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In the framework of quantum field theory we discuss the emergence of a phase locking among the electro-
magnetic modes and the matter components on an extended space-time region. We discuss the formation of
extended domains exhibiting in their fundamental states nonvanishing order parameters, whose existence is not
included in the Lagrangian. Our discussion is motivated by the interest in the study of the general problem of
the stability of mesoscopic and macroscopic complex systems arising from fluctuating quantum components in
connection with the problem of defect formation during the process of non-equilibrium symmetry breaking
phase transitions characterized by an order parameter.
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I. INTRODUCTION

Complex systems made up of quantum components are
usually remarkably stable at mesoscopic and macroscopic
space-time scales. On the other hand, quantum fluctuations
are the dominant feature at the microscopic scale of the
quantum components. The necessity of taking into account
such a double feature is reflected in the usual quantum field
theory �QFT� prescription that the Lagrangian of the com-
plex system built upon the quantum fields should be invari-
ant under the local phase transformation of the quantum
component field ��x , t�→���x , t�=exp�ig��x , t����x , t�. Lo-
cal phase invariance is the QFT solution to the problem of
building a stable system out of fluctuating components. The
requirement of local phase invariance demands the introduc-
tion of gauge fields, e.g., the electromagnetic �e.m.� field
A��x , t�, such that the Lagrangian be also invariant under the
local gauge transformation A��x , t�→A�� �x , t�−����x , t�.
Such a transformation is devised to compensate terms pro-
portional to ����x , t� arising in the Lagrangian from the ki-
netic term for the matter field ��x , t�. This is a well known
story. In the present paper, given the above connection be-
tween the matter field and the e.m. field, we wish to discuss,
in the frame of QFT, the role played by the e.m. field in the
locking of the phases of the e.m. modes and of the matter
components on an extended space-time region. Furthermore,
we will discuss extended domains exhibiting in their funda-
mental states nonvanishing order parameters, whose exis-
tence is not included in the Lagrangian.

The interest in the general problem of the stability of me-
soscopic and macroscopic complex systems arising from
fluctuating quantum components also finds one strong moti-
vation in the study of the physically relevant problem of
defect formation during the process of non-equilibrium sym-
metry breaking phase transitions characterized by an order
parameter �1�. A topological defect may indeed appear in
such a process whenever a region, surrounded by ordered
domains, remains trapped in the “normal” or symmetric
state. Examples of topological defects are vortices in super-
conductors and superfluids, magnetic domain walls in ferro-
magnets, and many other extended objects in condensed mat-

ter physics. On the other hand, topological defects, such as
cosmic strings in cosmology, may have been also playing a
role in the phase transition processes in the early Universe
�2�. The phenomenological understanding of the defect for-
mation in phase transitions is provided by the Kibble-Zurek
scenario �3,4�. By considering the surprising analogy be-
tween defect formation in solid state physics and in high
energy physics and cosmology �5�, it has been also stressed
that the analysis of the formation of defects in phase transi-
tions becomes a “diagnostic tool” �6� in the study of non-
equilibrium symmetry breaking processes in a wide range of
energy scales. Questions such as why extended objects with
topological singularities are observed only in systems show-
ing some sort of ordered patterns, why defect formation is
observed during the processes of phase transitions, why the
features of the defect formation are shared by quite different
systems, from condensed matter to cosmology, etc., have
been specifically addressed in Refs. �7,8� and the dynamics
of defect formation has been extensively studied in a large
body of literature in QFT; see, as general Refs. �1,9�.

In these studies, in dealing with the presence of a gauge
field in the process of spontaneous symmetry breakdown a
crucial role is played by the well known Anderson-Higgs-
Kibble �AHK� mechanism �10,11�, where the gauge field is
expelled out of the ordered domains and confined, through
self-focusing propagation, into “normal” regions, such as the
vortex core, having a vanishing order parameter, i.e., where
the long range correlation modes �the Nambu-Goldstone
modes� responsible for the ordering are damped away. In the
present paper, going beyond the well established AHK
mechanism, our attention is focused on the dynamics gov-
erning the radiative gauge field and, as said above, its role in
the onset of phase locking among the e.m. modes and the
matter components. In the AHK mechanism the gauge field
removes the order in the regions where it penetrates, thus
describing the self-focusing gauge field propagation in or-
dered condensed matter as well as in asymmetric vacuum in
elementary particle physics. Here we study the role of radia-
tive gauge field in sustaining the phase locking in the coher-
ent regime.

We choose as our model system an ensemble of a given
number N of two-level atoms, which may represent rigid
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rotators endowed with an electric dipole. The interaction of
these atoms with the e.m. quantum radiative modes will be
considered. Moreover, we will examine the effects on the
system of an electric field generated by an external source or
else by an impurity introduced in the system, thus making
contact with the family of the so called Jaynes-Cummings
models �12�, extensively studied in the literature in connec-
tion with quantum optics problems �see, e.g., Ref. �13� for
detailed analysis�. Our discussion in the present paper may
be indeed of some relevance to quantum optics, as well. As a
matter of fact, a system of N two-level atoms interacting with
quantized e.m. modes has been known for a long time to
provide from a formal point of view, under some convenient
approximations and restrictions, a strong analogy between
the laser phase transition and the conventional phase transi-
tions in spontaneously broken symmetry theories �14,15�, al-
though the meaning of the constants in the potential function
for the order parameter is different. The key point in such a
connection between coherent �laser� light, the N atom system
and phase transition is in the observation that, under conve-
nient conditions, the behavior of the e.m. mode is described
by the potential

V�u,u*� = − ��u�2 + ��u�4 +
�2

4�
= ���u�2 −

�

2�
�2

, �1.1�

where, in the Haken notation �see Eq. �2.19� of Ref. �14� or
Eq. �VI.4.24� of Ref. �15�� � and �, with ��0, are conve-
nient coefficients and u denotes the classical e.m. amplitude
corresponding to the quantum e.m. field amplitude �in the
interaction representation the electric field strength is decom-
posed as E=u exp�−i	0t�+u*exp�i	0t�, where u is the
slowly varying amplitude and 	0 the atomic resonant fre-
quency�. The essential point is that the �mean value of the�
“order parameter” u minimizing the potential V�u ,u*� is zero
�disordered or symmetric state� for �
0 and nonzero for
��0, with �u�2= �

2� �0 �ordered or asymmetric state�. In this
latter case the system is said to be above threshold �the
threshold is set at �=0�, i.e., it is lasering. Of course, in the
Lagrangian formalism the coefficient �−�� denotes the
“squared mass” of the field, whose sign, as well known, con-
trols the occurrence or not of spontaneous symmetry break-
down. In the Haken interpretation � is the pump parameter
whose tuning may carry the system far from the equilibrium,
i.e., in the lasering region. Thus in the phase transition be-
tween the disordered and the ordered state the order param-
eter u changes in time from zero to a value proportional to
��. In his analysis, Haken also considers the Hamiltonian in
the interaction representation

H = � ��b†S− + bS+� , �1.2�

which is a Jaynes-Cummings–like Hamiltonian, indeed. In
Eq. �1.2� � is a coupling constant which is proportional to the
atomic dipole moment matrix element and to the inverse of
the volume square root V−1/2, b is the e.m. quantum field
operator �associated to the c-number amplitude u�, S± are the
atomic polarization operators. In the Haken discussion the
atomic variables are integrated out at some point of the com-
putation since his interest is mostly focused on the e.m. la-

sering effect. In our following analysis, instead, we keep
them and show that the phase locking between them and the
e.m. mode can be reached under convenient boundary con-
ditions.

II. THE MODEL

Let us start by assuming that transitions between the
atomic levels are radiative dipole transitions. We thus disre-
gard the static dipole-dipole interaction. Moreover, the sys-
tem is assumed to be in a thermal bath kept at a nonvanish-
ing temperature T. Under such conditions the system is
invariant under dipole rotations. We use natural units �=1
=c. We assume the system be spatially homogeneous and
denote by N the number of atoms per unit volume. The N
atom system may be collectively described by the complex
dipole wave field �x , t�. In Sec. IV we will also use the
known formal equivalence �see, e.g., Sec. III.6 of Ref. �15��
of the system of two-level atoms with a system of 1

2 spins.
The dipole wave field �x , t� integrated over the sphere of
unit radius r gives

	 d���x,t��2 = N , �2.1�

where d�=sin �d�d is the element of solid angle and
�r ,� ,� are the polar coordinates of r. By introducing the
rescaled field ��x , t�= 1

�N
�x , t� Eq. �2.1� becomes

	 d����x,t��2 = 1. �2.2�

Since the atom density is assumed to be spatially uniform,
the only relevant variables are the angular ones. Thus, in full
generality, we may expand the field ��x , t� in the unit sphere
in terms of spherical harmonics

��x,t� = 

l,m

�l,m�t�Yl
m��,� , �2.3�

which, by setting �l,m�t�=0 for l�0,1, reduces to the expan-
sion in the four levels �l ,m�= �0,0� and �1,m� ,m=0, ±1.
The populations of these levels are given by N ��l,m�t��2 and
at thermal equilibrium, in the absence of interaction, they
follow the Boltzmann distribution. Moreover, the dipole ro-
tational invariance implies that there is no preferred direction
in the dipole orientation, which means that the amplitude of
�1,m�t� does not depend on m, and that no permanent polar-
ization may develop for such a system in such conditions,
i.e., the time average of the polarization Pn along any direc-
tion n must vanish. We thus write

�0,0�t� � a0�t� � A0�t�ei�0�t�,

�1,m�t� � A1�t�ei�1,m�t�e−i	0t � a1,m�t�e−i	0t, �2.4�

where a1,m�t��A1�t�ei�1,m�t�. A0�t�, A1�t�, �0�t�, and �1,m�t�
are real quantities. In Eqs. �2.4� we have also used 	0� 1

I ,
where I denotes the moment of inertia of the atom, which
gives a relevant scale for the system: 	0�k= 2�

� �note that
the eigenvalue of L2

2I on the state �1,m�, L2 being the squared
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angular momentum operator, is
l�l+1�

2I = 1
I =	0�. By setting the

z axis parallel to n and using the explicit expressions for the
spherical harmonics

Y0
0 =

1
�4�

, Y1
0 =� 3

4�
cos � ,

Y1
1 = −� 3

8�
sin �ei = − �Y1

−1�*, �2.5�

we find

Pn =	 d��*�x,t��x · n���x,t� =
2
�3

A0�t�A1�t�cos�	 − 	0�t ,

�2.6�

where 	t��1,0�t�−�0�t� and whose time average is zero, as
it should be. This confirms that the three levels �1,m�, m
=0, ±1 are in the average equally populated under normal
conditions and that, as said above, we can safely write

m ��1,m�t��2=3 �a1�t��2. On the other hand, the normalization
condition �2.2� gives, at any time t,

��0,0�t��2 + 

m

��1,m�t��2 = �a0�t��2 + 3�a1�t��2 = 1. �2.7�

By defining Q as

Q � �a0�t��2 + 3�a1�t��2, �2.8�

we thus see from Eq. �2.7� that

�

�t
Q = 0, �2.9�

i.e.,

�

�t
�a1�t��2 = −

1

3

�

�t
�a0�t��2. �2.10�

Due to Eq. �2.1� �and the rescaling adopted for ��x , t��, Eq.
�2.9� expresses nothing but the conservation of the total
number N of atoms; it also means that, as shown in Eq.
�2.10�, due to the rotational invariance, the rate of change of
the population in each of the levels �1,m�, m=0, ±1, equally
contributes, in the average, to the rate of change in the popu-
lation of the level �0,0�, at each time t. Consistently with Eq.
�2.7�, in full generality we can set the initial conditions at t
=0 as

�a0�0��2 = cos2 �0, �a1�0��2 =
1

3
sin2 �0, 0 
 �0 


�

2
.

�2.11�

We exclude the values zero and �
2 since they correspond to

the physically unrealistic conditions for the state �0,0� of
being completely filled or completely empty, respectively.
By properly tuning the parameter �0 in its range of definition
one can adequately describe the physical initial conditions.
For example, �0= �

3 describes the equipartition of the field
modes of energy E�k� among the four levels �0,0� and
�1,m�, �a0�0��2��a1,m�0��2, m=0, ±1, as typically given by

the Boltzmann distribution when the temperature T is high
enough, kBT�E�k�. As we will see, however, the lower
bound for the parameter �0 is imposed by the dynamics in a
self-consistent way.

The possibility of obtaining a nonzero permanent polar-
ization, and thus the dipole ordering in the system, is cru-
cially conditioned by the ratio between the populations in the
atomic levels. Namely, suppose that the atom system is under
the influence of an electric field E due, e.g., to an impurity,
or to any other external agent. Assume E to be parallel to the
z axis. Then the term

H = − d · E , �2.12�

where d is the electric dipole moment of the atom, will be
added to the system energy and will break the dipole rota-
tional symmetry. It will produce the mixing between the
states Y0

0 and Y1
0: Y0

0→Y0
0 cos �+Y1

0 sin � and Y1
0→−Y0

0 sin �
+Y1

0 cos �, with

tan � =
	0 − �	0

2 + 4H2

2H
. �2.13�

Due to the mixing thus induced, the polarization Pn is now
given by

Pn =
1
�3

�A0
2 − A1

2�sin 2� +
2
�3

A0�t�A1�t�cos 2�

�cos��	 − �	0
2 + 4H2�t� , �2.14�

to be compared with Eq. �2.6� and whose time average is
nonzero: Pn= 1

�3
�A0

2−A1
2�sin 2�. The nonzero difference in the

level populations �A0
2−A1

2� is therefore crucial in obtaining
the nonzero polarization. We will study under which condi-
tions such an occurrence can be realized.

In the following, we restrict ourselves to the resonant ra-
diative e.m. modes, i.e., those for which k= 2�

� =	0, and we
use the dipole approximation, i.e., we put exp�ik ·x�1 in
our formulas, since we are interested in the macroscopic be-
havior of the system. This means that the wavelengths of the
e.m. modes we consider, of the order of 2�

	0
, are larger �or

comparable� than the system linear size. Let cr�k , t� denote
the radiative e.m. field operator with polarization r and
ur�k , t�= 1

�N
cr�k , t� the rescaled one. The field equations for

our system are �13,16�

i
���x,t�

�t
=

L2

2I
��x,t� − i


k,r
d���k

2
��r · x�

� �ur�k,t�e−ikt − ur
†�k,t�eikt���x,t� ,

i
�ur�k,t�

�t
= id���k

2
eikt	 d���r · x����x,t��2,

�2.15�

where d is the magnitude of the electric dipole moment, �
� N

V and �r is the polarization vector of the e.m. mode �for
which the transversality condition k ·�r=0 is assumed to
hold�. We remark that the enhancement by the factor �N
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appearing in the coupling d�� in Eqs. �2.15� is due to the
rescaling of the fields. We will comment more on this point
later on.

III. THE FIELD EQUATIONS AND THE PHASE LOCKING

By resorting to the discussion of Eqs. �2.15� presented in
Ref. �17�, our task is now to analyze the implications of these
equations with reference to the role played by the e.m.
modes in the onset of the phase locking between them and
the dipole field. First, let us observe that use of Eqs. �2.3�
�and �2.4�� in Eq. �2.15� gives the set of coupled equations

ȧ0�t� = �

m

um
* �t�a1,m�t� , �3.1�

ȧ1,m�t� = − �um�t�a0�t� , �3.2�

u̇m�t� = 2�a0
*�t�a1,m�t� , �3.3�

where a1,m�t���1,m�t�ei	0t �see Eq. �2.4��, the dot over the
symbols denotes the time derivative, um is the amplitude of
the e.m. mode coupled to the transition �1,m�↔ �0,0� and
�� 2d

�3
� �

2	0
	0�G	0.

Equations �3.1�–�3.3�, as well as Eqs. �2.15�, from which
they have been derived, appear to be not invariant under
time-dependent phase transformations of the field ampli-
tudes. We want to investigate how gauge invariance can be
recovered.

Use of the conjugate of Eq. �3.2� in Eq. �3.1� gives, con-

sistently with Eq. �2.9�, the conservation law Q̇=0. More-
over, use of the conjugate of Eq. �3.2� in Eq. �3.3� leads to

�

�t
�um�t��2 = − 2

�

�t
�a1,m�t��2. �3.4�

Since the amplitude ��1,m�t� � = �a1,m�t�� does not depend on
m, Eq. �3.4� shows that also the amplitude �um�t�� does not
depend on m. Equation �3.4� shows the existence of another
constant of motion; namely, putting �u�t� � ��um�t�� and using
�a1�t� � ��a1,m�t��, we can write

�u�t��2 + 2�a1�t��2 =
2

3
sin2 �0, �3.5�

for any t, where we have also used the initial condition �2.11�
and set

�u�0��2 = 0. �3.6�

We observe that since �u�t��2�0, Eq. �3.5� imposes �a1�t��2

�
1
3 sin2 �0 and therefore �a0�t��2�cos2 �0 due to Eq. �2.7�.

Note that Eq. �3.5� gives �cf. Eq. �2.11��

�u�t��2 = 2��a1�0��2 − �a1�t��2� , �3.7�

for any t, which, by exploiting Eq. �2.11�, reads

�u�t��2 =
2

3
��a0�t��2 − cos2 �0� . �3.8�

It is also useful to write

um�t� = U�t�ei�m�t�, �3.9�

with U�t� and �m�t� real quantities.
By combining Eqs. �2.4� and �3.9� with Eqs. �3.1�–�3.3�

and equating real and imaginary parts, we get

A0
˙ �t� = �U�t�A1�t�cos �m�t� , �3.10�

A1
˙ �t� = − �U�t�A0�t�cos �m�t� , �3.11�

U̇�t� = 2�A0�t�A1�t�cos �m�t� , �3.12�

�ṁ�t� = 2�
A0�t�A1�t�

U�t�
sin �m�t� , �3.13�

where we have put

�m � �1,m�t� − �0�t� − �m�t� . �3.14�

Similarly, we can derive equations for �1,m
˙ and �0̇.

From Eqs. �3.10�–�3.12� we see that since their left hand
sides are independent of m, so the right hand sides have to
be, i.e., either cos �m�t�=0 for any m at any t, or �m is
independent of m at any t. In both cases, Eq. �3.13� shows
that �m is then independent of m, which in turn implies,
together with Eq. �3.14�, that �1,m�t� is independent of m.
Phases thus turn out to be independent of m. We will there-
fore put ���m, �1�t���1,m�t� and ���m. We observe that
in general the phases can be always changed by arbitrary
constants. The independence of m of the phases is dictated
by the requirement to not violate the gauge invariance.
Should exist a difference between the phases having different
m, this difference could be changed by a rotation of the axes
and would spoil the gauge invariance. In the present case, the
independence of m of the phases is of dynamical origin and
we will find that the phase locking among �0�t�, �1�t�, and
��t�, has indeed the meaning of recovering the gauge invari-
ance. We will discuss this point in the Sec. II.B.

Summarizing, we can now write u�t��um�t� and a1�t�
�a1,m�t� and from Eqs. �3.1�–�3.3� we get the known �17�
set of equations:

ȧ0�t� = 3�u*�t�a1�t� , �3.15�

ȧ1�t� = − �u�t�a0�t� , �3.16�

u̇�t� = 2�a0
*�t�a1�t� . �3.17�

Equations �3.15�–�3.17� are fully consistent with the original
normalization condition �2.2� �or Eq. �2.7��, with the conser-
vation �2.9� and with the dipole rotational invariance ex-
pressed by the zero average polarization �cf. Eq. �2.6��. In
Eq. �3.15� the rate of change of the amplitude of the level
�0,0� is shown to depend on the coupling between the levels
�1,m�, m=0, ±1 and the radiative e.m. mode of correspond-
ing polarization. Each of these couplings contribute in equal
measure, due to rotational invariance, to the transitions to
�0,0�. Similarly, in Eq. �3.16� the rate of change of the am-
plitude of each level �1,m� is shown to depend on the cou-
pling between the level �0,0� and the corresponding radia-
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tive e.m. mode. Finally, in Eq. �3.17� the transitions
�0,0�↔ �1,m�, m=0, ±1 control the rate of change of the
amplitude of the radiative e.m. mode of corresponding polar-
ization. These equations thus reflect the correct selection
rules in radiative and absorption processes �18–20�. Equation
�3.15� describes the fact that each of the levels �1,m� may
find in the e.m. field the proper mode to couple with, in full
respect of the selection rules. In this sense, the field concept,
as a full collection of e.m. modes with all possible polariza-
tions, is crucial here. As already said, Eqs. �3.15�–�3.17� are
fully consistent with the physical boundary conditions and
the motion equation �2.15� from which they are derived.

A. The ground state

We want to study now the vacuum or ground state of the
system for each of the modes a0�t�, a1�t�, and u�t� described
by Eqs. �3.15�–�3.17� �i.e., by Eq. �2.15��. It is convenient to
differentiate once more with respect to time both sides of Eq.
�3.15�. By using Eqs. �3.16� and �3.17� and the constants of
motion �2.7� and �3.5� we eliminate the variables a1�t� and
u�t�. We thus find

ä0�t� = 4�2�0
2��0�a0�t� − 4�2�a0�t��2a0�t� , �3.18�

where �0
2��0�� 1

2 �1+cos2 �0�. Equation �3.18� can be written
in the form

ä0�t� = −
�

�a0
*V�a0�t�,a0

*�t�� , �3.19�

where the potential V�a0�t� ,a0
*�t�� is

V�a0�t�,a0
*�t�� = 2�2��a0�t��2 − �0

2��0��2. �3.20�

In a standard fashion �see, e.g., Ref. �11�� we may adopt the
semiclassical �“mean field”� approximation in order to study
the ground state of the theory. We thus search for the minima
of the potential V. Let a0,R�t� and a0,I�t� denote the real and
the imaginary component, respectively, of the a0�t� field
�a0�t��2=A0

2�t�=a0,R
2 �t�+a0,I

2 �t�. The potential has a relative
maximum at a0=0 and a �continuum� set of minima given by

�a0�t��2 =
1

2
�1 + cos2 �0� = �0

2��0� . �3.21�

These minima correspond to the points on the circle of
squared radius �0

2��0� in the (a0,R�t� ,a0,I�t�) plane. We thus
recognize that we are in the familiar case of a theory where
the cylindrical SO�2� symmetry �the phase symmetry�
around an axis orthogonal to the plane (a0,R�t� ,a0,I�t�) is
spontaneously broken. The order parameter is given by
�0��0�. Note that Eq. �3.21� does not fix the �ground state
expectation� value of the phase field �0�t�. The points on the
circle represent �infinitely many� possible vacua for the sys-
tem and they transform into each other under shifts of the
field �0: �0→�0+� �SO�2� rotations in the (a0,R�t� ,a0,I�t�)
plane�. The phase symmetry is broken when one specific
ground state is singled out by fixing the value of the �0 field.

By proceeding as usual in these circumstances �11�, we
transform to new fields: A0�t�→A0��t��A0�t�−�0��0� and

�0��t�→�0�t�, so that A0��t�=0 in the ground state for which
A0�t�=�0��0�. Use of these new variables in V leads to rec-
ognize that the amplitude A0��t� describes a quasiperiodic
mode with pulsation m0=2���1+cos2 �0� �a “massive”
mode with real mass 2���1+cos2 �0�� and that the field
�0��t� corresponds to a zero-frequency mode �a massless
mode� playing the role of the so-called Nambu-Goldstone
�NG� field or collective mode implied by the spontaneous
breakdown of symmetry.

We note that when Eq. �3.21� holds, use of Eqs. �2.7� and

�3.5� gives A1
2= 1

6 sin2 �0 and Ū2= 1
3 sin2 �0, moving away

from the initial condition values �2.11� and �3.6�, respec-
tively. In this respect, it is remarkable that the value a0=0,
which we have excluded in our initial conditions, cf. Eq.
�2.11�, on the basis of physical considerations, consistently
appears to be the relative maximum for the potential, and
therefore an instability point out of which the system �spon-
taneously� runs away. Moreover, as already observed, use of
the constant of motion laws �2.7� and �3.5� shows that �a0�2

=0 implies U2=− 2
3 cos2 �0 which is not possible since U is

real. Finally, we remark that the bound �a0�t��2�cos2 � dis-
cussed above �see the comment after Eq. �3.6�� is consis-
tently satisfied by�a0�t��2=�0

2��0� �see Eq. �3.21��.
We consider now the time derivative of both sides of Eq.

�3.16� and by simple manipulations we find the following
equation for the amplitude a1�t�:

ä1�t� = − �2a1�t� + 12�2�a1�t��2a1�t� , �3.22�

where �2=2�2�1+sin2 �0�. The potential from which the
right-hand side of Eq. �3.22� is derivable is

V�a1�t�,a1
*�t�� = �2�a1�t��2 − 6�2��a1�t��2�2. �3.23�

In this case there is a relative minimum at a1=0 and a �con-
tinuum� set of relative maxima on the circle of squared ra-
dius

�a1�t��2 =
1

6
�1 + sin2 �0� � �1

2��0� . �3.24�

Note that, for �a1�t��2=�1
2��0�, U2=− 1

3 cos2 �0
0, which is
not acceptable since U is real. The values on the circle of
radius �1��0� are thus forbidden for the amplitude A1. This is
consistent with the intrinsic instability of the excited levels
�1,m�. We have also seen that the conservation law �3.5� and
the reality condition for U require that �a1�t��2�

1
3 sin2 �0

which lies indeed below �1
2��0�, and we note that the value

1
6 sin2 �0 taken by A1

2 when �a0�t��2=�0
2��0� also lies below

the bound. In conclusion, the potential V�a1�t� ,a1
*�t�� in-

volved in the dynamics must be lower than 1
3 sin2 �.

This is enough about the consistency between Eqs. �3.18�
and �3.22�. As mentioned above, we exclude that the ampli-
tude A1 be constantly zero (at the minimum of
V�a1�t� ,a1

*�t��), since this would correspond to the physically
unrealistic situation of the �0,0� level completely filled. In
conclusion, within these dynamical bounds, the field a1�t�
described by Eq. �3.22� is a massive field with �real� mass
�pulsation� �2=2�2�1+sin2 �0�.
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Finally, we focus on the e.m. mode u�t� and consider Eq.
�3.17�. By proceeding as above by differentiating once more
with respect to time we find

ü�t� = − �2u�t� − 6�2�u�t��2u�t� , �3.25�

where �2=2�2 cos 2�0. The right-hand side of Eq. �3.25� is
derivable from the potential

V�u�t�,u*�t�� = �2�u�t��2 + 3�2�u�t��4 +
1

3
�2 cos2 2�0

= 3�2��u�t��2 +
1

3
cos 2�0�2

�3.26�

and we note that V�u�t� ,u*�t�� is nothing but the potential for
the e.m. mode given in Eq. �1.1� for −�=�2 and �=3�2. We
are in the case of a theory where the symmetry can be spon-
taneously broken or not, according to the negative or positive
value of the squared mass �2 of the field �the pump in the
Haken interpretation�, respectively.

Again, in the semiclassical approximation we search for
the minima of the potential V�u�t� ,u*�t�� and see that �2

�0 for �0�
�
4 and the only minimum is at u0=0. Equation

�3.25� then describes quasiperiodic modes with pulsation �
=��2 cos 2�0, typically expected for a paraboloid potential
V�u�t� ,u*�t�� with cylindrical SO�2� symmetry about an axis
orthogonal to the plane (uR�t� ,uI�t�) and minimum at u0=0.
Here uR�t� and uI�t� denote the real and the imaginary com-
ponent, respectively, of the u�t� field. In such a case we have
the symmetric solution with zero order parameter u0=0. This
solution describes the system when the initial condition �3.6�
holds at any time. This occurrence is, however, not consistent
with the dynamical evolution of the system moving away
from the initial conditions exhibited by Eq. �3.18�, as men-
tioned above. Luckily, consistency is dynamically recovered
provided �0�

�
4 . In such a case, indeed, �2=2�2 cos 2�0


0 and the potential has a relative maximum at u0=0 and a
�continuum� set of minima given by

�u�t��2 = −
1

3
cos 2�0 = −

�2

6�2 � v2��0�, �0 �
�

4
.

�3.27�

The fact that in the present case u0=0 is a maximum for the
potential means that the system dynamics evolves away from
it, consistently with the similar situation noticed above for
the a0 mode where the system spontaneously evolves away
from the initial conditions. The symmetric solution of the
minimum at u0=0 is thus excluded for internal consistency
and the lower bound �

4 for �0 is thus dynamically imposed in
a self-consistent way.

In Eq. �3.27� the minima are the points of the circle of
squared radius v2��0� in the (uR�t� ,uI�t�) plane. As in the
case of the amplitude a0 analyzed above, the points on the
circle represent �infinitely many� possible vacua for the sys-
tem and they transform into each other under shifts of the
field �: �→�+�. For �0�

�
4 the phase symmetry is broken,

the order parameter is given by v��0��0 and one specific
ground state is singled out by fixing the value of the � field.

As usual �11�, we transform to new fields U�t�→U��t�
�U�t�−v��0� and ���t�→��t� so that in the ground state
U��t�=0. Use of these new variables in V�u�t� ,u*�t�� shows
that the amplitude U��t� describes a “massive” mode with
real mass �2 ��2�=2���cos 2�0� �a quasiperiodic mode� and
that the field ���t� is a zero-frequency mode �a massless
mode�. This field, also called the “phason” field �21�, plays
the role of the Nambu-Goldstone �NG� collective mode in
the theories where symmetry is spontaneously broken. When
Eq. �3.27� holds, it is A1

2= 1
6 which lies below the upper

bound 1
3 sin2 � provided ��

�
4 . Similarly, Eq. �3.27� implies

A0
2= 1

2 which satisfies the constraint of being greater than
cos2 � for ��

�
4 .

In conclusion, the e.m. field, as an effect of the spontane-
ous breakdown of the phase symmetry �Eq. �3.27�� gets a
massive component �the amplitude field�, as indeed expected
in the Anderson-Higgs-Kibble mechanism, and there is also a
�surviving� massless component �the phase field� playing the
role of the NG mode. In the following we show that such a
massless component is crucially involved in the phase lock-
ing of the e.m. and matter fields.

The emerging picture is then the following. The system
may be prepared with initial conditions dictated by the con-
servation of the particle number and given by Eqs. �2.11� and
�3.6�, where the value of the parameter �0 is in principle
arbitrary within reasonable physical conditions. According to
the field equations �2.15�, the system then evolves towards
the minimum energy state where �a0�t��2�0 as in Eq. �3.21�
and the amplitude �u�t��2 departs from its initial zero value.
This implies a succession of �quantum� phase transitions �22�
from the initial u0=0 symmetric vacuum to the asymmetric
vacuum �u�t��2�0, which means that in Eq. �3.26� �0 has to
be greater than �

4 . In this way the lower bound for �0 is
dynamically fixed and the phase symmetry is dynamically
broken in the process of phase transition to the coherent re-
gime. The role of the phason mode � is to recover such a
symmetry, thus reestablishing the gauge invariance of the
theory. This is done through the emergence of the coherence
implied by the phase locking between the matter field and
the e.m. field. Let us see how this happens.

The phase locking

As shown above, provided �0�
�
4 , a time-independent

amplitude U�t�� Ū is compatible with the system dynamics

�e.g., the ground state value of A0 in Eq. �3.21� implies Ū
=const, as noticed above�. Equations �3.12� and �3.13� with
�m��=�1�t�−�0�t�−��t� are

U̇�t� = 2�A0�t�A1�t�cos ��t� , �3.28�

�̇�t� = 2�
A0�t�A1�t�

U�t�
sin ��t� . �3.29�

We thus see that U̇�t�=0, i.e., a time-independent amplitude

Ū=const exists, if and only if the phase locking relation
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� = �1�t� − �0�t� − ��t� =
�

2
�3.30�

holds. In such a case,

�̇�t� = �1̇�t� − �0̇�t� = 	 , �3.31�

which shows that any change in time of the difference be-
tween the phases of the amplitudes a1�t� and a0�t� is com-
pensated by the change of the phase of the e.m. field. When

Eq. �3.30� holds we also have A0
˙ =0=A1

˙ �see Eqs. �3.10� and
�3.11��. Provided �0�

�
4 , the phase relation �3.30� can be thus

regarded as a further constant of motion implied by the dy-
namics: �̇=0. It expresses nothing but the gauge invariance
of the theory. Since �0 and � are the NG modes, Eqs. �3.30�
and �3.31� also exhibit the coherent feature of the collective
dynamical regime: the system of N dipoles and of the e.m.
field is characterized by the “in phase” dynamics expressed
by Eq. �3.30� �phase locking�. In other words, the gauge
invariance of the theory is preserved by the dynamical emer-
gence of the coherence between the matter field and the e.m.
field. In such a regime we have

Ā0
2 − Ā1

2 = cos2 �0 −
1

3
sin2 �0 + 2Ū2 � 0, �3.32�

to be compared with A0
2�t�−A1

2�t�0 at the thermal equilib-
rium in the absence of the collective dynamical regime dis-
cussed here. Equation �3.32� shows the relevant role played

by the occurrence of a time-independent e.m. amplitude Ū2;
the collective dynamical regime, which sets in for �0�

�
4 ,

allows that a nonzero permanent polarization Pn appears
when an electrical field is applied, as discussed in deriving
Eq. �2.14�. In the following we will come back to this point.

In conclusion we recognize that, starting at t=0 from the
initial condition �u�0��2=0, and, correspondingly, from the
zero order parameter u0=0, a nonzero time–independent e.m.
amplitude can develop �phase transition�, provided �0�

�
4 , as

an effect of the radiative dipole-dipole interaction. This re-
sults in turn in the phase locking �3.30� and in the subsequent
coherence in the time behavior of the phase fields �see Eq.
�3.31��. Equations �3.30� and �3.31� show the role played by
the phason field � in recovering the gauge invariance in the
process of phase transition to the collective dynamical re-
gime.

In the collective dynamical regime considered above the
values of the amplitudes A0 and A1 are related to the ampli-

tude Ū through the relations �2.7� and �3.8�. Moreover, we
also obtain

A0
2 =

1

3
�1 + cos2 �0 + �1 −

1

4
sin22�0�1/2� �3.33�

which used in Eq. �3.18� shows that the oscillations around
the ground state for A0 have pulsation �=2�2�1
− 1

4 sin2 2�0�1/4.
The physical meaning of the phase locking can be stated

as follows. The gauge arbitrariness of the field A� is meant to
compensate exactly the arbitrariness of the phase of the mat-
ter field in the covariant derivative D�=��− igA�. Should

one of the two arbitrarinesses be removed by the dynamics,
the invariance of the theory requires the other arbitrariness,
too, must be simultaneously removed, namely the appear-
ance of a well defined phase of the matter field implies that a
specific gauge function must be selected. The above link
between the phase of the matter field and the gauge of A� is
stated by the equation A�=��� �A� is a pure gauge field�.
When ��x , t� is a regular �continuous differentiable� function
then E=− �A

�t +�A0= �− �
�t�+� �

�t
��=0, since in such a case

time derivative and the gradient operator can be inter-
changed. Analogously, in the space of the regular functions
��x , t� it is B=��A=����=0. Thus the existence of
nonvanishing fields E and B in a coherent region implies that
the time and space derivatives should act on a space larger
than the space of regular functions, namely, ��x , t� should
exhibit a �divergence or a topological� singularity within the
region �8�. This is precisely what is observed, e.g., in type II
superconductors when penetrated by the lines of a quantized
flux in a vortex core.

IV. DISCUSSION AND CONCLUSIVE REMARKS

We have seen above that the rescaling of the field by the
factor �N �see Eq.�2.2�� induces the enhancement by the
same factor of the coupling constants appearing in the field
equations �2.15� �see also the coupling � introduced in Eqs.
�3.1�–�3.3��. This implies that for large N the collective in-
teraction time scale is much shorter �by the factor 1

�N
� than

the short range interactions among the atoms. Hence the
mesoscopic/macroscopic stability of the system vs the quan-
tum fluctuations in the short range dynamics of the micro-
scopic components. For the same reason, for sufficiently
large N the collective interaction is protected against thermal
fluctuations. Indeed, thermal fluctuations could affect the
collective process only when kT is comparable or larger than
the energy gap, whose value thus determines the height of
the protection; the larger the energy gap, the more robust the
protection. We do not present in this paper an estimate of the
energy gap. We will do that in a future work. The role of the
factor �N in setting the time scale of the system can be
understood also in connection with the influence on the sys-
tem of atoms of an electric field E due, e.g., to an impurity
�or to any other external agent�. By closely following Ref.
�23�, we will see indeed that for large N the system of atoms
behaves as a collective whole. The interaction H=−d ·E �Eq.
�2.12�� with the electrical field can be written �13� as

H = � ��b†�− + b�+� , �4.1�

which is a Jaynes-Cummings–like Hamiltonian, as already
mentioned in Sec. I in connection with Haken analysis. In
Eq. �4.1� � is the coupling constant which is proportional to
the matrix element of the atomic dipole moment and to the
inverse of the volume square root V−1/2, b is the electric field
quantum operator, �± are the atomic polarization operators.
Let �0�i and �1�i, i=1, . . . ,N, denote the ground state and the
excited state of each of the N two-level atoms, respectively,
associated to the eigenvalues �

1
2 of the operator �3i

= 1
2 ��1�ii�1 �−�0�ii�0 � �, no summation on i �see, e.g., Sec. III.6
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of Ref. �15� for the formal equivalence of the system of
two-level atoms with a system of 1

2 spins�. The operators
�i

+= �1�ii�0� and �i
−= ��i

+�† generate the transitions between
the two levels induced by the action of the electric field. The
N-atom system is thus described by �±=
i=1

N �i
± ,�3=
i=1

N �3i
with the fermionlike su�2� algebra

��3,�±� = ± �±, ��−,�+� = − 2�3. �4.2�

Suppose that the electric field action induces the transition
�0�i→ �1�i for a certain number of atoms, say l �as far as
N� l our conclusions will not be affected by the fact that
initially some of the atoms are not in their ground state�. The
system state may be then represented as the normalized su-
perposition �l� given by

�l� � ��0�1�0�2 ¯ �0�N−l�1�N−l+1�1�N−l+2 ¯ �1�N + ¯

+ �1�1�1�2 ¯ �1�l�0�l+1�0�l+2 ¯ �0�N����N

l
� .

�4.3�

The difference between the number of atoms in the excited
state and the ones in the ground state is measured by �3:

�l��3�l� = l −
1

2
N �4.4�

and the nonzero value of this quantity �proportional to the
system polarization� signals that the dipole rotational
�SU�2�� symmetry is broken. Operating with �± on �l� gives

�+�l� = �l + 1�N − l�l + 1� ,

�−�l� = �N − �l − 1��l�l − 1� . �4.5�

Equations �4.4� and �4.5� show that �3 and �±

�N
are represented

on �l� by

�3 = S+S− −
1

2
N ,

�+

�N
= S+�1 −

S+S−

N
,

�−

�N
=�1 −

S+S−

N
S−, �4.6�

where S−= �S+�†, �S− ,S+�=1, S+ � l�=�l+1 � l+1�, and S− � l�
=�l � l−1�, for any l. Equations �4.6� are the Holstein-
Primakoff nonlinear boson realization of SU�2� �24,25�. �±

�N
in Eqs. �4.6� still satisfy the su�2� algebra �4.2�. However,
since for N� l Eqs. �4.5� give

�±

�N
�l� = S±�l� , �4.7�

the su�2� algebra �4.2� contracts in the large N limit to the
�projective� e�2� algebra �or Weyl-Heisenberg algebra�
�26,27,23�

�S3,S±� = ± S±, �S−,S+� = 1, �4.8�

where S3��3. From Eqs. �4.7� and �4.8� we see that, for
large N, S± denote the creation and annihilation boson opera-
tors associated to the quanta of collective dipole waves ex-
cited by the electric field. The interaction �4.1� can now be
written in terms of S± as

H = � �N��b†S− + bS+� . �4.9�

We thus conclude that in the large N limit the collection of
single two-level �fermionlike� atoms appears as a collective
bosonic system. The original coupling of the individual at-
oms to the field gets enhanced by the factor �N and appears
as the coupling of the collective modes S± �the system as a
whole� to the field. We observe that, as shown by Eq. �2.14�,
the polarization persists as far as � is nonzero, namely, as far
as the field E is active �i.e., H�0�. The system finite size
prevents indeed from having a persistent polarization surviv-
ing the H→0 limit �8�. In such a limit the dipole rotational
symmetry is thus restored.

Finally, we note that the collective dynamical features
presented here are not substantially affected by energy losses
from the system volume, which we have not considered in
the discussion above. These losses are related with the dif-
ferent lifetimes of our different modes, according to the dif-
ferent time scales associated to the pulsations m0, �, and �.
An analysis of energy losses when the system is enclosed in
a cavity has been presented elsewhere in connection with the
problem of efficient cooling of an ensemble of N atoms �23�.
Another problem which we have not considered in this paper
is the one related to how much time the system demands to
set up the collective regime. This problem, which is a central
one in the domain formation in the Kibble-Zurek scenario,
will be the object of our study in a future work. Here we
remark only that, since the correlation among the elementary
constituents is kept by a pure gauge field, the communication
among them travels at the phase velocity of the gauge field.
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