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Non-Abelian quantum holonomies, i.e., unitary state changes solely induced by geometric properties of a
quantum system, have been much under focus in the physics community as generalizations of the Abelian
Berry phase. Apart from being a general phenomenon displayed in various subfields of quantum physics, the
use of holonomies has lately been suggested as a robust technique to obtain quantum gates; the building blocks
of quantum computers. Non-Abelian holonomies are usually associated with cyclic changes of quantum sys-
tems, but here we consider a generalization to noncyclic evolutions. We argue that this open-path holonomy
can be used to construct quantum gates. We also show that a structure of partially defined holonomies emerges
from the open-path holonomy. This structure has no counterpart in the Abelian setting. We illustrate the general
ideas using an example that may be accessible to tests in various physical systems.
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I. INTRODUCTION

Berry’s discovery �1� of geometric phase factors associ-
ated with slowly changing external parameters initiated in-
tense studies of geometric phase effects in quantum mechan-
ics. Wilczek and Zee �2� extended Berry’s work by pointing
out the existence of geometric effects as a generic feature of
quantum adiabatic evolution. They showed that the Abelian
geometric phase factors generalize to unitary state changes,
often referred to as non-Abelian quantum holonomies, in the
case of Hamiltonians with degeneracies. Such effects have
been shown to occur in a variety of systems, ranging from
molecules �3,4� and extended systems �5� to atomic nuclei
�6,7� and fields �8�. Lately, the interest in holonomies has
been refueled due to the insight that they can be used to
implement fault tolerant quantum gates �9,10�. This has led
to work on holonomy effects for implementations of quan-
tum computation �11–15� and quantum information �16–19�.

In the aforementioned work, holonomy is associated only
to loops, i.e., to closed paths of slowly changing parameters.
But what happens if the path is not closed? In this work, we
address this question and propose an approach to noncyclic
non-Abelian holonomies.

Above we have used the language of parameter dependent
Hamiltonians in order to describe the emergence of holono-
mies, where the motion of the eigenspaces of the Hamil-
tonian gives rise to the holonomy. However, the Hamiltonian
is not a necessary component. We may instead consider just
a subspace moving in the total Hilbert space of the system.
As above, this moving subspace can be realized as an
eigenspace of a Hamiltonian, but could alternatively be
achieved through a sequence of projective measurements of
observables with the subspace as an eigenspace. We use this
more general “subspace approach” in our definition of open-

path holonomy, and extend Ref. �20� to the non-Abelian
case. However, in order to connect with more familiar set-
tings, we also present the open-path holonomy in terms of
parallel transport, as well as resulting from adiabatic evolu-
tion of parameter dependent Hamiltonians.

Our generalized holonomy contains previous notions,
such as that of Ref. �2� in the case of cyclically evolving
Hamiltonians, and that of Ref. �21� for particular paths asso-
ciated with the dynamical invariants of a Hamiltonian. We
further demonstrate a concept of open-path holonomic quan-
tum gates that may be of use in the context of quantum
information processing. Finally we demonstrate that for
some relative orientations of the initial and final subspaces of
the open path, the holonomy is only partially defined. This
we call partial holonomy; a phenomenon that has no coun-
terpart in the Abelian case.

II. OPEN PATH HOLONOMY

Consider a smooth curve C in the Grassmann manifold
G�N ;K� �22�, i.e., the set of K-dimensional subspaces in an
N-dimensional Hilbert space. The holonomy for subspaces
should only depend on the properties of this curve. There is
a natural bijection between the Grassmann manifold and the
collection of projectors of rank K. Thus, corresponding to
our curve C in the Grassmann manifold, we may define a
curve P�s� being a family of projectors parametrized by
s� �0,1�. Let us now construct the intrinsically geometric
quantity

� = P�1�P�1 − �s� ¯ P��s�P�0� , �1�

where �s is the step size in a discretization of the curve. We
are interested in the operator � in the limit of small �s. In
order to find an expression for � in this limit we let
��ak�s���k=1

K be an orthonormal basis of the subspace C�s�, for
each s, and we assume that this family of bases is chosen in
a smooth way. Note that
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P�s + �s�P�s� = 	
kl

�B�s��kl�ak�s + �s��
al�s�� , �2�

where �B�s��kl=�kl+�s
ȧk�s� �al�s��. This allows us to rewrite
� as

� = 	
kl

�B�1 − �s�B�1 − 2�s� ¯ B�0��kl�ak�1��
al�0�� .

�3�

We observe that to the first order in �s, B�s�=1+�sA�s�
=exp(�sA�s�), where 1 is the K�K unit matrix and

�A�s��kl = 
ȧk�s��al�s�� . �4�

Hence, in the limit �s→0, we obtain

� = 	
kl

�Pe�0
1A�s�ds�kl�ak�1��
al�0�� , �5�

where P denotes path ordering.
A gauge transformation is a change of frames

��ak�s�� →��ak��s�� = 	
l

�U�s��lk��al�s�� , �6�

U�s� being a unitary matrix. The set of K-frames, i.e., or-
dered orthonormal K-tuples in an N-dimensional Hilbert
space, forms the Stiefel manifold �22�. The Stiefel manifold
can be regarded as a fiber bundle with the Grassmannian as
base manifold and with the set of K�K unitary matrices as
fibers. The gauge transformation given by Eq. �6� can be
seen as a motion along the fiber over a point C�s� in the
Grassmannian.

The quantity � is manifestly gauge invariant. On the other

hand, the matrix Pe�0
1A�s�ds transforms as

Pe�0
1A�s�ds → U†�1�Pe�0

1A�s�dsU�0� . �7�

Hence, the eigenvalues of Pe�0
1A�s�ds are not gauge invariant

�2,23� since we may have U�1��U�0�. In order to deal with
this we must somehow find a way to relate the initial and
final frames. This can be achieved by introducing the concept
of parallel frames �24–27�.

Given a fixed K-frame A= ��ak��k=1
K in the subspace La we

wish to find a K-frame B= ��bk��k=1
K in the subspace Lb that in

some sense is as parallel as possible to A. A reasonable
approach would be to minimize the following function over
all possible choices of B

D�A,B� = 	
k=1

K

��ak� − �bk��2 = 2K − 2Re Tr M�A,B� , �8�

where

�M�A,B��kl = 
ak�bl� . �9�

Thus, in order to minimize D�A ,B� we have to maximize
Re Tr M�A ,B�, where it is assumed that B spans over all
possible K-frames of Lb. We refer to the matrix M�A ,B� as
the overlap matrix.

Let B̃= ��b̃k��k=1
K be some arbitrary but fixed K-frame of

Lb. Every other K-frame B of Lb we may write as a unitary

transformation of the elements of B̃. All possible overlap

matrices can thus be written as M�A ,B�=M�A , B̃�V, where
V spans over the set of unitary K�K matrices. Let

M�A , B̃�=RUM, with R positive semidefinite �R�0�and UM

unitary, be a polar decomposition �28�. If R is positive defi-
nite �R�0�, then its inverse R−1 exists and UM is unique and

can be constructed as UM =R−1M�A , B̃�.
Note that the positive definiteness of R is a property of the

pair of subspaces La and Lb, and not a property of the spe-
cific choice of frames. In the following we say that two sub-
spaces La and Lb are overlapping if, for any choice of
frames, the positive part R of the overlap matrix is positive
definite. One may note that this equivalently could be stated
as the overlap matrix having K nonzero singular values �28�.
In the case when the number of nonzero eigenvalues of R is
greater than zero but less then K, we say the two subspaces
are partially overlapping. If all the eigenvalues of R are zero,
the two subspaces are orthogonal.

In the case when the two subspaces are overlapping one

can show that the maximum of Re Tr (M�A , B̃�V) is ob-
tained if we choose V=UM

† . Thus, the optimal choice of

K-frame B̄ is uniquely determined as

��b̄k�= 	
l

�UM�kl
*��b̃l� . �10�

It follows that

inf
B

D�A,B� = 2K − 2 TrM�A,B̄�M†�A,B̄� �11�

with M�A , B̄�=R. An alternative route to find the parallel
frame in Eq. �10� is to note that the overlap matrix

M�A ,B��0 if and only if B is the parallel frame B̄.
If we assume that the initial subspace C�0� and final sub-

space C�1� are overlapping, we can rewrite Eq. �5� using a
final frame ��āk�1���k=1

K that is parallel to the initial frame
��ak�0���k=1

K . This results in

� = 	
kl

�Ug�kl�āk�1��
al�0�� , �12�

where

Ug = UMPe�0
1A�s�ds. �13�

Here, UM is the unitary part of the polar decomposition of
the overlap matrix of the initial frame and the original final
frame. Under a gauge transformation of the form given by
Eq. �6�, one can show that the overlap matrix transforms as

M → M� = U†�0�MU�1� . �14�

This entails that the unitary part of M must transform as
UM →UM� =U†�0�UMU�1�. This fact and Eq. �7� entail that
the matrix Ug transforms as

Ug → Ug� = U†�0�UgU�0� . �15�

Hence, the eigenvalues of Ug are gauge invariant and we
define Ug to be the holonomy for subspaces.
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Let us consider some special cases of this holonomy. If

A�0�= ��ak�0���k=1
K and Ā�1�= ��āk�1���k=1

K are two parallel
frames such that �āk�1��= �ak�0��, for all k, then we obtain

M(A�0� ,Ā�1�)=1. Hence, UM =1 and Ug=Pe�0
1A�s�ds. This

corresponds to the Wilczek-Zee holonomy �2� in the case of
adiabatic evolution. Furthermore, when the subspaces are
one-dimensional the matrices reduce to complex numbers. In
this case we may use Eq. �13� to obtain

Ug = ei arg�
a�0��a�1���+�0
1
ȧ�s��a�s��ds, �16�

which fully agrees with the geometric phase factor in Ref.
�20�.

Next, we view the holonomy in terms of parallel transport
along the curve C. Intuitively, parallel transport is based on
the notion of transporting a subspace without locally rotating
it. Assume that we have a family of K-frames A�s�
= ��ak�s���k=1

K parametrized by s� �0,1�. Parallel transport
is achieved if and only if A�s+�s� is parallel to A�s�,
"s� �0,1�. As mentioned above, two frames are parallel if
and only if their overlap matrix, as defined by Eq. �9�, is
positive definite. The overlap matrix of the frames A�s� and
A�s+�s� can, to first order in �s, be expressed as

�M„A�s�,A�s + �s�…�kl = �kl − �s�A�s��kl, �17�

with A�s� as in Eq. �4�. Since A�s� is anti-Hermitian, the
overlap matrix is positive definite only if A�s�=0 for all
s� �0,1�. Hence, under parallel transport the holonomy takes
the form Ug=UM, where UM is the unitary part of the polar
decomposition of the overlap matrix between the initial
frame and the parallel transported final frame.

Let us now consider adiabatic evolution. Assume H�s� is a
one-parameter family of Hamiltonians all having a degener-
ate energy eigenspace of dimension K corresponding to the
energy E�s�. Furthermore, assume that ��ak�s���k=1

K is a basis
for the eigenspace. Consider an adiabatic change from s=0
to s=1 during an elapse of time T. The evolution imposed on
a state, initially in the degenerate subspace, can be written as

U�1,0�P�0� = e−iT�0
1E�s�ds	

kl

�Pe�0
1A�s�ds�kl�ak�1��
al�0�� ,

�18�

where U�1,0� is the evolution operator taking the system
from s=0 to s=1 and P�0� is the projector onto the initial
eigenspace. If we assume that the final eigenspace is over-
lapping with the initial eigenspace, we may as before con-
sider a final frame that is parallel to the initial frame. Using

this we may rewrite Eq. �18� as U�1,0�P�0�=e−iT�0
1E�s�ds�,

with � as in Eq. �12�. The first factor of the right-hand side
of this equation we recognize as the dynamical phase factor,
while the second contains the open-path holonomy.

The total action of � in Eq. �12� can be decomposed into
two parts. One part is given by the partial isometry T
=	k=1

K � āk�1��
ak�0��, which maps the initial frame to its par-
allel frame. The second part is R=	k,l=1

K �Ug�kl � āk�1��
āl�1��,
which is a unitary transformation on the final subspace given
by the holonomy. This decomposition of � provides an un-

derstanding of how the holonomy should behave under a
gauge transformation. In order for the unitary transformation
on the final subspace to be independent of gauge, the ho-
lonomy must transform unitarily, as displayed in Eq. �15�.

In the language of quantum computation, one may say
that we choose to let the parallel frame ��āk�1���k=1

K in the
final space correspond to the computational basis ��ak�0���k=1

K

in the initial space. The holonomy then appears as the result-
ing operation with respect to these choices of computational
bases. An aspect of this is that the computational basis be-
comes path dependent. One might, as an example, consider a
sequence of open-path holonomic implementations of opera-
tions. If this sequence happens to join into a cyclic path, it
might be the case that the initial computational basis does
not coincide with the final computational basis, although
they span the same subspace.

III. PHYSICAL EXAMPLE

In order to illustrate the concept of open-path holonomy,
as well as to provide an explicit example of an open-path
holonomic implementation of a single qubit gate, we now
consider a specific model system. This model was first ex-
amined in connection to non-Abelian holonomies in Ref.
�29� and would be accessible to tests in various physical
systems, such as ion traps �12,29�, atoms �13�, superconduct-
ing nanocircuits �14�, and semiconductor nanostructures
�15�. The Hamiltonian of the system reads

H�s� = �0�s��e�
0� + �1�s��e�
1� + �a�s��e�
a� + H.c.,

�19�

where �0� , �1� , �a�, and �e� are orthonormal and �0�s�, �1�s�,
and �a�s� are tunable coupling parameters. We assume that
the parameters combine to a real vector (�0�s� ,�1�s� ,�a�s�)
of unit length. Thus the parameter space forms a unit
2-sphere, which we may parametrize using the polar angle �
and the azimuthal angle �. The Hamiltonian H�s� has a dou-
bly degenerate zero-energy eigenspace, which is spanned by
the eigenstates

�D1�s�� = cos ��s�cos ��s��0� + cos ��s�sin ��s��1�

− sin ��s��a� ,

�D2�s�� = − sin ��s��0� + cos ��s��1� , �20�

where ��s�� �0,	� and ��s�� �0,2	�. In this context, the
states �D1�s�� and �D2�s�� are often referred to as “dark
states.”

Let us now assume that the parameter s is changed slowly
enough for the evolution to be adiabatic. Further, let
(��0� ,��0�)= �0,0� and (��1� ,��1�)= ��1 ,�1�. The overlap
matrix between the initial frame A�0�= ��0� , �1�� and the final
frame A�1�= ��D1�1�� , �D2�1��� is

M„A�0�,A�1�… = �cos �1cos �1 − sin �1

cos �1sin �1 cos �1
� . �21�

The unitary part of the overlap matrix is
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UM =�
cos �1cos �1

�cos �1�
− sin �1

cos �1sin �1

�cos �1�
cos �1

� , �22�

which holds under the assumption that �1�	 /2. If we fur-
thermore assume that 0
�1�	 /2, we may write UM
=e−i�1�y, where �y is the y component of the standard Pauli
matrices. For the frame in Eq. �20�, we obtain A�s�
= icos ��s��̇�s��y, yielding

Ug = e−i�y��1−�0
1cos ��s��̇�s�ds� = e−i�y��1−�Ccos �d�� = e−i�y�,

�23�

where the quantity � equals the solid angle swept by the
geodesic closure of the curve C on the parameter sphere.

If we instead assume that 	 /2��1
	, we obtain

UM = �− cos �1 − sin �1

− sin �1 cos �1
� , �24�

which can be written as UM =e−i�1�y�−�z�, where �z is the z
component of the standard Pauli matrices. In this case the
holonomy takes the form

Ug = e−i�1�y�− �z�e−i�y�Ccos �d�. �25�

Due to the fact that the different components of the Pauli
matrices do not commute, the holonomy is no longer deter-
mined by the solid angle swept by the geodesic closure of the
curve C on the parameter sphere. In the first case the ho-
lonomy had an Abelian structure �in the sense of Ref. �23��
due to the fact that �A�s� ,A�s���=0 for any s ,s�� �0,1� and

�UM ,e�0
1A�s�ds�=0. The latter is not fulfilled in the second

case, where the holonomy is truly non-Abelian. Hence, for
this physical example open paths seems to be a necessary
prerequisite in order to achieve truly non-Abelian holono-
mies.

IV. PARTIAL HOLONOMY

So far we have assumed that the initial and final sub-
spaces of the open path are overlapping. In the special case
of a one-dimensional subspace there are two cases, either the
subspaces are overlapping, or they are orthogonal. As a con-
sequence the holonomy either exists uniquely, or is unde-
fined. In the non-Abelian case, however, there is an addi-
tional case, namely, that the subspaces are partially
overlapping. In this case the holonomy is only partially de-
termined. When the two subspaces are partially overlapping
the positive part R of the overlap matrix is not invertible, no
matter the choice of frames. However, we may use the
Moore-Penrose �MP� pseudoinverse �28�. Since R is a posi-
tive semidefinite matrix, its MP-inverse R� can be calculated
by inverting the nonzero eigenvalues in its spectral decom-
position. The matrix UM can now be defined as the partial
isometry UM =R�M. This results in a partial isometry

R�MPe�0
1A�s�ds that we shall call a partial holonomy.

Let us examine how the partial holonomy behaves under a
gauge transformation. The overlap matrix between the initial

and final subspaces transforms as in Eq. �14�. It follows that

R� = M�M�† = U†�0�MU�1�U†�1�M†U�0� = U†�0�RU�0� ,

�26�

where R=MM†. We note the following property of the MP
inverse. Suppose that U and V are unitary matrices. Then, for
any matrix X, we have �see p. 434 in Ref. �28��

�UXV�� = V†X�U†. �27�

Thus,

UM� = �R���M� = �U†�0�RU�0���U†�0�MU�1�

= U†�0�R�MU�1� , �28�

which is precisely the way R−1M transforms if R is invert-
ible. Hence, the transformation of UM takes the same form
independently of whether or not the matrix R is invertible.

Moreover, the path ordered part of the holonomy, Pe�0
1A�s�ds,

always constitutes a unitary matrix that transforms according
to Eq. �7�. Thus the partial holonomy transforms unitarily
just as the holonomy, as displayed in Eq. �15�.

As an example of a partial holonomy, let us revisit the
previous model system, now assuming that �1=	 /2. The
overlap matrix M(A�0� ,A�1�) reduces to

M„A�0�,A�1�… = e−i�1�yQ, Q = �0 0

0 1
� , �29�

and R=e−i�1�yQei�1�y, which happens to be a one-
dimensional projector, and thus equal to its own MP inverse.
Consequently, UM =M(A�0� ,A�1�) and the partial holonomy
becomes

Ug = e−i�1�yQei�0
1cos ��s��̇�s�ds�y . �30�

One may note that the existence of a loop �in this case the
equator �1=	 /2 of the parameter sphere� along which the
holonomy is not fully defined is a topologically enforced
prerequisite for the discontinuous transition between the
Abelian and non-Abelian character of the holonomy, that we
have found in this example.

V. CONCLUSIONS

To summarize, we consider subspaces moving in the Hil-
bert space of a quantum system, and the concomitant unitary
transformation associated with the geometry of the traversed
path; the non-Abelian quantum holonomy. The standard non-
Abelian quantum holonomy is defined for closed paths of
such subspace motions, while we consider an open-path gen-
eralization. Due to the openness of the path, the initial and
final subspaces do not coincide in general. In order to “ex-
tract” the unitary transformation on the final subspace, i.e.,
the holonomy, we use a concept of parallelity in order to
decide which basis in the final subspace corresponds to the
basis in the initial subspace. Under suitable conditions on the
relative orientation between the initial and final subspaces,
this procedure results in a uniquely defined non-Abelian
quantum holonomy for open paths. This enables the con-
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struction of quantum gates in the open-path setting, where
the action of the gates is given by the proposed holonomy.
The idea of open-path holonomic gates may be useful when
analyzing noncyclic errors �30,31� of standard implementa-
tions of holonomic quantum computation. We finally point
out the existence of partially defined holonomies, which has
no counterpart in the Abelian case.
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