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We propose methods of fidelity estimation and entanglement verification for experimentally produced four-
qubit cluster states. We show that we can obtain a high lower bound of the fidelity using only four local
projective measurement settings. The lower bound is close to the exact fidelity, which is determined only by at
least nine local projective measurement settings. We also present witness operators for distinguishing entangle-
ment around a four-qubit cluster state from specific classes of genuine four-qubit entanglement, e.g., a class
including GHZ and W types of entanglement.
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I. INTRODUCTION

Entanglement is a resource of quantum computation and
communication. A specific class of entangled states called
cluster states can be used for quantum computation that con-
sists of only one-qubit measurements �1�. Consider a set of
qubits that are located on lattice sites C. A cluster state ���C
is defined as

X�a�
�

a��ngbh�a�
Z�a�����C = ���C, " a � C , �1�

where ngbh�a� specifies the sites of all qubits that are located
at next neighbors of the qubit at site a�C. In this paper we
denote X, Y, and Z as Pauli matrices. A four-qubit cluster
state on a one-dimensional lattice ��4� defined by Eq. �1� is
equivalent to the simple form

�C4� = 1
2 ��0000� + �0011� + �1100� − �1111�� �2�

under local Hadamard transformation H�1�H�4� �2�. A state

��� = 1
2 ���00� + �11���00� + ��01� + �10���11�� , �3�

which is equivalent to �C4� under H�1�H�2�, is known as a
resource of teleportation-based controlled-NOT gate �3,4�.

Recently, several schemes for experimentally producing a
four-qubit cluster state have been proposed �4–8�. In such
experiments we must verify whether the produced state is a
desired entangled state or not. An important verification
method is to measure the fidelity

F��� ª �C4���C4� = Tr��C4��C4��� �4�

between the produced state � and �C4�. We can also verify
the class of entanglement of � by evaluating F���. For ex-
ample, an entanglement witness operator is given by

WC4
ª

1
21 − �C4��C4� , �5�

where 1/2 comes from the maximal fidelity between �C4� and
any biseparable state �9–11�. This guarantees that if

Tr�WC4
��=1/2−F����0 then � is not biseparable and has

genuine four-qubit entanglement.
In this paper we show that we need at least nine measure-

ment settings to obtain the exact fidelity F��� using local
projective measurements. Then we show that we can obtain a
high lower bound of F��� using only four local projective
measurement settings. We also show that the lower bound is
optimal within any four local projective measurement set-
tings for the produced states with white noise. Furthermore,
we show that we can discriminate classes of genuine multi-
partite entanglement by evaluating the fidelity of the pro-
duced state. Specifically, we present witness operators for
distinguishing entanglement around a four-qubit cluster state
from classes of genuine four-qubit entanglement, e.g., a class
including GHZ and W types of entanglement.

This paper is organized as follows: In Sec. II we show
that we need nine measurement settings for obtaining F���
using local projective measurements. In Sec. III we present
the four local projective measurement settings for obtaining
a high lower bound of F��� and show its optimality. In Sec.
IV we propose witness operators for distinguishing classes of
genuine four-qubit entanglement. Finally, we describe our
conclusions in Sec. V.

II. OBTAINING THE FIDELITY USING LOCAL
PROJECTIVE MEASUREMENTS

The fidelity between � and �C4�, F���, is obtained by mea-
suring the expectation value of projection operator �C4��C4�
as described in Eq. �4�. If we know the decomposition of
�C4��C4� into a small number of local projection operators,
we can easily obtain F��� by the local projective measure-
ments in experiments. For three-qubit GHZ or W states, such
optimal decompositions were shown in Ref. �12�. Here we
show an optimal decomposition of �C4��C4� that can be mea-
sured by nine local projective measurement settings. In other
words, we need at least nine local projective measurement
settings to obtain the exact fidelity F���.

First, we describe a local decomposition of projector
�C4��C4� and show that it can be measured using nine local*Email address: tokunaga.yuuki@lab.ntt.co.jp
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measurement settings. From Eq. �1� and �C4�=H�1�H�4� ��4�,
�C4� is defined by the stabilizers, S1ªZ�1�Z�2�, S2
ªX�1�X�2�Z�3�, S3ªZ�2�X�3�X�4�, and S4ªZ�3�Z�4�. Here
S1 , . . . ,S4 and their products form a stabilizer group
�S1 , . . . ,S4�. Therefore, �C4��C4� is written as

�C4��C4� =
1

16�
k=1

4

�Sk + 1�

=
1

16
�IIII + ZZII + XXZI + IZXX + IIZZ − YYZI

+ ZIXX + ZZZZ + XYYX + XXIZ − IZYY + YXYX

− YYIZ − ZIYY + XYXY + YXXY� , �6�

where the sites of operations are omitted �18�. Here we can
use the same setting XXZZ for measuring operator XXZI and
for XXIZ. Similarly we can use ZZXX for 	IZXX ,ZIXX
,
YYZZ for 	YYZI ,YYIZ
, ZZYY for 	IZYY ,ZIYY
, and ZZZZ
for 	ZZII , IIZZ ,ZZZZ
. Therefore, the expectation value of
�C4��C4� can be measured using the following nine local
measurement settings:

XXZZ, ZZXX, YYZZ, ZZYY, ZZZZ ,

XYXY, XYYX, YXXY, YXYX . �7�

Next we show that the decomposition is optimal, i.e.,
there exists no decomposition of �C4��C4� into a sum of local
operators that can be measured using less than nine local
projective measurement settings. First, consider operators
�i,jªTr1,4��C4��C4 � ��i

�1�� j
�4���, for i , j=0, . . . ,3, where �0

= I, �1=X, �2=Y, and �3=Z. Then it turns out that the six-
teen �i,j’s are linearly independent. Next, we generally de-
scribe a decomposition of �C4��C4� into the sum of local
projectors with N measurement settings: �C4��C4 �
=�m=1

N �r,s,t,u=0
1 crstu

m Pr
1,m

� Ps
2,m

� Pt
3,m

� Pu
4,m, where P0

k,m and
P1

k,m=1− P0
k,m are orthogonal local projectors for sites k, and

crstu
m ’s are constants. Each local projector is represented as a

vector in a Bloch sphere; Pr
k,m= 1

2 I+ 1
2 �−1�r�l=1

3 sl
k,m

��l=
1
2 I+ 1

2 �−1�rRk,m. Then, �i,j can be expanded as

�i,j = �
m=1

N

�
s,t=0

1

	i,j,s,t
m �I � I + �− 1�s�

l=1

3

sl
2,m�l � I

+ �− 1�t�
l=1

3

sl
3,mI � �l + �− 1�s+tR2,mR3,m� ,

where 	i,j,s,t
m ’s are constant. Thus, the sixteen linearly inde-

pendent operators �i,j can be written as a linear combination
of 7+N operators and hence 7+N
16. Therefore, the set-
tings of nine local measurements �7� are optimal.

III. OBTAINING A HIGH LOWER BOUND OF THE
FIDELITY USING FEWER LOCAL MEASUREMENT

SETTINGS

In Sec. II we have shown that we need at least nine
measurement settings to obtain the exact fidelity F���

=Tr��C4��C4 ��� using local projective measurements. Here,
we provide a method for obtaining a high lower bound of
F��� using only four local projective measurement settings
and show its optimality for the states that arise when white
noise is mixed into �C4�.

Let us write A
B when A−B is a positive operator.
When an operator B satisfies �C4��C4 � 
B, we can obtain a
lower bound of the fidelity as Tr��C4��C4 ���
Tr�B��. Here,
if we need fewer local measurement settings for measuring B
than that of �C4��C4�, we can obtain the lower bound of F���
with smaller experimental effort than the exact fidelity. We
can also obtain an entanglement witness operator W�ª

1
21

−B, since if a state is detected by W� then WC4
must detect

the state, i.e., for any state � detected by W�, 0�Tr�W���

Tr�WC4

�� must hold �9,13�.
An operator B2 satisfying �C4��C4 � 
B2 was presented in

Refs. �9,13� for constructing a witness operator that can be
measured by only two local measurement settings. The op-
erator is described as B2ª

1
4 �ZZII+ IZXX+ZIXX+XXZI

+ IIZZ+XXIZ�− 1
21 and can be measured by two measure-

ment settings, XXZZ and ZZXX. To evaluate how good the
lower bound of the fidelity is for a family of experimentally
produced states, we compare the exact fidelity and the lower
bound of the fidelity of states with white noise

��pN� ª
pN

161 + �1 − pN��C4��C4� . �8�

Then, we obtain F���pN��=1− 15
16 pN and Tr�B2��pN��=1

− 3
2 pN, and thus the lower bound of F���pN�� obtained

by B2 is 9
16 pN smaller than F���pN��. We also evaluate the

detection capability of entanglement witnesses. The noise
tolerance of the projector-based witness WC4

is given by
Tr�� 1

21− ��C4��C4 � ����pN���0, which leads to pN�8/15, and
thus it tolerates up to 53.3% noise. The noise tolerance of
witness W2ª

1
21−B2 is similarly calculated and we obtain

that it tolerates up to 33% noise.
Here we present an operator

B4 ª
1
8 �S1 + 1��S2 + S3��S4 + 1� = 1

8 �XXZI + IZXX + ZIXX

+ XXIZ − YYZI − IZYY − ZIYY − YYIZ� �9�

that can be measured by four local measurement settings,
XXZZ, ZZXX, YYZZ, and ZZYY. It satisfies �C4��C4 � 
B4.
This is simply shown from �Cijkl � ��C4��C4 �−B4� �Cijkl�
0
for any i , j ,k , l=1,−1, where �Cijkl� is the simultaneous
eigenstate of S1, S2, S3, and S4 with eigenvalues i, j, k, and l,
respectively. Using B4, we can obtain a high lower bound of
F���. The lower bound of F���pN�� is Tr�B4��pN��=1− pN.
The noise tolerance of the entanglement witness W4ª

1
21

−B4 is 50%.
We show that the lower bound is optimal within any four

local projective measurement settings for the produced state
with white noise ��pN�. For a set of four local projective
measurements, there exist density matrices that are indistin-
guishable from ��pN�. A lower bound of fidelity between
��pN� and �C4� obtained by the measurement settings must be
less than or equal to the fidelity between such density matri-
ces and �C4�. In the following we show that for a set of four
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local projective measurements, there always exists a density
matrix ���pN�, that is indistinguishable from ��pN� and its
fidelity is F����pN��=1− pN, which corresponds to
Tr�B4��pN��. We generally describe local projective measure-
ments as a collection of projectors 	Mrstu

m 
, where Mrstu
m

ªPr
1,m

� Ps
2,m

� Pt
3,m

� Pu
4,m, for r ,s , t ,u=0,1 and measure-

ment settings m=1, . . . ,4. There exists an operator W1 on the
first qubit such that Tr W1=0, Tr��Pr

1,1�W1�=0,
Tr��Pr

1,2�W1�=0, and �W1 � =1. Similarly, there exists an op-
erator W4 on the fourth qubit such that Tr W4=0,
Tr��Pu

4,3�W4�=0, Tr��Pu
4,4�W4�=0, and �W4 � =1. From the

fact that �C4� is a maximally entangled state between sites
�1,4� and �2,3�, there exists an operator W2,3 on the second
and third qubits such that W1

�1�W4
�4� �C4�=W2,3

�2,3� �C4�, and the
eigenvalues of W2,3 are 1 and −1, which are the same as the
eigenvalues of W1 � W4. For WªW1 � �W2,3�−1 � W4, we ob-
tain Tr W=0, W �C4�= �C4�, and �W � =1. Thus, there exists a
density operator ���pN�=��pN�− �pN /16�W. From the defini-
tion of W1 and W4, Tr�Mrstu

m W�=0 for any Mrstu
m and hence

Tr�Mrstu
m ��pN��=Tr�Mrstu

m ���pN��. Therefore, we cannot dis-
tinguish between ��pN� and ���pN� using four local projec-
tive measurement settings. The fidelity between ���pN� and
�C4� is �C4 ����pN� �C4�=1− pN. Therefore, B4 provides the
optimal lower bound of the fidelity between ��pN� to �C4�
when we use four local projective measurement settings.

Although B4 is optimized for obtaining the lower bound
of the fidelity, an upper bound of the fidelity is also obtained
using B4. Actually, 1

2B4+ 1
21
 �C4��C4� is satisfied. Thus, the

upper bound of the fidelity of ��pN� is calculated as
Tr�� 1

2B4+ 1
21���pN��=1− 1

2 pN.

IV. DISTINGUISHING CLASSES OF GENUINE FOUR-
QUBIT ENTANGLEMENT

The entanglement witness �5� confirms that the detected
state is not biseparable but a genuine four-qubit entangled
state. However, there are many types of genuine four-qubit
entangled states that are not cluster types �14,15�. It would
be better if we could distinguish other types of genuine four-
qubit entangled states from �C4� using witness operators. For
genuine three-qubit entanglement, Acín et al. provided a wit-
ness that detects a GHZ\W class of entanglement, namely if
a state is detected, then the entanglement of the state is not in
the W class �16�.

Here we present witnesses that allow us to distinguish
between genuine four-qubit entangled states around �C4� and
certain classes of genuine four-qubit entangled states, e.g., a
class including GHZ and W states. They are given by calcu-
lating the maximal fidelity between �C4� and classes of states
with specific genuine four-qubit entanglement. The classifi-
cation is obtained by applying the idea of Schmidt number
witness �17,19� to multipartite systems.

First we review the definition of Schmidt number �19� and
show a construction of projection-based Schmidt number
witnesses. A bipartite pure state ����H1 � H2 has Schmidt
rank r if its Schmidt decomposition is written as ���
=�i=1

r i �ai� �bi�. Then, a set of density matrix S�k� is de-
fined such that ��S�k� when there exists a decomposition

�=� jpj �� j��� j� with rj �k for all j, where rj is Schmidt rank
of �� j�. If � is not in S�k−1� but in S�k�, then we say that �
has Schmidt number k. Here, S�1� is the set of separable
states. For k
2, S�k� contains S�k−1� and the set of en-
tangled states with Schmidt number k. The set S�k� is a con-
vex compact subset of the entire set of density matrices S,
and thus we can simply define entanglement witnesses using
the set S�k�. Assume that ����H1 � H2 has Schmidt rank l
�k. Then, a projector-based Schmidt number witness W S�k�

detecting entanglement with Schmidt number l��k is given
by W S�k�

ªc1− ������, where cªmax��S�k��� �� ���. This
guarantees that Tr�W S�k���
0 for all ��S�k�, and
Tr�W S�k�����0 signifies that �� has Schmidt number l��k.
Here we provide a simple method for calculating c. Since �
is a convex sum of pure states in S�k�, c
=max����S�k� � �� ����2=max����S�k� Tr������ � ����� � �. Let c�
ªmax����k� Tr������ � �� � 1��, where ��k� is the set of
rank-k projections acting on H1. It is obvious that c�c�, but
we also have c
c� since for every ����k�, we have state
�� � 1� ��� / ��� � 1� ���� in S�k�. Hence we obtain

c = c� = max
����k�

Tr���,1�� , �10�

where ��,1ªTr2 ������. Thus, c is the sum of k largest eigen-
values of ��,1 �See also lemma 1 of �20��, or equivalently the
sum of squares of k largest Schmidt coefficients of ���.

Next we extend the Schmidt number witnesses for multi-
qubit systems. We can divide n qubits into two groups of
qubits with m=2n−1−1 kinds of bipartite partitions. Then a
set of density matrix St�kt� is defined such that �t�St�kt�
when there exists a decomposition �t=� jpj �� j��� j� and rj

t

�kt for all j, where rj
t is Schmidt rank of �� j� in bipartite

partition t. Then we define a set of density matrices
S�k1 , . . . ,km� such that ��S�k1 , . . . ,km� when � is a convex
sum of �t�St�kt�: �=�tpt�

t, where �tpt=1. For example,
S�1, . . . ,1� is the set of biseparable states. A projector-based
Schmidt number witness for multiqubit systems is given by
W S�k1 , . . . , km�

ªc1− ������, where cªmax��S�k1,. . .,km��� �� ���
=max�t�St�kt�,t=1,. . .,m�� ��t ���. This guarantees that
Tr�W S�k1 , . . . , km���
0 for all ��S�k1 , . . . ,km�, and
Tr�W S�k1 , . . . , km�����0 signifies that �� has a kind of en-
tanglement that is not shared by the states in S�k1 , . . . ,km�.

Using the construction of Schmidt number witness for
multiqubit systems, we can reconstruct the projector-based
entanglement witness �5�. The four-qubit system of the par-
ties 1, 2, 3, and 4 can be divided into seven kinds of bipartite
systems, 1�234�, 2�134�, 3�124�, 4�123�, �12��34�, �13��24�,
and �14��23�. For simplicity, we denote them as 1, 2, 3, 4,
12, 13, and 14, respectively. A set of density matrices
S�k1 ,k2 ,k3 ,k4 ,k12,k13,k14� is defined as described above.
Then a projector-based entanglement witness detecting genu-
ine four-qubit entanglement around �C4� is given by
W S�1 , . . . , 1�= 1

21− �C4��C4�, with 1/2 coming from the maximal
eigenvalue of �AªTr Ā �C4��C4�, where A=1, 2, 3, 4, 12, 13,

or 14, and Ā is the complement of A.
Here, the maximal eigenvalues of �1, �2, �3, �4, and �12

are 1/2, but the maximal eigenvalues of �13 and �14 are 1/4.
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Therefore, the witness of the form 1
21− �C4��C4� may allow

one to rule out wider classes of entanglement than bisepa-
rable entanglement in partitions 13 and 14. Actually, the sum
of two largest eigenvalues of �13 ��14� is 1/2. Thus, it turns
out that the operator of the form 1

21− �C4��C4� works as a
witness W S�1 , . . . , 1 , 2 , 2�. For example, S�1, . . . ,1 ,2 ,2� in-
cludes four-qubit GHZ state �GHZ�= 1

2
��0000�+ �1111�� and

W state �W�= 1
2 ��0001�+ �0010�+ �0100�+ �1000��. Such en-

tangled states can be distinguished from �C4� by
W S�1 , . . . , 1 , 2 , 2�.

The states �C4� has Schmidt number 2 in partitions 1, 2, 3,
4, and 12, and Schmidt number 4 in partitions 13 and 14.
Therefore, we can construct another form of Schmidt number
witness for detecting entanglement around �C4�. It is
W S�1 , . . . , 1 , 3 , 3�= 3

41− �C4��C4�, which detects entanglement of
states outside of S�1, . . . ,1 ,3 ,3�, where 3/4 comes from the
sum of three largest eigenvalues of �13 ��14�. For example,
���ª 1

3
��0000�+ �0011�+ �1100�� is in S�1, . . . ,1 ,3 ,3� but not

in S�1, . . . ,1 ,2 ,2�. Such entangled states are also distin-
guished from �C4� by W S�1 , . . . , 1 , 3 , 3�.

The operator B4 in Sec. III is also useful for this construc-
tion of entanglement witnesses. The witness W4

S�1 , . . . , 1 , 2 , 2�

ª

1
21−B4 tolerates up to 50% noise for ��pN� as shown in

Sec. III. The witness W4
S�1 , . . . , 1 , 3 , 3�

ª

3
41−B4 tolerates up to

25% noise for ��pN�, which is close to the noise tolerance of
W S�1 , . . . , 1 , 3 , 3�, 26%.

V. CONCLUSIONS

We have described methods of fidelity estimation and en-
tanglement discrimination for experimentally produced four-
qubit cluster states. We have obtained a high lower bound of
the fidelity using less than half of local projective measure-
ment settings for obtaining the exact fidelity. We have also
constructed witness operators for distinguishing classes of
genuine multipartite entanglement using the estimated value
of the fidelity. The witness operators are obtained by evalu-
ating the Schmidt number of states in several bipartite parti-
tions. These ideas would also be applied for estimating the
fidelity of other multipartite entangled states and verifying
the class of entanglement.
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