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We present a remarkably simple derivation of an exact time-local master equation describing the dynamics
of quantum states in harmonic traps subject to arbitrary fluctuating forces. The relation between our master
equation and known master equations of irreversible harmonic oscillator dynamics are established. Motivated
by recent experiments, we focus on decoherence and in particular on the precise decoherence dynamics of a
superposition of wave packets. We determine the decaying purity resulting from the time evolution based on
our master equation and study its connection to experimentally accessible observables. Finally, we discuss the
heating of the system subjected to arbitrary Gaussian noise.
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I. INTRODUCTION

Impressive advances in experimental studies of quantum
dynamics on more and more macroscopic scales revives the
old question about the quantum-classical transition when ap-
proaching the macroscopic level �1,2�. Quantum interference
effects become more and more difficult to observe the more
macroscopic the bodies and thus, the shorter the wave
lengths involved. Indeed, interference fringes for more and
more massive molecules have been seen �3� and a detailed
discussion about the origins of decoherence in these experi-
ments and the limits of seeing an interference pattern are
available. In the very active field of quantum information
processing questions about the stability and coherence of qu-
bit registers is of paramount importance, and a wealth of
theoretical results and proposals that hope to overcome the
limitations set by decoherence are available �4�.

A very remarkable feature of decoherence in systems with
large Hilbert space dimension is the fact that certain super-
positions of states can lose their coherence on a quantum
time scale that may be significantly shorter than any dissipa-
tion or relaxation time scale �1,2,5–7�. Beautiful experiments
on decoherence confirm these expectations �8–10�—they fo-
cused on the dependence of the decoherence time on a “dis-
tance” of the initially superposed states. In the first of these
experiments �8�, decoherence of a superposition of coherent
states of a light mode in a microwave cavity has been inves-
tigated. The second experiment was based on the motional
state of a single ion in a harmonic trap and the decoherence
of various superpositions of states subjected to various envi-
ronmental influences was studied �9,10�. The results pre-
sented in this paper are motivated by these latter experiments
in ion traps.

In most theoretical investigations of decoherence, it is the
coupling to unobserved quantum degrees of freedom that is
put forward as the fundamental cause for decoherence—in
other words, growing entanglement with an environment
leads to decoherence. It appears sometimes that these inves-

tigations have led to the belief that entanglement is the pri-
mary cause of decoherence—see, however �11,12�. In such
studies, standard methods are employed that allow one to
derive effective master equations for the reduced dynamics
of such quantum subsystems. More often than not, however,
experimentally observed decoherence is due to rather “clas-
sical,” i.e., technical and—from a fundamental point of
view—rather simple causes. Experimental fluctuations are
very often the dominating cause for decoherence. In one se-
ries of the experiments with the ion trap �9,10�, an “environ-
ment” was in fact simulated by simply “shaking” the trap
and thus “engineering” the effects of an environment.

Motivated by these experiments involving single ions in
traps, in this paper we want to investigate quantum dynamics
under the influence of simple classical fluctuations with an
arbitrary correlation function. In other words, we focus on
unitary, yet random dynamics. No entanglement is involved.
Being conceptually much simpler than problems involving
genuine dynamical quantum environments, the derivation of
a time-local master equation for arbitrary Gaussian fluctua-
tions is surprisingly simple and one of the main results of
this paper. It can be seen as the classical version of the well-
known time-local exact master equation for the damped har-
monic oscillator coupled to a bath of harmonic oscillators
�13�. The resulting master equation, nevertheless, is rich in
that it contains all the relevant physics usually attributed to
the dynamics of quantum subsystems. We are therefore able
to investigate various aspects of decoherence in such systems
using well-known and simple concepts. Earlier work in this
spirit is the paper by Schneider and Milburn �14� who restrict
themselves to white noise. Related considerations may also
be found in the work of O’Connell and Zuo �15,16�, who
determine an “attenuation factor” as an indicator for �the loss
of� coherence of an ion in a fluctuating trap shaken by white
noise. Here we derive an underlying master equation for the
ion dynamics for arbitrary Gaussian fluctuations and use pu-
rity as a measure for decoherence. Furthermore, we devote a
whole section on the question of how master equation dy-
namics and the corresponding purity decay are related to the
actually measured quantity. This relation turns out to hold in
the weak coupling limit only. Remarkably, while experimen-
tally decoherence due to a certain dephasing is measured, the
master equation captures both dephasing and an additional
random state diffusion. We show that both these causes for
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decoherence have the very same effect on purity decay �see
Sec. VI for details�. As a result, in the weak coupling limit,
there is indeed a one-to-one correspondence between purity
decay as predicted from master equation dynamics and the
experimentally measured decay of certain probabilities re-
flecting the decaying coherences.

Our results are valid for arbitrary fluctuations and may
result in nonexponential decay of coherences for noise with a
finite correlation time. Moreover, since there is no mecha-
nism for damping in shaken traps, the ion will heat up and
we determine the precise dynamics of heating under the in-
fluence of arbitrary noise.

It should go without saying that there is a wealth of pos-
sibilities to describe quantum dynamics under the influence
of classical fluctuations. In the white-noise case, matters are
simple as one may employ a standard Ito calculus �17� �see
also Sec. II�. For a finite correlation time of the noise, a path
integral approach may appear appropriate �see, for instance
Feynman and Vernon �18��. The simplicity of harmonic os-
cillators, however, allows us to derive a time-local master
equation for the dynamics with which we obtain all the fol-
lowing results in a rather straightforward way. It is the first
aim of this paper to present this simple derivation of the
master equation and to show applications next.

We focus on the analytical solution of our master equation
and in particular investigate decoherence. We show that any
initial state, after a finite time tD will be a classical mixture
of coherent states of the oscillator. In other words, no quan-
tumness will prevail. Motivated by the experiments with
single ions in traps �9,10�, we further focus on the precise
decoherence dynamics of a superposition of coherent states
with a phase space distance �z, a class of states that—as
usual—we will refer to as “Schrödinger cat” states.

We calculate purity decay as resulting from our master
equation and show the connection to the actually measured
probability. It is of interest to note that the way the experi-
ment is designed, it does in fact not really probe master
equation dynamics but rather a specific type of dephasing.

Finally, we discuss the heating of the system due to arbi-
trary Gaussian fluctuations, and close with final conclusions
and a brief outlook in Sec. VIII.

II. MASTER EQUATION FOR DYNAMICS IN A
FLUCTUATING TRAP

We describe quantum dynamics in a harmonic oscillator
trap with Hamiltonian H0= 1

2m p2+ 1
2m�2q2 and commutation

relation �q , p�=i�, subject to classical noise. We restrict our-
selves to one dimension. The generalization to three dimen-
sions is straightforward and will yield no additional insight
into what we are going to elaborate on. We assume that there
is a classical random external force F�t� acting on the par-
ticle, such that the total Hamiltonian reads

H�t� = H0 + qF�t� =
p2

2m
+

1

2
m�2q2 + qF�t� . �1�

The linear force term qF�t� amounts to shaking the trap as
it simply shifts randomly the origin of the otherwise un-
changed harmonic potential.

We assume that the fluctuating force F�t� is a classical
Gaussian stochastic process determined by its first and sec-
ond order moments

��F�t��� � 0 and ��F�t�F�s��� � C�t − s� �2�

with an arbitrary correlation function C�t−s�. Assuming sta-
tionarity, the correlation function depends on the time differ-
ence �t−s� only. This assumption is made purely for
convenience—and could easily be dropped. It should be kept
in mind throughout this paper that we use the notation ��¯��
to denote the classical ensemble average over the classical
noise F�t�. The simple brackets �¯�=Tr�¯�� are reserved
for quantum expectation values. For some concrete examples
that will follow, we choose an Ornstein-Uhlenbeck process
such that C�t−s�=D�e−��t−s� /2 with a constant D
=2	0

�dsC�s�, related to diffusion. The frequency � is the in-
verse noise correlation �or memory� time. Keep in mind,
however, that all main results of this paper are valid for any
choice of C�t−s�, and in fact, even for a nonstationary
C�t ,s�.

As the fundamental Hamiltonian �1� depends on the noise
F�t�, the solution ��t� of von Neumann’s equation

�

�t
��t� =

1

i�
�H�t�,��t�� �3�

is a stochastic process in the space of states. Of experimental
relevance is the average state

�̄�t� � ����t��� ,

and it is the first aim of this paper to derive its evolution
equation for an arbitrary correlation function ��F�t�F�s���
=C�t−s� of the fluctuating force.

As the relevant stochastic Hamiltonian �1� is quadratic,
the formal solution of von Neumann’s equation �3� is readily
available. First, we introduce time dependent classical func-
tions

P�t� = 

0

t

dsF�s�cos �s and Q�t� =
1

m�



0

t

dsF�s�sin �s

which have dimension of momentum and position, respec-
tively. Straightforward inspection then shows that the solu-
tion of Eq. �3� may be written in the form

��t� = e−�i/��H0te−�i/��P�t�qe−�i/��Q�t�p��0�e�i/��Q�t�p

�e�i/��P�t�qe�i/��H0t. �4�

As the operators in the exponents do not commute, taking the
ensemble average ��¯�� over the noise is a bit tedious. It is
very easy, however, to derive the evolution equation for the
average state �̄�t�. Taking the ensemble average of the von
Neumann equation �3� we find

�

�t
�̄ =

1

i�
�H0, �̄� +

1

i�
�q,��F�t����� .

GROTZ, HEANEY, AND STRUNZ PHYSICAL REVIEW A 74, 022102 �2006�

022102-2



At first sight, due to the appearance of the average
��F�t���� this does not appear to lead to a closed evolution
equation for �̄= �����. However, using the Novikov-formula
�19�

��F�t���t��� = 

0

t

ds��F�t�F�s����� 	��t�
	F�s� �� , �5�

it can be transformed to a time-local master equation for �̄.
Formula �5� is valid for any Gaussian process and simply
reflects a partial integration over the functional distribution
of the noise F�t�.

In our case, evaluating the required functional derivative
of ��t� with respect to earlier noise F�s� is easy due to the
explicit expression �4� for ��t�. We find the commutator

	��t�
	F�s�

=
1

i�
�q cos ��t − s� −

p

m�
sin ��t − s�,��t�� ,

which luckily enough no longer explicitly depends on the
noise F�t�. Taking the ensemble average is now trivial and
leads to a time-local master equation for the averaged density
operator which we write in the form

�

�t
�̄ =

1

i�
�H0, �̄� −


�t�
�2 †q,�q, �̄�‡ +

��t�
m��2†q,�p, �̄�‡ �6�

with time dependent functions


�t� � 

0

t

dsC�s�cos �s ,

��t� � 

0

t

dsC�s�sin �s . �7�

We note that the “memory integrals” for the functions 
�t�,
��t� extend over the correlation function so that typically,
these time dependent functions approach constant asymptotic
values for times larger than the noise correlation time. To be
specific, very often we will study the case of an Ornstein-
Uhlenbeck correlation function

C�s� = D�e−��s�/2 �8�

for which we find the asymptotic values 
�t�→
���
= D

2 �2 / ��2+�2� and ��t�→����= D
2 �� / ��2+�2�.

The exact master equation �6� is one of the main results of
this paper. As we have shown, its derivation is remarkably
simple. It is valid for any Gaussian driving noise F�t� with
zero mean and correlation function C�t−s� �in fact, any
C�t ,s��.

Applications and further investigations related to Eq. �6�
will be presented in this paper: A phase space formulation of
our master equation in terms of a Focker-Planck-type equa-
tion for the Wigner function will be given in Sec. IV. We
study decoherence in shaken traps, and, motivated by deco-
herence experiments �8–10� we investigate in detail the de-
coherence of an initial superposition of coherent states of the
oscillator in Sec. V.

We emphasize that the master equation �6� does not in-
clude any damping of the particle. The irreversible nature of

the master equation arises solely from the classical noise,
without any compensating damping, as it would arise from
the coupling of the particle to a genuine �quantum� dynami-
cal environment �see Sec. III�. Therefore, an asymptotic sta-
tionary solution of �6� does not exist. On average, the par-
ticle will continuously increase its energy due to the driving
fluctuations F�t�. We will determine the precise time depen-
dence of the heating of the particle due to arbitrary Gaussian
fluctuations F�t� in Sec. VII.

We add a few notes for the more mathematically inclined
reader: by construction, the exact master equation �6� defines
a completely positive map �20� from the initial density op-
erator ��0� to ��t�. In fact, as it is obtained from an average
of unitary propagators representing the Krauss operators, Eq.
�6� defines a nice example of a bistochastic map �21� in the
infinite dimensional Hilbert space of the trapped particle �or
even more precise: it represents a random external field
channel �22��. However, due to the time dependence of the
coefficients 
�t�, ��t� the evolution does not possess the
semigroup property and therefore, the exact master equation
�6� is not of the usual Lindblad type �23�, not even in its
asymptotic form, when the coefficients approach their con-
stant asymptotic values.

In Sec. III we compare and contrast our master equation
�6� to well-known master equations for irreversible harmonic
oscillator dynamics. Furthermore, we determine the general
solution of master equation �6� in terms of the Wigner func-
tion of �̄ �or rather its Fourier transform� in Sec. IV. Before
doing so, however, we discuss two important limiting cases
of our general master equation �6�, the white-noise limit and
the rotating wave limit.

A. Standard white-noise limit

It is worth studying the limit of white noise, when for-
mally

��F�t�F�s��� = C�t − s� � D	�t − s� . �9�

This limit may be seen as arising from the more physical
Ornstein-Uhlenbeck correlation function mentioned earlier in
the limit of zero correlation time or �→�. It is clear that in
this case we find for any t�0 the constant 
�t�=
���
=D /2 and ��t�=����=0, so that the exact master equation
�6� reduces to

�

�t
�̄ =

1

i�
�H0, �̄� −

D

2�2 �q,†q, �̄�‡ . �10�

This master equation, which is of Lindblad type, has been
used extensively in the past to study decoherence both in the
framework of “quantum Brownian motion” �neglecting
damping� and also in “quantum measurement” models
�1,2,24–27�. Remarkably, for any finite noise correlation
time, the true master equation �6� displays an additional
mixed diffusion term [q , �p , �̄�]. We repeat that equations of
type �6� and �10� do not contain any damping terms and lead
to continuous heating �see also Secs. III and VII�.

For completeness we mention that quite generally, the
white-noise limit �10� is obtained most conveniently using
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stochastic Ito calculus �17�. We may introduce normalized
Wiener increments through dW�t�= 1

D
	t

t+dtF�s�ds such that
dW2=dt. The stochastic Schrödinger equation corresponding
to the Hamiltonian �1� reads

d�� =
1

i�
H0��dt +

D

i�
q���dW ,

which has to be interpreted as a Stratonovich stochastic dif-
ferential equation �17�. Using f �dg= fdg+ 1

2dfdg it can be
transformed to its equivalent Ito form

d�� =
1

i�
H0��dt −

D

2�2q2��dt +
D

i�
q��dW .

With the Ito rule d������= �d�����+ ���d���+ �d���
��d��� and dW2=dt, it is now straightforward to show that
the ensemble mean �̄= ���� satisfies �10�. Note that in this
white-noise case, the Lindblad master equation �10� is for-
mally valid for any H0, i.e., for any potential governing the
dynamics of the particle. Our exact master equation �6� holds
for any correlation function C�t ,s� of the noise, but is re-
stricted to the harmonic Hamiltonian H0 as in �1�.

B. Rotating wave approximation

Master equations for irreversible harmonic oscillator mo-
tion that include �thermal� fluctuations and possibly damping
have been used in quantum optics and other fields for many
decades �29�. In quantum optics, due to the large photon
energy of atomic transitions, a rotating wave approximation
�RWA� is a formidable simplification. In order to perform a
rotating wave approximation in our case, we rewrite the mas-
ter equation �6� in terms of the usual annihilation �creation�
operator defined through a=m�

2�
�q+ i

m� p� �and a† accord-
ingly�. Moreover, we switch to an interaction representation
with respect to the isolated harmonic oscillator Hamiltonian
H0=���a†a+ 1

2
� such that �̄�t�→ �̃�t��e�i/��H0t�̄�t�e−�i/��H0t

and a→ae−i�t. Neglecting terms that rotate with phases
e±2i�t with respect to terms that do not rotate at all, we find
that the time evolution of the transformed density operator
may be written in the form

�

�t
�̃ =


�t�
2m��

„��a, �̃a†� + �a�̃,a†�� + ��a†, �̃a� + �a†�̃,a��… .

�11�

The contribution of the term involving ��t� disappears en-
tirely. The rotating wave equation �11� is valid whenever the

time scale induced by the prefactor

�t�

2m�� �which has the di-
mension of inverse time� is slow compared to the time scale
of the oscillations, i.e., as long as


�t�
2m�

� �� . �12�

Recall that in the white-noise limit 
=D /2 with D a mea-
sure of the strength of the fluctuations according to the force
correlation function �9�. The left-hand side of condition �12�
can be seen as consisting entirely of classical quantities,

while the right-hand side is a quantized energy. We conclude
that the rotating wave equation �11� can only be valid for
rather weak fluctuations �i.e., of quantum scale�, their
strength being limited by condition �12�.

III. RELATION TO ESTABLISHED MASTER EQUATIONS

Before we give the general solution of our master equa-
tion �6� of a particle in a fluctuating trap in Sec. IV, we want
to compare and contrast it to two well-established master
equations for irreversible harmonic oscillator dynamics in
the next two subsections.

A. Soluble quantum Brownian motion model

A widely studied model in irreversible quantum dynamics
is a harmonic oscillator, coupled bilinearly to a bath of envi-
ronmental quantum oscillators �30,13�. The total Hamil-
tonian of this model reads Htot=H0+Hres+Hint. The three
contributions to the total energy represent the energy H0 of
the oscillator of interest as before, the energy Hres of all
reservoir oscillators, and the interaction between the two,
Hint, involving coupling constants gi. In detail, we have

H0 =
p2

2m
+

1

2
m�2q2,

Hres = �
i=1

N � Pi
2

2Mi
+

1

2
Mi�i

2Qi
2� ,

Hint = q�
i=1

N

giQi � qF̂ , �13�

where the very last equality serves to define the force opera-

tor F̂=�i=1
N giQi.

In interaction representation with respect to the bath we
can transform the relevant total energy to the form

H̃tot�t� = H0 + H̃int�t� =
p2

2m
+

1

2
m�2q2 + qF̂�t� �14�

with a time dependent quantum force operator

F̂�t� = eiHrest/�F̂e−iHrest/� = �
i=1

N

gi�Qi cos �it +
Pi

Mi�i
sin �it� .

The formal similarity of �14� with the “classically driven”
Hamiltonian �1� is obvious. However, note that the environ-
mental degrees of freedom �Qi , Pi� that constitute the quan-

tum force F̂�t� are noncommuting, and, moreover are dy-
namical variables whose time evolution is governed by
Heisenberg’s equations of motion involving Htot. Thus, the
environmental degrees of freedom are able to absorb energy
from the system: this model includes energy dissipation
�damping�. Correspondingly, the resulting exact master equa-
tion turns out to be more complex compared to our classi-
cally driven equation �6�.
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For the model given by �13� it is most often assumed that
the total initial state is a product

�tot�0� = ��0� � �res�0� �15�

of an arbitrary system state ��0� and a thermal environmental
state �res�0�=e−Hres/kT /Z, with the partition function Z acting
as the usual normalization factor. For the quantum force cor-
relation function one finds the standard expression �31�

�F̂�t�F̂�s�� = �
i

�gi
2

2Mi�i
��2nth��i� + 1�cos �i�t − s�

− i sin �i�t − s�� , �16�

where nth���= �e��/kT−1�−1 is the thermal number of quanta
in the oscillator mode with angular frequency � and the
expectation value �¯�=Tr��res�0�¯ � refers to the initial en-
vironmental state.

We separate the real and imaginary part of the quantum
correlation function �16� in the usual fashion and write

�F̂�t�F̂�s�� = ��t − s� + i���t − s� . �17�

Assuming the number N of bath oscillators to be large, it is
customary �31� to introduce a spectral density

J��� � �
i

gi
2

2Mi�i
	�� − �i�

such that the real and imaginary part of the correlation may
be expressed

��t − s� = � 1

2
�F̂�t�,F̂�s��� = 2�


0

�

d�J����nth��� +
1

2
�

�cos ��t − s� ,

��t − s� = � 1

2i�
�F̂�t�,F̂�s��� = − 


0

�

d�J���sin ��t − s� .

�18�

While the real part ��t−s� describes equilibrium fluctuations
�diffusion kernel� both of thermal �nth���� and vacuum
�+ 1

2
� origin, the imaginary part ��t−s� reflects damping. The

latter is related to the classical damping kernel ��t�

=2	0
�d�

J���

� cos ��t� of this model through ��t−s�= 1
2�t��t

−s�—for details, see for instance �31�.
The model based on the three energies �13� with initial

state �15� allows for the derivation of an exact, time-local
evolution equation for the reduced density operator �13�,
which can be written in the form

�

�t
� =

1

i�
�H0,�� +

a�t�
i�

�q2,�� +
b�t�

i�m�
�q,�p,���

+
c�t�

m��2†q,�p,��‡ −
d�t�
�2 †q,�q,��‡ , �19�

with time dependent coefficients a�t� , . . . ,d�t� whose explicit
expressions are well known yet some of them are somewhat
complicated and lengthy �13,32,33�. Their time dependence

may be expressed in terms of a special solution q0�t� of the
damped classical equation

q̈0 + �2q0 +
2

m



0

t

ds��t − s�q0�s� = 0 �20�

with initial values q0�0�=0 and q̇0�0�=�. To be more spe-
cific, one finds expressions of the form �33�

a�t� = 

0

t

ds��t − s�w�t,s� ,

b�t� = 

0

t

ds��t − s�x�t,s� ,

c�t� = 

0

t

ds��s�q0�s� − �

0

t

ds��t − s�zI�t,s� ,

d�t� =
1

�



0

t

ds��s�q̇0�s� − �

0

t

ds��t − s�yI�t,s� . �21�

Here, w�t ,s� ,x�t ,s� ,zI�t ,s�, and yI�t ,s� are real-valued func-
tions that may be expressed in terms of the fundamental so-
lution q0�t� from �20�, for instance w�x , t�= �q̇0�s�q̇0�t�
−q0�s�q̈0�t�� / �q̇0

2�t�−q0�t�q̈0�t��. Explicit formulae for the
remaining functions may be found in the Appendix of �33�
�Eqs. �B18� and �B19��, but are of no relevance for our fol-
lowing discussion.

The relation between our master equation �6� for a classi-
cal fluctuating force and the quantum master equation �19�
for a harmonic oscillator coupled to a bath of oscillator is
now easily established. Obviously, the diffusion-type terms
[q , �q ,��] and [q , �p ,��] appear in both master equations,
while the two terms involving �q2 ,�� and �q , �p ,��� are miss-
ing in our Eq. �6�. The latter terms describe a dynamical
potential renormalization due to the coupling �sometimes ab-
sorbed in a so-called “counterterm” �31�� and, more impor-
tantly, damping.

Let us for a moment formally neglect damping entirely,
i.e., let us set the imaginary part of the correlation function
equal to zero, ��t−s��0. Then the two coefficients a�t� and
b�t� are zero and the quantum master equation �19� takes the
very same form as our master equation �6�. Moreover, with-
out damping the special solution of the classical equation
�20� is simply given by q0�t�=sin �t and from Eq. �21� we
see that the two remaining coefficients take the simple form
c�t�=	0

t ds��s�sin��t� and d�t�=	0
t ds��s�cos��t�. A glance at

expressions �7� shows that we find complete formal equiva-
lence of the two master equations once we identify—not
surprisingly—the real part ��t−s� of the quantum bath cor-
relation function with the correlation function �16� C�t−s� of
the classical noise �2�.

We see that our master equation �6� arises as a special
case of the quantum master equation �19� for ��t−s�=C�t
−s� and ��t−s�=0. However, the real and imaginary part of
the quantum correlation function cannot be chosen indepen-
dently. They are connected through �17� with �16�, manifest-
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ing a fluctuation-dissipation relation. As should be clear from
�18�, the no damping limit in this model can only be
achieved through vanishing coupling strength J���→0, or,
microscopically, gi→0 for all i in the interaction energy in
�13�. In order to retain a nonvanishing fluctuation kernel
��t−s� as J���→0, we have to let the temperature go to
infinity, such that the product J���nth��� remains finite.

We conclude that our master equation for a classically
driven harmonic oscillator �6� may be obtained formally
from the fully quantum model �13� in the limit of vanishing
spectral density �i.e., vanishing interaction strength� and in-
finite temperature, such that the fluctuation kernel ��t−s� in
�18� which involves their product, remains finite. Needless to
say, our simple direct derivation of �6� presented in Sec. II is
notably simpler and infinitely more straightforward.

As a final note we want to emphasize that the simple
“classical limit” in the sense �→0 does not lead us from the
quantum master equation �19� to the classically driven equa-
tion �6�, since the damping term has a proper classical limit
as �→0 and remains. Only if the coupling tends to zero �and
the temperature goes to infinity�, we may go from �19� to �6�.

B. Quantum optical master equation for a damped harmonic
oscillator

One of the most-employed master equations in quantum
optics describes the �Markovian� dynamics of the state of a
field mode of frequency � inside a cavity. The mode is
coupled to the field modes outside through a leaking mirror,
leading to �energy� damping with a rate �. At temperature T,
such that the mean thermal occupation number is n̄= �e��/kT

−1�−1, one finds the master equation

�̇ = − i��a†a,�� +
�

2
�n̄ + 1���a,�a†� + �a�,a†��

+
�

2
n̄��a†,�a� + �a†�,a�� . �22�

The derivation of this master equation rests on the Born-
Markov- and rotating wave approximation and can be found
in most quantum optics text books, for instance �34�.

The relation between this dissipative quantum optical
master equation �22� and our non-dissipative master equation
for a fluctuating classical force �6� may be established simi-
larly as in the previous subsection for the exact quantum
Brownian motion master equation. Clearly, dissipation in
�22� can only be suppressed for vanishing damping rate �. In
order to retain a nontrivial master equation as �→0, we have
to let the temperature go to infinity T→�, such that the
product n̄� remains finite. More precisely, in the high-

temperature limit we have n̄�kT / ���� and set 
̃�mkT�. In
this nondissipative ��→0�, infinite-temperature �T→��
limit with constant 
̃ it is clear that the quantum optical
master equation �22� reduces to

�

�t
� = − i��a†a,�� +


̃

2m��
���a,�a†� + �a�,a†��

+ ��a†,�a� + �a†�,a��� .

As could be expected, we find complete formal agreement

with our master equation for classical fluctuations in rotating

wave approximation �11� through the identification 
̃
�
���, employing the long-time �or Markovian� limit.

The damped quantum optical harmonic oscillator de-
scribed by Eq. �22� has very often been the basis for inves-
tigating decoherence phenomena both theoretically �5� and,
more recently, experimentally �8–10�. In the mainly experi-
mental paper �10� �part of� the theoretical analysis was car-
ried out using �22� when in fact �part of� the experiment was
performed with classical fluctuations so that Eqs. �6� and
�11� appear more appropriate. Clearly, the experimental pa-
rameters were chosen such that the identification of �22� and
�6� was possible through the limit discussed in this section.
In Sec. V we discuss decoherence due to general classical
fluctuations, in line with actual experiments �9,10�. Impor-
tantly, we may relieve ourselves from the restrictions given
by the aimed correspondence of an experiment involving
classical fluctuations and the quantum optical master equa-
tion �22�. Moreover, we may investigate the influence of a
finite correlation time of the classical fluctuations and the
influence of nonrotating wave terms present in the exact
master equation �6�.

IV. SOLUTION OF THE MASTER EQUATION AND
GENERAL DECOHERENCE

Here we write the exact master equation for a fluctuating
trap �6� in terms of the Wigner function of �̄�t�,

W�q,p� =
1

2��

 dx�q − x/2��̄�q + x/2�e�i/��xp.

An analytical expression for the time evolved W�q , p , t�
for an arbitrary initial state can be given. Our presentation
follows closely—and is in fact simpler than—similar inves-
tigations �7,28,32,33� based on the exact master equation
�19� of quantum Brownian motion.

Transforming the master equation �6� for the averaged
density operator to a differential equation for the Wigner
function leads to a Focker-Planck-type differential equation

�

�t
W = �−

p

m

�

�q
+ m�2q

�

�p
+ 
�t�

�2

�p2 +
��t�
m�

�2

�q�p
�W ,

�23�

which highlights the meaning of the irreversible terms in our
master equation �6�. They describe momentum diffusion and
an additional mixed position-momentum diffusion. As men-
tioned before, a damping term is missing.

We may solve Eq. �23� with the help of the Fourier rep-
resentation of the Wigner function

W�q,p� =
1

2��

 d�
 d��W��,��e−i/���q−�p� �24�

involving the �Wigner� characteristic function

�W��,�� =
1

2��
Tr�ei/���q̂−�p̂��̄� . �25�

In terms of �W, the master equation �6� reads
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�

�t
�W = �−

�

m

�

��
+ m�2�

�

��
−


�t�
�2 �2 +

��t�
m��2����W.

The nonderivative terms may be eliminated through the
Gaussian ansatz

�W��,�� = e−�1/2�2����t��2+2��t���+��t��2����,�� .

For the factor ��� ,�� we find

�

�t
� = �−

�

m

�

��
+ m�2�

�

��
�� , �26�

provided the coefficients � ,� and � satisfy the following set
of inhomogeneous linear differential equations:

�

�t��

�

�
� =� 0 −

2

m
0

m�2 0 −
1

m

0 2m�2 0
���

�

�
� +�

0

−
1

m�
��t�

2
�t�
� .

�27�

The solution of �27� for the required initial conditions
��0�=��0�=��0�=0 may be written in closed form involv-
ing an integral over the noise correlation function. We find

��t� =
1

2m2�2

0

t

dsC�s��2��t − s�cos �s + sin �s

− sin ��2t − s�� ,

��t� =
1

2m�2

0

t

dsC�s��cos ��2t − s� − cos �s� ,

��t� =
1

2�



0

t

dsC�s��2��t − s�cos �s − sin �s

+ sin ��2t − s�� . �28�

The remaining Eq. �26� may be solved through its char-
acteristic equations which yields ��t�=�0 cos �t
−m��0 sin �t and ��t�=�0 / �m��sin �t+�0 cos �t.

The required time evolved function ��� ,� , t� may thus be
written in the form

���,�,t� =
 d�0
 d�0���0,�0,0�	�� − ��t��	�� − ��t�� ,

or equivalently,

���,�,t� = ��� cos��t� + m�� sin��t�,� cos��t�

−
�

m�
sin��t�,0� .

We conclude that the required time evolved characteristic
function �W�t� is given by the product of a Gaussian and the
shifted initial function �W�0�,

�W��,�,t� = exp�−
1

2�2„��t��2 + 2��t��� + ��t��2
…�

��W�� cos��t� + m�� sin��t�,� cos��t�

−
�

m�
sin��t�,0� . �29�

Finally, the corresponding time evolved Wigner function
can be expressed as a convolution of the initial Wigner func-
tion with a �shifted� Gaussian:

W�q,p,t� =
1

2�det M

 dQ
 dPe−1/2�Q−q�t�,P−p�t��M−1� P−p�t�

Q−q�t��

�W�Q,P,0� , �30�

where q�t�=q cos �t− p / �m��sin �t and p�t�= p cos �t
+qm� sin �t are the classical trajectories that link the given
phase space point �q , p� with its location at t=0 through the
action of the harmonic H0. The 2�2 variance matrix M
involves the coefficients �28� and is given by M

=���t� −��t�
−��t� ��t� �. With expression �30�, we have a closed expres-

sion for the time evolved Wigner function W�q , p , t� for an
arbitrary initial state W�Q , P ,0�.

A. Long-time limit

It is of interest to consider the long time limit. First note
that for times much longer than the force correlation time we
can replace



0

t

dsC�s� � 

0

�

dsC�s� � D/2

where the last equality serves to define the constant D. With
the additional assumption �t�1, and in leading order in t,
the variance matrix M in �30� takes the simple diagonal form

M = Dt
2

� �m��−2 0

0 1
� so that the Wigner function �30�, for large

times t, may be written in the form

W�q,p,t� =
m�

�Dt

 dQ

�
 dPe−��2m/Dt���P − p�t��2/2m�+�m�2/2��Q − q�t��2�

�W�Q,P,0� .

It is obvious that the convoluting Gaussian becomes exces-
sively broader in phase space as time t grows and thus, any
fine details of the initial Wigner function will be smeared out
after some time. This effect may be seen as a manifestation
of decoherence and we will devote a good part of the remain-
der of this paper to study decoherence in fluctuating traps in
more detail. In particular, in Sec. V we discuss the decoher-
ence of an initial superposition of coherent states. Before we
do so, however, we give a few remarks about decoherence of
general initial states in the next subsection.
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B. Coherent state representation and general decoherence

It has been investigated in many circumstances that a
quantum system subjected to environmental noise will even-
tually become a simple classical mixture of well-localized,
classical states �1,2�—for some more recent work see
�27,28�. Any “quantumness” of the initial state will eventu-
ally disappear due to the effects of the environment. Unlike
most investigations in this context, here we do not deal with
a dynamically interacting environment but rather with simple
classical fluctuations driving the quantum system unitarily,
yet randomly. No entanglement with other quantum degrees
of freedom is involved in our case. We will see that under the
influence of the considered classical Gaussian noise, any ini-
tial state, after a finite time tD, will be a classical mixture of
coherent states �z�,

�̄�t� =
 d2z

�
P�z,t��z��z� for t � tD �31�

with a positive P-function P�z , t��0. In other words, there is
a finite time tD such that for all t� tD and for any initial state,
the averaged density operator can be represented as a classi-
cal mixture of minimum-uncertainty wave packets �coherent
states� of the harmonic oscillator. No quantum coherences
will prevail that extend over larger regions than the elemen-
tary phase space cell of volume �, as covered by a coherent
state �z�. Here we denote as usual coherent states as eigen-
states of the annihilation operator a�z�=z�z� with the dimen-
sionless complex number z, related to the mean values of
position and momentum of the harmonic oscillator degrees
of freedom through the standard relation z=m�

2�
��q�

+ i
m� �p��.
In order to prove positivity �and in fact existence� of the P

function for t� tD in �31�, we argue similar to �27,28�. Cru-
cially, we use the simple relationship �34� between the char-
acteristic functions of P−, Wigner- and Q-function Q�z�
��z��̄�z� given by

�P��� = e�1/2����2�W��� = e���2�Q��� . �32�

It should be noted that in our dimensionless variable � rela-
tion �24� between Wigner function and its corresponding
characteristic function �W����Tr�e�a+−�*a�̄� reads

W�z� =
 d2�

�
�W���e�*z−�z*

�33�

by virtue of the identification �=m�
2�

��+ i
m��� �compare

with �25��. The very same relation �33� holds for the P and Q
function and their corresponding characteristic functions
�P ,�Q. Importantly, we note that the Q-function Q�z�
��z��̄�z�=	 d2�

� �Q���e�*z−�z*
is always positive by definition.

A little algebra shows that in terms of the dimensionless
variable � the time evolved characteristic function �30� may
be expressed in the form

�W��,t� = e−�1/2��2A���2+B*�2e2i�t+B�*2e−2i�t��W��ei�t,0�
�34�

with time dependent functions linearly related to the coeffi-
cients �28� that may be written in the form

A = A�t� =
1

m��



0

t

dsC�s���t − s�cos �s� ,

B = B�t� =
ei�t

m�2�



0

t

dsC�s�sin ��t − s�

=
ei�t

m�2�
�
�t�sin �t − ��t�cos �t� . �35�

These two time dependent functions turn out to be most rel-
evant for the remaining part of this paper. Note that for large

times A�t�→

�t�

m�� t�

���

m�� t so that A�t� not only grows over all
bounds but is larger than B�t� by a large factor �t.

The simple relations �32� between characteristic functions
allow us to express the time evolved P function in terms of
the characteristic function of the Q function,

P�z,t� =
 d2�

�
e−1/2�2�A−1����2+B*�2+B�*2��Q��,0�e�*zei�t−�z*e−i�t

.

�36�

It should be noted that due to the subtraction of unity, the
factor �A−1� in the exponent will be negative for small
enough times so that it is obvious from �36� that the P func-
tion may not even exist, initially.

However, due to the increasing nature of A�t� as described
after Eq. �35�, there will be a time tD such that A�t��1 and
moreover

�A�t� − 1�2 − �B�t��2 � 0 for all t � tD. �37�

For these times we can use the Gaussian integral representa-
tion

e−1/2�2�A−1����2+B*�2+B�*2�

= �ã2 − �b̃�2�1/2
 d2�

�
e−1/2�2ã���2+b̃*�2+b̃�*2�e�*�−��*

where ã= ã�t�=
�A−1�

�A−1�2−�B�2 �0 and b̃= b̃�t�= B
�A−1�2−�B�2 . It allows

us to express the P function in �36� as a convolution of a real
Gaussian with the initial Q function,

P�z,t� = �ã2 − �b̃�2�1/2
 d2�

�
e−1/2�2ã���2+b̃*�2+b̃�*2�Q�zei�t − �,0� .

As the Q function is manifestly positive, we have thus ex-
plicitly proven that for times t� tD, i.e., when condition �37�
is satisfied, any initial state will allow a P representation �31�
with positive P�z , t��0 for all t� tD. In other words, after
the time tD has elapsed, any initial quantum state will have
turned into a mere classical mixture of coherent states.

The time tD defines an overall decoherence time and will
in general depend in a complicated way on the details of the
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correlation function C�t−s�. In the often-employed Markov
approximation C�s�→D	�s�, when in addition we assume
weak coupling so that the “rotating-wave” condition �12� is
satisfied �here D /2m�����, we can give a simple analyti-
cal expression for tD. Note first that in this limit B�t� may be
neglected with respect to unity in �37�. Therefore, we find a
long overall decoherence time given by �tD=2m�2� /D�1.
We see a dependence of tD on the ratio �m /D� for the trapped
particle subjected to classical fluctuations, while for a free
particle it was shown in previous work �27� on quantum-
Brownian motion type models that tD�m /D. We stress that
this tD is long compared to the rapid decay times of coher-
ences for some special initial states as discussed in much
more detail in the next two sections, where we also highlight
the connection of the underlying master equation �6� to ac-
tual experiments.

V. DECOHERENCE OF A SUPERPOSITION OF
COHERENT STATES

In this section we determine the time dependence of pu-
rity P=Tr��̄2� as a measure for decoherence. We base our
calculations on the nice equivalence of purity and integrals
over squared Wigner- and corresponding characteristic func-
tion, given by

P = Tr��̄2� =
 d2z

�
W�z�2 =
 d2�

�
��W����2. �38�

In combination with the simple analytical expression �34�,
the time dependent purity P�t� for an arbitrary initial state
can be determined. Note that in particular, for �a sum of�
Gaussian initial states, the integral in �38� can be evaluated
analytically, leading to a closed expression for P�t�.

Before we calculate the decay of purity for an initial su-
perposition of coherent states, let us focus on a single coher-
ent state ��0��= �z1� first. The characteristic function is sim-

ply �W�� ,0�=e−1/2���2+�z1
*−�*z1 so that with �34� we find

P�t� = 1/d�t� with d�t� � �2A + 1�2 − �2B�2. �39�

The decay of purity for a single coherent state is entirely
due to diffusive broadening of the initial coherent state. The
corresponding time scale, captured in the time dependence of
d�t�, is essentially governed by the increase of A�t� as dis-
cussed after Eq. �35�. In Fig. 1 we display the decaying pu-
rity �black curves� for a single initial coherent state and an
exponentially decaying force correlation function as in �8�
with various choices of the strength parameter R
=D / �m��� �see also Eq. �49�� and a fairly long noise corre-
lation time given by �=�. The grey curves show the increas-
ing function A�t� which essentially determines—through Eq.
�39�—the decay of purity.

This classical diffusion time scale that determines purity
decay for a single coherent state is typically slow compared
to the rapid decay of P�t� experienced by a superposition of
two coherent states, as will be investigated next. Note also
that for a single coherent state �z1�, the purity P�t� is inde-
pendent of the initial location z1.

Decoherence and its dependence on the “size” of the ini-
tial quantum state is most strikingly seen for an initial super-
position of two distinct coherent states so that

��0�� =
1

N
��z1� + �z2�� �40�

with a normalization constant N=2�1+e−1/2�z1 − z2�2 cos ��
where �= �z1

*z2−z1z2
*� /2i. Such an initial state was also en-

visaged in decoherence experiments �8–10� and the starting
point of many theoretical investigations on decoherence, see
for instance �5,7,32�.

With initial state �40�, the characteristic function �W con-
sists of four terms

�W��,0� =
e−1/2���2

N
�e�z1

*−�*z1 + e�z2
*−�*z2

+ e−1/2�z1 − z2�2�e�z2
*−�*z1−i� + e�z1

*−�*z2+i��� .

�41�

Obviously, the first two terms in the curly brackets in �41�
arise from the diagonal contributions �zi��zi� while the last
two terms reflect the �initial� presence of coherences �z1��z2�
and �z2��z1�. All integrals being Gaussian, the purity may be
determined analytically without any approximation. We find
an exact result that we choose to write in the form

P�t� =
1

2d�t�
�1 + D�t�� �42�

with a coherence term

D�t� = �e−a��z�2−b*�z2−b�z*2
+ 2 cos �e−1/2��z�2�e−b*�z2

+ e−b�z*2

− 1� + e−��z�2�ea��z�2−b*�z2−b�z*2
+ cos2 � − 1��/�1

+ e−1/2��z�2 cos ��2. �43�

FIG. 1. Purity decay of an initial single coherent state of the ion
�black curves� for an Ornstein-Uhlenbeck noise �see Eq. �8��. Pa-
rameters chosen are �=� and various fluctuation strengths R
=0.01� ,� ,10�. The gray curves show the corresponding increase
of the quantity A�t� of Eq. �35� which displays obvious
�anti-�correlation with purity.
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While ��t� and d�t� were introduced above, two new time
dependent functions

a = a�t� =
2A�t� + 1

�2A + 1�2 − �2B�2
and b = b�t� =

B�t�
�2A + 1�2 − �2B�2

�44�

appear whose complicated time dependence is determined
from the two functions �35�. Note that initially a�0�=1 and
b�0�=0 so that D�0�=1 and P�0�=1, as expected. The co-
herence term D�t� will decay, however, and the extreme case
D=0 reflects the purity of an incoherent mixture of two dis-
tinct coherent states, as it amounts to half the purity of a
single coherent state according to �39�. Thus the decay of
D�t� marks the transition from a fully coherent superposition
�D=1� to an incoherent mixture �D→0� of the two coherent
states. This transition may occur on a time scale that is no-
tably shorter than the overall decoherence �or diffusive� time
scale tD introduced earlier in Eq. �37�. Note that the decay of
purity as given by �42� with �43� depends on the initial state
through the distance �z=z1−z2 between the two superposed
states and the angle �= �z1

*z2−z1z2
*� /2i.

In complete generality, the time dependence of the purity
�42� will be complicated. We give some numerical results at
the end of this section in Figs. 2–7, where we interpret these
results in more detail.

Of particular interest is the case of an initial superposition
of two very distinct wave packets, when ��z��1 �large
“Schrödinger cat”�. In this limit there is a very nice alterna-
tive representation of the quantity D�t� that was used in �7�
to quantify the decay of coherence. With obvious notations,
the time dependent Wigner function can be written in the
form W�t�=W11�t�+W22�t�+W12�t�+W21�t�. While the diag-
onal contributions represent Gaussian distributions near the
wave packets �z1�, �z2�, the two off-diagonal contributions
reflect the coherence between these wave packets. They are
located near the phase space region given by z��z1+z2� /2.

It is this “amount of Wigner function” residing in the middle
that indicates coherence between the two superposed states,
and it is indeed easy to show that for ��z��1 and within
the relevant time span, we can write D�t� /d�t�
=2	 d2z

� �W12�z , t�+W21�z , t��2, highlighting once again the
meaning of D�t� as a measure for the coherence between the
two wave packets. In the limit ��z��1 expression �43� sim-
plifies considerably and we find the much more appealing
“Schrödinger cat” approximation

D�t� = e−�1−a���z�2−b*�z2−b�z*2
for��z� � 1, �45�

which no longer depends on the angle �.
As a�t� starts off at the value unity and decays initially, it

is clear that for ��z��1 only a tiny decrease of a�t� is re-

FIG. 2. Purity decay of an initial superposition of coherent
states of distance �z of the ion. We chose parameters with a weak
strength R=0.01� of the fluctuations and a decay rate of the noise
correlation �=�. The initial separation of the two coherent states
varies from �z=0 over �z=1, �z=2, to �z=5. Obviously, the large
�z, the faster the �initial� decay of purity.

FIG. 3. Detail of Fig. 2. As before, we chose noise parameters
R=0.01� and a decay rate of the noise correlation �=�. The initial
separation of the two coherent states varies from �z=1 over �z
=2 to �z=5. The gray curves are the results for the simple “cat
approximation,” valid for �z�1. We see good agreement already
for �z=2.

FIG. 4. Details of the initial purity decay of the initial superpo-
sition of coherent states of the ion with �z=2. Again, parameters
are R=0.01� and �=�. The full black curve shows the exact decay,
the full gray curve the “cat approximation,” as before. The dashed
curve is the weak coupling approximation, and the dash-dotted
curve corresponds the “standard” exponential decay formula.
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quired to bring D�t� essentially to zero. So even for a seem-
ingly small influence of the fluctuating forces, the coherences
will disappear quickly in the limit ��z��1.

A. Weak fluctuating forces and large “Schrödinger cat”
��z�š1

A very important case deserving special attention is the
weak coupling limit �or the early times limit�, when A�1
and B�1 in Eqs. �44� �see expressions �35��. A systematic
expansion in lowest orders in A and B renders a�1−2A, b
�B, and d�1 so that for ��z��1 and the relevant early time
spans, the decaying purity may be written in the form

P�t� =
1

2
�1 + D�t��, ��z� � 1 �46�

with

D�t� = e−2A��z�2−B*�z2−B�z*2
for ��z� � 1 and A,B � 1,

�47�

which is the “weak coupling” approximation.
This expression for weak fluctuations and large ��z� is of

great significance. In contrast to the more theoretically mo-
tivated results �43� and �45� as measures for decoherence
based on purity decay, expression �47� �or rather its square
root� is directly measurable—and was in fact measured in the
experiments �9,10�. This important point will be elaborated
on in more detail in Sec. VI.

In the long time limit, as discussed before, we have A�t�

�

���

m�� t and we may neglect B�t� altogether. Then the result
�47� for weak fluctuations takes the very familiar form for
coherence decay of two coherent states captured by the
simple exponential formula

D�t� = e−r��z�2t for ��z� � 1, A,B � 1, and t → �

�48�

with r=
2
���

m�� . The rate r is proportional to the strength of the
fluctuations and determined by the dependence of 
�t� on
the force correlation function as in �7�. This final expression
�48� scales with the squared distance ��z�2 and similar ex-
pressions have been around for a long time �5,9�—derived
from Markovian master equations. We stress, however, that
for the considered fluctuating forces, the general coherence
decay for an initial state �40�, as given by the expressions
�43� and �45� or �47� for purity decay, is more complicated
than the simple familiar expression �48�.

B. Numerical results for purity decay

In this section we show the decay of purity P�t� for an
initial superposition of coherent states for various separations
�z=z2−z1. As before �8�, we choose an Ornstein-Uhlenbeck
exponentially decaying noise correlation function

FIG. 5. Same as Fig. 4 but for a larger initial separation �z=5 of
the two superposed coherent states.

FIG. 6. Purity decay of an initial superposition of coherent
states of the ion �black curves� with �z=5. Parameters chosen are a
strength R=0.01� of the fluctuations and various �=0.5� ,� ,5�.
The gray curves show the corresponding exponential decay pre-
dicted by the “standard” approximation.

FIG. 7. Purity decay of an initial superposition of coherent
states of the ion �black curves� with �z=5. Parameters chosen are
various strengths R=0.01� ,� ,5� of the fluctuations and �=5�.
The gray curves show the “standard” approximation.
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C�s� = D�e−��s�/2.

A good measure for the strength of the fluctuations is the
quantity

R �
D

m��
�49�

which is a rate. As before, D=2	0
�C�s�ds denotes the integral

over the force correlation function. The physical meaning of
Eq. �49� becomes obvious once we introduce the fundamen-
tal oscillator momentum uncertainty scale �posc=�m�. As
is apparent from �23�, D is a momentum diffusion constant
and so R−1 can be seen as the time the fluctuating momentum
requires to become of the order of the fundamental oscillator
quantum momentum unit �posc, i.e., DR−1= ��posc�2.

Weak fluctuations refers to the limit R��. In this case the
increase of the average momentum during an oscillator pe-
riod is small compared to the intrinsic oscillator momentum
uncertainty posc.

The decaying purity can now be written as a function of
five parameters: oscillator frequency �, inverse force corre-
lation time �, fluctuation strength measured by the rate R
from �49�, separation �z=z2−z1, and initial angle �= �z1

*z2

−z1z2
*� /2i. The latter we set equal to zero, choosing for in-

stance, as in experiments, z2=−z1. The well-known decoher-
ence formula �48� is expected to be valid asymptotically �for
��z��1� with a rate r=R �2

�2+�2 .
In Fig. 2 we show the purity P�t� using the exact expres-

sion �42� �with �43�� for rather weak fluctuations �R
=0.01�� and a fairly long correlation time of the noise ��
=��. Obviously, the larger the initial distance �z of the su-
perposed coherent states, the faster the �initial� decay of pu-
rity, as expected.

A detailed glance at the initial decay displayed in Fig. 3 �a
detail of Fig. 2� shows two very different dynamical decay
regimes. First, a fast decay of purity that is dependent on the
initial separation �z and that is in fact very fast for �z�1.
Second, a relatively slow decay that is nothing but the loss of
purity as given by a mixture of two coherent states, i.e., half
the value of the curve displayed in Fig. 1. In Fig. 3, next to
the exact curves for purity decay �42� �black� we display the
“cat” approximation �45� �gray� valid for large �z and see
very good agreement already for �z=2.

Yet more details of purity decay for the case �z=2 are
displayed in Fig. 4. Again, parameters chosen are R=0.01�
and �=�. The full black curve shows the exact decay ac-
cording to Eq. �42�, the full gray curve the “cat” approxima-
tion Eq. �45� valid for large �z with very good agreement.
The dashed curve is the weak coupling approximation Eq.
�46� �with Eq. �47�� while the dash-dotted curve corresponds
the “standard” exponential decay formula Eq. �48�. Fig. 5
shows the same quantities as the previous figure Fig. 4, yet
for a larger initial separation �z=5.

Finally, we show some graphs that highlight the depen-
dence of purity decay on the parameters of the force corre-
lation function. In Fig. 6 we display the decaying purity for
an initial superposition of coherent states with �z=5 and
fairly weak fluctuations, R=0.01�. The black curves show

the exact decay for three different noise correlation times
determined by �=0.5� �full curve�, �=� �dashed curve�,
and �=5� �dashed-dotted curve�. The gray curves show the
corresponding exponentially decaying result given by the
standard approximation of Eq. �48� which appears to predict
the average decay on a very course time scale reasonably
well.

In Fig. 7 we show the dependence of purity decay on the
strength of the fluctuations for a fixed �short� bath correlation
time �=5� and an initial separation �z=5 of the superposed
coherent states. In the weak coupling case R=0.01� �full
black curve: exact; full gray curve: “standard” approxima-
tion�, we still do not see a pure exponential decay, even
though the exponential formula gives at least the correct av-
erage decay. For stronger coupling, R=� �dashed curve�, or
even R=5� �dashed-dotted curve�, purity decay is clearly
nonexponential.

We stress again that we here display a decay of purity as
a measure for decoherence. In the next section we will dis-
cuss a quantity that is actually being measured in the deco-
herence experiment. As we will explain in great detail, it is in
the weak coupling case only that the measured quantity can
be related to purity as determined in this section.

VI. RELATION TO THE ION TRAP DECOHERENCE
EXPERIMENT

We will see that the quantity measured in the actual ex-
periment involving fluctuating forces �9,10� is numerically
related to expressions �46� and �47� for purity decay in the
weak coupling limit. In general, however, the dynamics
given by the master equation �6� are not probed directly by
the way the experiment is performed. We will explain these
differences toward the end of this section in some detail. For
the following analysis see also �9�.

For the experiment, an internal two-level structure �states
�↑�, �↓�� of the ion is employed. A superposition of motional
states of the ion, as used in the last Sec. V may be obtained
starting from an initial product state ��0�= 1

2
��↑ �+ �↓ ��

� �0� of internal and motional states of the ion. Applying a
Jaynes-Cummings-type interaction for a certain time t
amounts to an initial-state-dependent unitary shift operation

D�zi� � ezia
†−zi

*a �50�

with certain displacements z1=−z2 whose actual values are
of little significance here. Thus, after the interaction the ini-
tial state is transferred to an entangled “Schrödinger cat”
state �see �10� for more details�

��1� =
1
2

��↓� � �z1� + �↑� � �z2�� �51�

of the ion with motional coherent states �zi�=D�zi��0�. With
the help of a �

2 pulse on the two-level part and a subsequent
measurement, one could indeed create a motional superposi-
tion of the form ����z1�+ �z2�, the starting point of the ear-
lier investigations in Sec. V. This was the route taken in the
Paris experiment �8�. Allowing for the action of a fluctuating
force F�t�, the time evolution would then be governed indeed
by our master equation �6�.
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In the Boulder ion trap experiments �9,10� the fluctuations
are switched on with an initial total state �51� �i.e., with a
reduced motional mixed state ���z1��z1�+ �z2��z2��. While
numerically closely related, we will see that nevertheless,
one should distinguish between decoherence resulting from
master equation dynamics with �6�—captured in the decay-
ing purity P�t�—and the experimentally measured decay of
certain coherences. It is important to realize—and we will
explain these issues at the end of this section in detail—that
the loss of purity described by the master equation �6� con-
tains both, relative dephasing and random diffusion of the
states. In contrast, the way the experiment is done, the diffu-
sion of states is not measured and relative dephasing is the
only cause of decoherence. We hasten to add that still, a
simple numerical relation between the decaying purity �42�
obtained from the master equation �6� and the experimentally
measured quantity exists, in the weak coupling regime.

The stochastic time evolution of state �51� under the in-
fluence of the random force is easily evaluated. In interaction
representation with respect to the harmonic oscillator Hamil-
tonian H0, the action of the fundamental fluctuating Hamil-
tonian �1� up to a time t amounts to a random unitary shift
operation D��� �independent of the internal state� with

��t� =
− i

2m��



0

t

dsF�s�ei�s �52�

and an overall irrelevant phase. In other words, the time
evolved stochastic state is

���t�� = e−iH0/�tD�����0�� ,

whose dependence on the stochastic force F�t� is indicated
through the subscript �.

In the experiment, after allowing the fluctuations to act for
a period of length t, the initial shift operation �50� that cre-
ated the “Schrödinger-cat” state is reversed through the in-
verse Jaynes-Cummings interaction, i.e., a state dependent
shift operation D�−zi� is applied. This last step is crucial as
the sequential application of the three shifts amounts to a
single shift with

D�− zi�D���D�zi� = e�zi
*−�*ziD��� . �53�

In other words, the final state of the ion factorizes and may
be written in the form �10�

��2� =
1
2

��↓� + e�*�z−��z*
�↑�� � ��� ,

where, as before, �z=z1−z2. Thus, in the experiment the
accumulated �different� fluctuating phases of the two coher-
ent states ��z1�, �z2�� are transferred to the two-state system.
This dephasing can be measured with the help of an addi-
tional �

2 pulse, to give the state

��3� =
1

2
��1 + e�*�z−��z*

��↓� + �1 − e�*�z−��z*
��↑�� � ��� .

�54�

Thus, the average probability to find the ion in state �↓� is
given by

P↓ =
1

4
���1 + e�*�z−��z*

�2�� =
1

2
�1 + e−1/2�2A��z�2+B*�z2+B�z*2�� ,

�55�

where the last equality follows from the analytical evaluation
of the Gaussian ensemble mean over the fluctuations. The
time dependent functions A�t� and B�t� are the ones defined
in �35�.

A. Probability decay versus purity decay

A glance at expressions �46� with �47� shows that for the
case ��z��1 and weak coupling, the measurable probability
P↓ from �55� is closely related to the decaying purity. Indeed,
with the coherence term D�t� from �47� we might as well
write

P↓ =
1

2
�1 + D� .

This shows that the somewhat abstract quantity D�t� ob-
tained from purity-decay considerations given by master
equation dynamics may directly be related to a measurable
quantity.

We emphasize, however, that expression �55� holds for
any strength of the fluctuating forces, while the similar purity
decay law �46� �with �47�� holds in the weak coupling limit
only. For stronger coupling, the time dependence of purity as
obtained from the master equation �6� and the measured
probability �55� are simply different quantities that do not
show a simple relation. One should not be misled in believ-
ing that the experimental setup actually tests quantum dy-
namics as given by our master equation �6�—or, for that
matter, as given by related master equations as discussed in
Sec. III. More specifically, the actual experiment does not
probe the diffusion experienced by the two coherent states
�as encoded in the state ��� in �54��. The latter, however,
contributes to the decaying purity in �42� and is part of our
master equation �6�. While clearly well suited to measure
decoherence in the sense explained above, the experiment
does not directly probe master equation dynamics as such.

B. Dephasing and state diffusion

To make this point clearer, let us artificially separate two
causes for decoherence. Suppose—as originally envisaged—
the motional initial state to be a superposition of two coher-
ent states as in �40�. After allowing a fluctuating force to act
for a certain time t, the resulting stochastic motional state
may be written in the form

���t� =
e−�i/��H0t

N
��z1 + ���z1 + �� + �z2 + ���z2 + ��

+ e1/2��*�z−��z*��z2 + ���z1 + �� + e−1/2��*�z−��z*��z1

+ ���z2 + ���e�i/��H0t. �56�

with the stochastic displacement � from �52�. Clearly, the
state �� depends on the fluctuations � in two ways: they
contribute to a fluctuating phase in front of the coherences,
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and they lead to a random displacement zi→zi+� of the
coherent states themselves. Taking the ensemble over the
fluctuations, we recover the average �̄�t�= �����t���, the solu-
tion of our master equation �6� for initial state �40�.

The ion trap experiment is sensitive to phase fluctuations.
The diffusion of the states themselves is not observed due to
the three successive shifts as given by Eq. �53�. To clarify
this point further, consider by contrast the following two ar-
tificial ensembles. On the one hand, we could envisage a
purely dephasing ensemble given by

��
deph�t� =

e−�i/��H0t

N
��z1��z1� + �z2��z2� + e�1/2���*�z−��z*��z2�

��z1� + e−1/2��*�z−��z*��z1��z2��e�i/��H0t, �57�

where we neglect state diffusion zi→zi+� when compared
to the “true” ensemble �56�, yet retain the fluctuating phases.
It is clear that these phases are just the ones that also appear
in the actual experiment �see state �54��. In fact, the phases
differ by a factor 1

2 , which is due to the two shifts that create
and recombine the motional state according to �53�. On the
other hand, let us investigate a purely diffusing ensemble
given by

��
diff�t� =

e−�i/��H0t

N
��z1 + ���z1 + �� + �z2 + ���z2 + �� + �z2 + ��

��z1 + �� + �z1 + ���z2 + ���e�i/��H0t, �58�

where we omit relative dephasing when compared to the
“true” ensemble �56�, yet keep state diffusion. We emphasize
that none of the two ensembles ����

deph�� and ����
diff�� is a

solution of the master equation �6�.
The decaying purity for the realistic ensemble �56� is

given in Sec. V for any choice of parameters �Eq. �42��. Let
us here concentrate on the case ��z��1 and weak fluctua-
tions �A ,B�1� so that the purity decay of the true ensemble
�56� is in fact well described by �46� with �45�. In similar
fashion we can compute purity decay of the two artificial
ensembles �57� and �58�. Remarkably, it turns out that in this
limit of weak fluctuating forces they both suffer the same
purity decay, namely

Pdeph�t� � Pdiff�t� �
1

2
�1 + e−1/4�2A��z�2+B*�z2+B�z*2�� .

Apparently, we find a decay law with essentially the same
functional dependence on �z and the same time dependent
functions A�t� and B�t� as both the experimentally observed
probability �55� and the purity decay of the true ensemble,
with, however, a smaller exponent 1

4 . We conclude that
dephasing and state diffusion, both contained in the underly-
ing master equation �6�, contribute equally to decoherence in
shaken traps. The experiment probes dephasing only.

We conclude this section by stating that the setup of the
ion trap experiment allows one to measure the precise time
dependence of decoherence of a superposition of coherent
states in a shaken trap. However, we also see that there is no
universal connection between the usually investigated purity
decay as obtained from a master equation and the measured

probability. The relation is indirect and may be established
quantitatively for weak fluctuating forces only.

VII. HEATING

We stressed earlier that the fundamental Hamiltonian �1�
contains fluctuations—yet there is no compensating damping
mechanism. Thus, the average �here kinetic� energy of the
shaken particle will increase with time—see also �35�. Let us
determine the precise dynamics of heating due to arbitrary
Gaussian fluctuations, by computing the average kinetic en-
ergy

Ēkin�t� = Tr� p2

2m
�̄�t�� .

For simplicity, we choose an initial vacuum state ��0�
= �0��0�.

While we could use the exact master equation �6� and its

analytical solution provided in Sec. IV to determine Ēkin�t�,
we here choose to calculate it directly. As already explained
in the previous Sec. VI, under the influence of a fluctuating
force, the initial state ��0��= �0� evolves to ��t��
=e−iH0t/�D����0�. Thus, for a single realization

Ekin�t� = ��t��
p2

2m
��t�� =

��

4
�2���2 − �2e−2i�t − �*2e2i�t + 1� ,

where we used p= im��
2 �a†−a�, the earlier expression �52�

for �, and the averages

�����2�� = A�t� and ���2�� = − B�t� ,

with the two time dependent functions A�t� and B�t� from
�35� involving integrals over the force correlation function.
We obtain an exact analytical expression

Ēkin�t� =
��

4
�2A�t� + B�t�e−2i�t + B*�t�e2i�t + 1� .

Forgetting about the influence of the �small� contribution
B�t�, it becomes apparent that the time it takes for the kinetic
energy to be much larger than the fundamental quantum ��
is set by the condition A�t��1. This is the same time scale
than the time tD we defined through Eq. �37�—namely the
time it takes for the density operator to become a classical
mixture of coherent states.

Of importance is the long time limit where we find the

linear increase Ēkin�t��

���

2m t as predicted from Markovian
master equations. For the case of an Ornstein-Uhlenbeck

process we find asymptotically
Ēkin�t�

�� � Rt
4

�2

�2+�2 . Note that for
strong enough fluctuations, however, the classical regime

Ēkin��� may well be reached long before the linear regime
becomes relevant. We stress again that the time scale to reach
this classical regime is essentially the time tD found in the
investigations for overall decoherence in Sec. IV.

In Fig. 8 we show the increase of the average kinetic
energy for the previously employed Ornstein-Uhlenbeck cor-
relation function �8� for various fluctuation strengths R
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=0.1� �full curve�, R=2� �dashed curve�, and R=10�
�dashed-dotted curve�. We chose a correlation rate �=0.5�
of the driving noise. The gray curve shows the asymptotic
linear increase and lies perfectly on top of the exact result for
weak coupling �R=0.1��. Clearly, for stronger fluctuations,
the increase in kinetic energy is far from linear, even though

the classical regime Ēkin��� is reached quite early.

VIII. CONCLUSIONS

We investigate quantum dynamics in a shaken trap. We
show that there is a very simple derivation of a time-local
master equation governing the dynamics for an arbitrary cor-
relation function C�t ,s�= ��F�t�F�s��� of the fluctuating force.
We compare and contrast our master equation for classically
shaken traps with well-established master equations for irre-
versible harmonic-oscillator dynamics and see that it corre-
sponds to the no-damping and infinite-temperature limit of
the fully quantum model �13�. We investigate decoherence of

quantum states in some detail. First, we show that any quan-
tum state will turn to a mere classical mixture of coherent
states after a finite time tD. Technically speaking, we prove
that for t� tD any state has a P representation with positive
P�z , t��0. No entanglement with other quantum degrees of
freedom is involved here. Decoherence in this model is en-
tirely due to unitary, yet random dynamics. More specifi-
cally, we investigate the loss of coherence of an initial super-
position of coherent states with separation ��z�. We find that
it is in the weak coupling and long-time limit only that the
familiar exponential decay of the form e−r��z�2t gives a rea-
sonably good description. For not even large values of ��z�
this asymptotic regime may be entirely irrelevant as the co-
herences have disappeared much earlier, following a nonex-
ponential decay. The precise decay law is governed by a
more complicated expression involving nonrotating wave
terms and possibly effects from a finite memory time of the
correlation function. Finally, heating of trapped particles due
to general fluctuations are considered. We find that the aver-
age kinetic energy turns larger than the fundamental quantum
�� for a time that corresponds to the decoherence time tD for
the evolution to a total classical mixture introduced above.

It would be enlightening to see ion trap decoherence be-
yond the limits of weak fluctuations and white noise experi-
mentally. Then the correspondence to the simple exponential
decay as predicted by the quantum optical master equation
for a damped oscillator fails and the results of the general
master equation �6� apply. From a theoretical side, we would
like to combine our results for a shaken trap with quantum
feedback control schemes as developed by Wiseman and
Milburn �36� to prevent the heating of the ion. For such very
recent experimental and theoretical developments see �37�.
We believe that an application of feedback control theories to
arbitrarily shaken traps as considered in this work are of
interest.
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