use a
distributed comparison test, which can be divided in two

phases. Essentially, each recipient compares his or her public
key copy with all the other recipients’ copies, and, if Alice
has sent different public key copies to different recipients,
this will be detected. Neither can any of the recipients sabo-
tage the public key copy of another recipient. This would
also be detected in the comparison test.

The protocol requires that each recipient has 2M balanced
multiports with T inputs each. In the first phase, the first M
balanced multiports are used to split the quantum public key
sent by Alice. The case for two recipients is shown in Fig. 5.
In concrete, each coherent state �� j

k� in ��k�, with j
=1, ... ,M, is used as one input for the jth balanced multiport,
while the remaining T−1 inputs of each multiport contain
vacuum. The output state of this multiport is given by
��1/�T�� j

k��T. That is, it contains T copies of the coherent
state ��1/�T�� j

k�. Now, each recipient keeps for himself one
copy of ��1/�T�� j

k�, and distributes the remaining T−1 cop-
ies of it to the other T−1 recipients via an authenticated
quantum channel. The second phase includes a quantum state
comparison test using the second set of M multiports. The
jth multiport in this second set receives as input the coherent
state ��1/�T�� j

k� kept by the recipient after the first phase,
together with the corresponding T−1 “copies” of it obtained
from the other T−1 recipients. Note that, if all the parties are
honest, the zeroth output mode of this multiport will contain
the state �� j

k�, while all the other modes will contain vacuum.
That is, combining all the output states of these M multi-
ports, each recipient can recover Alice’s quantum public key
��k� perfectly. The nondemolition character of the quantum
comparison procedure �meaning that it does not alter or de-
stroy the compared states if all parties are honest, so that the
compared coherent states are identical to start with� is seen to
be vital for the protocol to work.

FIG. 5. The setup for public key distribution without a trusted
center, when there are two recipients Bob and Charlie. Alice sends
Bob and Charlie one copy each of her public key. In the picture, she
uses a beam splitter to do this. Bob and Charlie then split their key
copies in two using beam splitters, and exchange “key halves” with
each other. They then perform comparison tests, indicated by the
dashed circles, on their own half key copy and the one they re-
ceived from the other recipient. If all parties are honest �and their
detectors perfect�, the output ports with the dashed arrows should
only contain vacuum.
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Next, we study the situation when Alice is dishonest. A
reader who is not interested in the security proof can go
directly to the conclusions. In principle, instead of preparing
T copies of ��k� and distributing them among the legitimate
recipients, Alice can prepare any general quantum state, in-
cluding entangled states. However, it turns out that, for each
position j in the public key strings sent by Alice, the states
that the recipients obtain as output of the zeroth mode of the
jth multiport used for state comparison are completely sym-
metric under permutation. This means that, although Alice
could in principle prepare states that make the parties dis-
agree about the validity of the private key k�, she cannot
control which of the recipients receives the valid results.
Once Alice declares the value of k� and the recipients project
their public keys, coming from the output of the zeroth mode

of the M multiports, onto the projectors �� j
k��� j

k�� and 1

− �� j
k��� j

k��, the errors are distributed at random between all
the recipients without Alice being able to control this. We
can use, therefore, the same argumentation as in the previous
section, to obtain that the probability of Alice to cheat in this
scenario also satisfies Eq. �33�.

Finally, we need to consider the situation where Alice and
Bob are honest, but Charlie can be dishonest. The goal of
Charlie is to make Bob accept a false public key that does
not match Alice’s private key. Note that in this key distribu-
tion protocol, a dishonest Charlie can try to influence Bob’s
public key by means of the quantum states that he needs to
send to Bob for the comparison test. In order to make Bob
reject Alice’s private key, Charlie needs to send him quantum
states that can produce at least e	sM errors in Bob’s results.
However, for sufficiently large s or M, this situation can also
be detected by Bob in the comparison test. Whenever Charlie
sends Bob a state different from the one coming from Alice,
Bob can detect this fact by finding photons not only on the
zeroth output mode of the corresponding multiports used for
comparison.

V. CONCLUSIONS

We have analyzed quantum state comparison for the case
when one has prior knowledge about the class of states from
which the states to be compared are chosen. We chose to
look at comparison of coherent states, and have shown that,
for large coherent state amplitudes, the probability to detect
that the two coherent states are different, when they are in-
deed different, approaches 1 �certainty�. In contrast to this,
the success probability for a universal comparison strategy
never exceeds 1/2. A universal strategy has to be used when
no prior information about the quantum states is available. In
addition to the high success probability, the quantum com-
parison strategy for coherent states has a nondemolition
character—it does not destroy the compared quantum states,
if they are indeed equal coherent states. In this case, one can
recover the original coherent states unaltered. If the com-
pared coherent states are unequal to start with, then they will
be altered by the procedure.

Following this, coherent state comparison was used to
develop two examples of applications—a “lock and key”

scheme and a public key distribution scheme. For both these
applications, the nondemolition character of the quantum
comparison procedure is vital. We believe that both examples
are not only conceptually simple, but also of some practical
importance due to their experimental accessibility.
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APPENDIX: SUCCESS PROBABILITY FOR QUANTUM
COMPARISON OF N COHERENT STATES

In this appendix, we will prove that the quantum compari-
son strategy, which is tailored for coherent states, always has
a larger success probability than the universal quantum com-
parison strategy, when comparing N given coherent states
��0� , ��1� , . . . , ��N−1�. The universal comparison strategy is a
projection onto the totally symmetric, and onto the asymmet-
ric subspaces. If the total state of the quantum systems is
found to be asymmetric, then the states of the individual
systems cannot all have been the same. The success probabil-
ity of the coherent state strategy is given by Eqs. �15� and
�16�. The success probability of the optimal universal
strategy will be �3,4�

pasymm = 1 − psymm = 1 − �0��1� ¯ �N−1�Psymm��0�

���1� ¯ ��N−1� , �A1�

where Psymm is the projector onto the symmetric subspace.
We have that

psymm =
1

N!
�0��1� ¯ �N−1� �

perm
��i0

���i1
� ¯ ��iN−1

� ,

�A2�

where the sum should be taken over all N! permutations of
the indices in the kets, so that �i0 , i1 , i2 , . . . , iN−1� is a permu-
tation of �0,1 ,2 , . . . ,N−1�. As an example, for N=3,

psymm =
1

3!
�1 + ��0��1��2 + ��1��2��2 + ��2��0��2 + �0��1�

��1��2��2��0� + �0��2��1��0��2��1�� . �A3�

To prove that the multiport strategy for coherent states al-
ways will have a greater success probability than the univer-
sal strategy, we will use the fact that for a collection of N
numbers, their geometric mean, defined as the Nth root of
their product, is always smaller than their arithmetic mean.
Starting with the case of three coherent states, psymm in Eq.
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�A3� can be viewed as the arithmetic mean of the six terms in
the parenthesis. The geometric mean of these six numbers is

���0��1��4��1��2��4��2��0��4�1/6 = ��
j,l=0

2

�� j��l���1/3

,

�A4�

which is the probability that the coherent-state multiport
scheme will fail for three coherent states. The coherent-state
multiport scheme therefore has a larger probability to suc-
ceed than the universal quantum comparison strategy. For
general N, the proof is similar. The quantity psymm in Eq.
�A2� is viewed as the arithmetic mean of N! numbers. To
calculate the geometric mean of these numbers, we need

their product. In this product, the factor � j ��l� will occur
�N−1�! times, since if we choose to pair j with l, there are
�N−1�! ways to choose the rest of the index pairs. Therefore
the geometric mean of the N! numbers is

��
j,l=0

N−1

� j��l��N−1�!�1/N!

= ��
j,l=0

N−1

� j��l��1/N

= 1 − psucc  psymm, �A5�

which means that the multiport comparison strategy for
coherent states has a smaller probability to fail than the
universal quantum comparison strategy—in other words, it
will always do better.

�1� W. K. Wootters and W. H. Zurek, Nature �London� 299, 802
�1982�.

�2� S. M. Barnett, A. Chefles, and I. Jex, Phys. Lett. A 307, 189
�2003�.

�3� I. Jex, E. Andersson, and A. Chefles, J. Mod. Opt. 51, 505
�2004�.

�4� A. Chefles, E. Andersson, and I. Jex, J. Phys. A 37, 7315
�2004�.

�5� M. Kleinmann, H. Kampermann, and D. Bruss, Phys. Rev. A
72, 032308 �2005�.

�6� E. Andersson, Stephen M. Barnett, and I. Jex, J. Phys. A 36,
2325 �2003�.

�7� R. Glauber, Phys. Rev. 130, 2529 �1963�; J. R. Klauder, Ann.
Phys. �N.Y.� 11, 123 �1960�.

�8� R. Loudon, The Quantum Theory of Light, 3rd ed. �Oxford
University Press, Oxford, 2000�, p. 212.

�9� H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, Phys. Rev.
Lett. 87, 167902 �2001�.

�10� D. Gottesman and I. L. Chuang, e-print quant-ph/0105032.
�11� D. Denot, T. Bschorr, and M. Freyberger, Phys. Rev. A 73,

013824 �2006�.
�12� H. Paul, P. Törmä, T. Kiss, and I. Jex, Phys. Rev. Lett. 76,

2464 �1996�.
�13� D. Achilles, C. Silberhorn, C. Śliwa, K. Banaszek, and I. A.

Walmsley, Opt. Lett. 28, 2387 �2003�; D. Achilles, C. Silber-
horn, C. Śliwa, K. Banaszek, I. A. Walmsley, M. J. Fitch, B. C.
Jacobs, T. B. Pittman, and J. D. Franson, J. Mod. Opt. 51,
1499 �2004�.

�14� P. Törmä, I. Jex, and S. Stenholm, J. Mod. Opt. 43, 245
�1996�.

�15� K. Mattle, M. Michler, H. Weinfurter, A. Zeilinger, and M.
Zukowski, Appl. Phys. B: Lasers Opt. 60, S111 �1995�; G.
Weihs, M. Reck, H. Weinfurter, and A. Zeilinger, Phys. Rev. A
54, 893 �1996�.

�16� S. Wiesner, SIGACT News 15, 78 �1983�.
�17� B. Schneier, Applied Cryptography �Wiley, New York, 1996�.
�18� W. Diffie and M. E. Hellman, IEEE Trans. Inf. Theory IT-22,

644 �1976�.
�19� R. L. Rivest, A. Shamir, and L. M. Adleman, Commun. ACM

21, 120 �1978�.
�20� P. W. Shor, in Proceedings of the 35th Annual Symposium on

Foundations of Computer Science �IEEE Press, New York,
1994�; P. W. Shor, SIAM J. Comput. 26, 1484 �1997�.

�21� H. Barnum, C. Crépeau, D. Gottesman, A. Smith, and A. Tapp,
Proceedings of the 43rd Annual IEEE Symposium on the Foun-
dations of Computer Science (FOCS’02), Vancouver, Canada
�IEEE Press, Los Alamitos, 2002�, pp 449–458.

EXPERIMENTALLY REALIZABLE QUANTUM¼ PHYSICAL REVIEW A 74, 022304 �2006�

022304-11


