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The determination of the time scale for coherent and incoherent tunneling in asymmetric double-well
potentials is reconsidered according to the instanton-bounce method. In particular, by making use of Feynman’s
transition elements, a different, relatively simpler approach to this problem, with respect to conventional
quantum-mechanical treatments, is obtained.
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The problem of tunneling processes in the presence of
dissipation might have been considered as basically resolved
in the 1980s �1�, even though new contributions to the sub-
ject continued to appear in the literature ��2,3��. However,
more recently, this subject has become topical again, espe-
cially in relation to the duration of the tunneling process, i.e.,
a quantity that has been interpreted in a variety of manners
�4�, and that will be here reconsidered in “closed” systems,
such as those consisting of asymmetric double-well poten-
tials. The latter provide a classical picture with applications
in a variety of physical cases, ranging from field theory, to
solid-state and chemical physics, to biological systems.

The purpose of the present work is to perform a relatively
simple analysis of the tunneling-duration scales, based on a
path-integral approach and making use, in particular, of the
concept of transition elements as introduced by Feynman �5�.
The results will be compared to those previously obtained in
the framework of conventional quantum mechanics �6,7�.

First, let us briefly summarize the results of the latter
procedure �7�. For a system consisting of two coupled oscil-
lators, whose energy levels are displaced by an amount �,
the average position �x�t�� was evaluated by computing the
expectation value:

�x�t�� =� �*�x,t�x��x,t�dx . �1�

The wave function ��x , t� is given by

��x,t� =� G�x,t;x0,t0���x0,t0�dx , �2�

where ��x0 , t0� is the initial wave function �the system was
supposed to be initially prepared in the upper well�, and the
propagator can be expressed as

G�x,t;x0,t0� = �
n=0,1,. . .,

�n�x��n
*�x0�exp	− iEnt/�
 . �3�

Irreversible decay towards the lower minimum was obtained
by including a small imaginary term in the energy eigen-
value, En→En− i�n. The result of this analysis is given by
Eq. �15� in Ref. �7� which, though neglecting the effects of
squeezing in the initial state, leads to a rather complex ex-

pression �8� that can be qualitatively described as follows
�9�.

The relaxation trajectories given by Eq. �1� follow on av-
erage an irreversible exponential decay �incoherent tunnel-
ing� whose decay constant � can be related to �n; superim-
posed onto the averaged coordinate there is a damped fast
oscillation �coherent tunneling� of amplitude �� /� and pe-
riod T=h / �2�+��; here � is the energy shift due to tunnel-
ing. The period can become comparable to that of oscilla-
tions inside the initial well, say 2� /�. Some results are
reported in Fig. 3 of Ref. �8� for a two-level system, and
show that when �	�, it is natural to assume that the delay
time due to tunneling is of the order of �1

−1. The results
obtained in this way are very different �in some real systems,
by orders of magnitude� from barrier crossing-time evalua-
tions which, for �
�, can be identified with the half-period
T /2, and thus are in a time scale comparable to that of fast
oscillations. For example, if � is of the order of 1012 s−1, the
relative time unit would be picoseconds, but the time scale of
the decay time can be exceedingly longer, and reach in some
cases milliseconds �8�.

In spite of its intrinsic complexity, the approach outlined
above should be considered as a merely phenomenological
one, since the dissipative constants �n, the tunneling energy
shift �, and the asymmetry constant � have all been treated
as free parameters. In what follows, we abandon this method,
and seek for an alternative solution to the problem. The
adoption of the instanton-bounce method �10� in the frame-
work of path integrals allows for a relatively simpler ap-
proach, which also supplies detailed expressions for the in-
volved quantities characterizing the process.

In order to derive observable quantities, such as the en-
ergy shift � and the decay rate �, we need to compare the
propagator as given by functional integration, with the cor-
responding expression of Eq. �3� written for imaginary time
�= it. For a two-level system, this turns out to be

G�0,�;0,− �� = G0e��/��cosh
� + 2�

�
��

− cos 2� sinh
� + 2�

�
��� , �4�

where G0= �M� /���1/2e−��, cos 2�=� / �2�+��, and the
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origin of coordinates �x=0� is set in the upper minimum. For
2�
�, Eq. �4� can be reasonably approximated as

G0,1 � G0
1 +
2��

�
fe��/�� , �5�

where f is a numerical factor of the order of unity �f �1�.
The subscript 0,1 means that we are considering contribu-
tions relative to zero �x̄���=0� and single bounces, giving the
unity and the linear-exponential term within brackets, respec-
tively. In the opposite limit, 2�	�, Eq. �4� can be put in the
form

G0,2 = � G0�1 +
f

2

2��

�
�2� , �6�

where the subscript 0,2 means that we are considering con-
tributions from x̄���=0, and double-tunneling �i.e. kink-plus-
antikink� events, with a quadratic time dependence.

For an asymmetric double-well potential, written as �see
Fig. 1�a��

V�x� = kx2
1 −
x

x0
�2

− �
x

x0
, �7�

where k=M�2, the classical path from x=0 to x��x0, and
back, for moderate asymmetry can approximately be ex-
pressed as �see Fig. 1�b��

x̄��� =
x0

2
�1 ± tanh

�

2
�� ± ���� . �8�

In �8�, the plus sign holds for ��0, and the minus sign for
��0, and ��=1/2� ln�16V0 /��, with V0=kx0

2 /32. The
propagator for the bounce path of Fig. 1�b�, obtained by a
classical variational technique �11�, is given by

G1 = 2��G0
6S0

��
�1/2
16V0

�
�1/2

e−2S�/�, �9�

where

S� = S0�1 −
3�

16V0
�1 + ln
16V0

�
�1/2�� , �10�

with S0=M�x0
2 /6, is the action for one “kink’’ in the asym-

metric case: for �=0 we have S�=S0. By comparing Eq. �9�
with G1 in Eq. �5� and assuming f =1, we obtain the energy
shift as

� � ��
6S0

��
�1/2
16V0

�
�1/2

e−2S0/�. �11�

since, see below, 2S��2S0−��. By a similar procedure, we
find that the propagator for a kink-plus-antikink process, for
�=0 is given by

G2 =
1

2
�2�2G0
24S0

��
�e−2S0/� �12�

and, by comparing with the expression of G2 in Eq. �6� for
f =1, we obtain the well-known result for the tunneling split-
ting �E=2� given by �12�

�E = ��
24S0

��
�1/2

e−S0/�. �13�

We are now in the position for evaluating the transition
element of the trajectory, namely �x����S, which is a suit-
ably weighted average where the weighting function is
exp�−S /��. When the action is �or can be reasonably ap-
proximated by� a quadratic form, the following relationship
worth noting can be used �13�:

�x����S � x̄���G�0,�;0,− �� , �14�

where x̄��� is the classical trajectory which, for moderate
asymmetry, is given by Eq. �8�. More precisely, the maxi-
mum amplitude is not x0, but is reduced as

xB � x� � x0�1 − 
 �

16V0
�1/2� . �15�

When Eq. �14� is applied to a bounce process, we have for
the maximum bounce amplitude an expression of the type
�xM�S�xB exp�−2S� /��. More properly, Eq. �14� can be

FIG. 1. �a�: Potential functions for tunneling processes starting
from the upper well at x=0. Asymmetric double-well potential, con-
tinuous line; perfectly symmetric case, dashed line. �b� Classical
trajectories of tunneling events starting from the initial well at −�
and ending in the same well at +�. Symmetric kink and antikink,
dashed line; bounce path as a sum of an asymmetric kink and anti-
kink, continuous line, with indication of ±��.
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adapted to a bounce process by taking into account, besides
the bounce trajectory x̄1���, also the other solution of the
classical motion, that is the path of permanence in the initial
minimum x̄0����0. By applying Eq. �14� to each classical
path, for 2�
� we have

�x����S = N�x̄1���G1 + x̄0���G0� , �16�

where N is a suitable normalization constant, and G0 and G1
are the relative propagators. By changing the origin of the
spatial coordinate, i.e., x→x0−x, x̄0��=0� /x0=1, the relative
averaged value must be conserved equal to 1. This means
that N=G0

−1; therefore, Eq. �16� for the averaged maximum
amplitude becomes

�xM�S/x0 = 1 −
xB

x0

G1

G0
� 1 −

xB

x0

2��

�
� , �17�

where in the second member we have assumed exp��� /��

1; � is given by Eq. �11� and � can be reasonably identified
with 2�� �see Fig. 1�b��. Likewise, for the case �
2�, we
find that Eq. �17� is modified as follows:

�xM�S/x0 � 1 −
xB

2x0

2��

�
�2

, �18�

where � as given by Eq. �11� in this case can be considered
only as a rough estimate.

The results of Eqs. �17� and �18� can be interpreted as
representing an oscillating, persisting behavior whose ampli-
tude �given by 1− �xM�S /x0� decreases with increasing �. Its
half period is approximately given by 2�� �actually, 2���

=ln�16V0 /��, for 16V0 /�=20÷50 turns out to be 3.0÷3.9,
thus comparable with ��; this oscillation takes place below a
constant value equal to x0 �see Table I�.

The remaining problem we are faced with is the evalua-
tion of the damping constant resulting from dissipative ef-
fects due to the coupling with a thermal bath. In order to
perform this evaluation, we need to consider two concomi-
tant and opposite effects: one is the decrease of the action
due to the bias �, while the other is the increment of the
action properly due to dissipation. It is just the combination
of these two effects which causes the irreversibility of the
process �14�. According to Eq. �10�, for moderate asymmetry

such that we can assume ln�16V0 /��	1, the decrease of the
action for a bounce path turns out to be �S�=2�S0−S��
���B, where �B can be identified with 2�� �see Fig. 1�b��.

The increase of the bounce action due to dissipation is
given by �15�

�S� = 2�� ln���B� + const, �19�

where 2��=�x0
2 /�, and � is the usual notation for the damp-

ing coefficient �11�. Therefore, neglecting the constant term
in �19�, we have that the total bounce-action variation with
respect to the case �=0 is given by

− �S/� = − 2� ln���B� + ��B/�; �20�

a result, this latter, which holds for weakly damped systems.
In order to obtain the decay rate �, we must consider the
contribution to the free energy of the quantum fluctuations
around the bounce path; these are determined by the integral
�7�

I��,�� =� exp�− �S/��d��B. �21�

From the stationarity condition, we have that the main con-
tribution to this integral arises from �B=2� /�, which is a
minimum of Eq. �20�, and the integral might be evaluated
according to the saddle-point method by properly selecting
the steepest-descent path: in this case, along the imaginary
axis of the complex variable ��B. However, for the action
variation �20�, the integral can be evaluated exactly by
changing the variable to z=��B, and the result is

I��,�� =
2�i

��2��

 �

��
�2�−1

. �22�

Now, recovering the form of the propagator for the symmet-
ric case, Eq. �12�, we have that the decay rate � is given by
�1,16�

� = 
��0

2
�2� Im I

�
� =

�

2

��0
2

�

1

��2��
 �

��
�2�−1

, �23�

where ��0=�E /� is the tunneling frequency relative to
the symmetric case. Making use of the �-function property

TABLE I. Energy shift Eq. �11�, half period ��B, bounce amplitude Eq. �15�, oscillation amplitude Eq.
�17�, calculated �even beyond the limit of validity� as a function of the asymmetry � /16V0=� / �3����, for
S0=��. For �=0 the energy shift �tunneling splitting� is given by Eq. �13�. The data of the last column refer
to the amplitude as given by the quantum-mechanical approach of Ref. �8�.

� /16V0

2� /��
�S0=��� ��B

2�� /�
��=2�B� xB /x0 1− �xM� /x0 � /�

0 0.213 1 1

0.005 0.129 5.3 0.69 0.93 0.64 1.37

0.01 0.091 4.6 0.42 0.90 0.38 0.48

0.015 0.075 4.2 0.31 0.88 0.27 0.26

0.02 0.065 3.9 0.25 0.86 0.22 0.17

0.025 0.058 3.7 0.21 0.84 0.18 0.12

0.03 0.053 3.5 0.18 0.83 0.15 0.09
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��z+1�=z��z�, in the case 2�
1 we obtain the following
approximate result:

� � ��0
2���

�
= ��0

2�x0
2/2� . �24�

In order to obtain the damped behavior of the averaged
trajectory, we need to go back to a real-time dependence of
the propagator like in Eq. �3�. Taking into account the
imaginary-energy correction to the energy shift, given by
Im �=�� /2, so that �→�+ i�� /2, and remembering that
�= it, the G0,1 propagator �still for f exp��� /���1� becomes

G0,1 � G0
1 +
2��

�
�e−�t. �25�

In a similar way, for the propagator G0,2 we can proceed
by including the imaginary correction to �, but we obtain
a more complex expression which only in a selected range
of values of 2�� can be put in a form similar to �25�. By
adopting these results, we can modify Eqs. �17� and �18�,
with �=�B, as follows, for �
�:

�xM�S/x0 � �1 −
xB

x0

2��B

�
�e−�t, �26�

and �but less properly� for �
�:

�xM�S/x0 � �1 −
xB

2x0

2��B

�
�2�e−�t. �27�

Some examples of computed relaxation trajectories, ob-
tained as a sequence of attenuated bounce paths �considered
not merely as mathematical artifices but rather as real physi-
cal processes �17��, are reported in Fig. 2. They clearly show
both behaviors, namely the oscillating part �coherent tunnel-
ing� and the irreversible decay �incoherent tunneling�, whose
relative importance strongly depends on the asymmetry of
the potential. In this way, we recover an overall behavior
similar to the one already obtained by conventional
quantum-mechanical approaches �7–9�, see Table I. In par-
ticular, it is quite evident that, with increasing �, the fast
oscillation tends to become less important and the exponen-
tial decay, with time constant �−1, becomes dominant for
characterizing the tunneling time scale.
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FIG. 2. Two examples of relaxation trajectory represented by a
sequence of attenuated bounces, the duration of each one being
2��B. The normalized amplitude is computed through Eq. �26�, for
values of the involved �dimensionless� parameters as � /16V0

=0.005, 2� /��=0.13, continuous curve; � /16V0=0.03, 2� /��
=0.053, dotted curve; and indicated value of � /�.
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