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Unidirectional half-cycle pulses �HCP� are ideally suitable for shaping, driving, and probing atomic wave
packets in momentum space. The shortest HCP presently available have a width of about 500 fs restricting the
manipulation of electronic wave packets to those in high-lying Rydberg states. The nonlinear harmonic re-
sponse of atoms to strong two-color infrared laser pulses with frequencies � and 2� opens up the opportunity
to form trains of ultrafast HCP’s on an attosecond time scale. In the present contribution, we investigate the
influence of macroscopic propagation effects onto the production of HCP and show that trains of unidirectional
attosecond HCP’s could be produced under experimentally realistic conditions.
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I. INTRODUCTION

The shortest electromagnetic pulses presently available
are obtained from high-order harmonics generation �HHG�
through the nonlinear interaction of a short, high-intensity
laser field with a gas jet. Filtering out a few of the highest
harmonics leads to pulses with widths as short as some hun-
dreds of attoseconds �1–3�. In view of the very high fre-
quency of the XUV carrier, this electromagnetic pulse still
subtends several periods of the carrier oscillation within the
envelope. Such a field, referred to as an attosecond burst, is
capable of delivering a pulse of photon energy ��1000 eV�
on a sub-fs time scale. By contrast, a half-cycle pulse �HCP�
contains ideally no additional oscillatory structure inside its
envelope. If the width �P of such a pulse is short compared to
the typical time scale Tn of the driven system, the HCP is
impulsive, i.e., it delivers a linear momentum to an electron.
Figure 1 illustrates similarities and differences between an
idealized train of unidirectional HCP’s �UHCP’s� and a train
of attosecond bursts.

The motivation to generate HCP’s on the attosecond scale
is derived from the study of coherent state manipulation in
Rydberg atoms employing HCP’s. Two HCP’s in a pump-
probe setting can be used to impulsively tailor and detect
wave packets �4,5�, and to retrieve quantum information �6�.
By chirping the period and field strength of a train of
UHCP’s, it is possible to steer an electronic wave packet
towards a preferred region in phase space �7�. In the Rydberg
atom exposed to a periodic train UHCP, dynamical localiza-
tion is observed �8,9�: the wave function of the driven system
remains close to the initial state for a long time even though
the driving field is strong, allowing us to keep the wave
function in the preferred region of phase space for many
cycles of the driving field.

Presently, two methods for producing single HCP or trains
of HCP’s are being used. By a conventional pulse generator,
pulse widths down to �P�500 ps can be achieved �10�. Ap-
plying a large voltage across a semiconductor wafer and
short-circuiting it by electron-hole excitations in a strong fs
laser, HCP’s with widths �P�500 fs can be produced �11�.
Such HCP’s reach the impulsive limit �P�Tn only for Ryd-
berg states with n�1, where the typical time scale

Tn=h /�E=0.16 fs�n3 with �E the level spacing of the Ry-
dberg states �n�30 for sub-ps pulses and n�300 for sub-ns
pulses�.

Reaching the impulsive limit for the electronic ground
state of atoms, molecules, or solids requires attosecond �as�

FIG. 1. A train of attosecond bursts �a� and a train of UHCP’s
�b� in units of the period T=2� /� of the fundamental color. In both
cases, the width of the individual pulses is �P=0.18 T and the time-
averaged field f0=0.
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pulses. In the present communication, we analyze protocols
to generate unipolar as HCP’s based on HHG resulting from
two-color driving. In a previous preliminary study we have
suggested that the nonlinear single-atom response to driving
at the fundamental frequency �1 and the second harmonic
2�1 results in UHCP’s �12�. However, the generation and
survival of such pulses under realistic macroscopic propaga-
tion conditions in a gaseous medium has not yet been ad-
dressed. We present in the following simulations for the pro-
tocol to generate UHCP’s and focus on the role of
macroscopic propagation effects. The simulations are based
on a self-consistent coupling of the atomic Schrödinger
equation and Maxwell’s equations for the electromagnetic
pulse in the medium. We consider hydrogen and argon gas
targets and calculate the intensities and pulse shapes to be
expected. The layout of the paper is as follows: In Sec. II we
introduce the method used for the simulations. The numeri-
cal results of our studies are presented in Sec. III followed by
conclusions and outlook in Sec. IV.

II. METHOD

We consider in the following the propagation of few-cycle
laser pulses through a gaseous medium. The propagation is
taken to be along the x direction while the laser field is
linearly polarized along the z axis. We study the nonlinear
atomic response to the electromagnetic field, which will be
self-consistently coupled to the optical field. Maxwell’s
equations with sources will be coupled to the fully quantum-
mechanical response of the atomic medium. Similar self-
consistent couplings have been used, in, e.g., �13�. The high-
harmonic radiation, both generated and propagated, will be
optimized towards the goal to shape unidirectional half-cycle
pulses �UHCP’s� on the attosecond time scale.

The wave equation for linearly polarized electric field
Fz=F in the presence of a polarizable medium with nonlin-
ear polarization P�x , t� is given by

� �2

�x2 −
1

c2

�2

�t2�F�x,t� =
4�

c2

�2

�t2 P�x,t� . �1�

We neglect the dependencies of F and P on the coordinates
transverse to the propagating direction since we are studying
the far field in the propagation direction. This is justified by
assuming that the wavelength �1 of the fundamental har-
monic is small compared to the diameter of the laser beam
which, in turn, is smaller than that of the gas jet. For the
present protocol, to be discussed below, intensities for the
fundamental driving field of no more than 1014 W/cm2 are
sufficient. Therefore the requirements on beam focusing are
modest. A minimum beam waist of W0 about a few 100 �m
is sufficient for pulse energies in the order of several 10 nJ.
In turn, the phase changes due to a curvature of the wave
front can be neglected. The corresponding coherence length
from the Guoy-phase, LGuoy=�2W0

2 /n�1 �15� �with n the or-
der of the harmonics, n	10�, is much longer than the propa-
gation lengths studied in this paper. While diffraction may
lead to deviation from the one-dimensional �1D� approxima-
tion at large distances from the generation region, the 1D

approximation is justified for the present loose-focusing ge-
ometry and experimentally relevant distances.

We first take the Fourier transform in time of Eq. �1� and
insert the ansatz to separate rapidly oscillating phases in po-
sition coordinate,

F�x,�� = e−i�x/cFslow�x,�� ,

P�x,�� = e−i�x/cPslow�x,�� . �2�

Neglecting �2Fslow�x ,�� /�x2 leads to the first-order propaga-
tion equation

�Fslow�x,��
�x

= − i
2��

c
Pslow�x,�� , �3�

which is an adequate approximation to Eq. �1� as long as
backwards-propagating solutions of the latter can be ne-
glected �14�. This is justified in the case of propagation
through low-pressure gas jets used for harmonic generation,
as studied in this contribution. Equation �3� will be solved
numerically by a slice-by-slice propagation with a slice
width �x. We define a useful generalization of the position-
dependent susceptibility as


�x,�� =
P�x,��
F�x,��

. �4�

For linear processes 
 reduces to the linear susceptibility

�x ,��→
L���, independent of F��� and the position x. In
our method the generally non-linear 
�x ,�� will be deter-
mined by the full quantum-mechanical response Pslow�x ,��
of the atomic medium.

It is instructive to consider limiting cases for which ana-
lytic solutions of Eq. �3� become feasible. The latter can also
be used to speed up the numerical propagation. To underline
the different contributions to the nonlinear response,
Pslow�x ,�� is approximated in a small interval �x0 ,x0+�x� as

Pslow�x,�� = Pd
slow�x0,�� + 
A�x0,��Fslow�x,�� . �5�

The ansatz can be motivated as follows: Pd
slow for the

higher harmonics originates from the strong driving laser and
is thus constant as long as the driving components do not
change. Due to the low intensities of the higher harmonics,
the approximate 
A�x ,���
L���, where 
L��� is the linear
susceptibility being independent of the field. On the other
hand, for the strong driving frequencies ��1 or �2� Pd

slow is
practically zero and 
A�x ,���
�x ,�� with 
�x ,�� the non-
linear susceptibility, which is dependent on the intensity,
generally. Thus, Pd

slow�x ,�� as well as 
A�x ,�� can be con-
sidered as practically constant for all frequencies studied as
long as �x is small compared to the absorption length of the
driving colors. With the ansatz �5�, Eq. �3� can be solved
analytically as
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Fslow�x0 + �x,�� = exp�− i
2�
A�x0,����x

c
��Fslow�x0,��

+
Pd

slow�x0,��

A�x0,��

� −
Pd

slow�x0,��

A�x0,��

. �6�

Two limiting cases of Eq. �6� are of interest: For x→0 and
Fslow�x0 ,�� small,

Fslow�x0 + �x,�� = Fslow�x0,�� − i
2��

c
Pslow�x0,���x

+ O��2Pd
slow
A�x2

c2 � , �7�

while for Fslow�x0 ,�� large, Eq. �6� leads to

Fslow�x0 + �x,�� = exp�− i
2�
�x0,����x

c
�Fslow�x0,��

+ O��2�Pd
slow�2�x2

c2Fslow�x0�
� , �8�

where 
�x ,�� is the full nonlinear response from Eq. �4�.
The numerical propagation in steps xj with the slice width

�xj =xj −xj−1 is accelerated by iteratively applying either Eq.
�7� or Eq. �8�. Since both equations are accurate in �xj to the
order O��xj

2�, they can be smoothly matched provided �xj is
small enough. Due to the contribution of 1/Fslow to the error
term of Eq. �8�, we can use larger �xj by applying Eq. �7� for
small x �i.e., small F for the higher harmonics�, and Eq. �8�
for large x �large F�.

The nonlinear polarization response entering Eqs. �7� and
�8� is determined from the concurrently solved time-
dependent Schrödinger equation �TDSE� for a single-active
electron �SAE�. The TDSE

i
�

�t
��r�,t� = �H0 + z Fslow�t����r�,t� �9�

contains the atomic Hamiltonian,

H0 =
p2

2
+ Veff�r� , �10�

with Veff�r� the atomic potential, in the following to be taken
either hydrogenic �Veff�r�=−1/r� or a parametrized model
potential for argon �Sec. III C�. Equation �9� determines the
microscopic response in the dipole approximation employing
the length gauge. We integrate the TDSE on a finite grid by
means of the pseudospectral method �16�. In this method, the
integration is performed applying a split-operator method,

��t + �t� = exp�− i�tH0/2�exp�i�pjẑ�exp�− i�tH0/2���t�

+ O��t3� , �11�

with �pj =−�t
t+�tFslow�t�dt. The r coordinate is discretized on

�0,rmax� at points ri optimized for the usage of effective
quadrature methods for the evaluation of the matrix elements
in Eq. �11�. Accurate solutions of the TDSE are obtained
using a small number of points in r �typically about 200 for
intensity I	1014 W/cm2 at a wavelength �	1000 nm�. A

smooth cutoff function f�r� is multiplied to the wave func-
tion in each time step to avoid spurious reflections at the
border at rmax. Due to the absorption of probability at large r,
the norm N of the wave function,

N�t� = 
��t�����t�� , �12�

is decaying with time. Accordingly, the fraction of lost elec-
trons due to ionization, 1−N�t�, gives rise to a density of free
electrons, nfree=na�1−N�t��, where na is the atomic density.
Throughout this paper we use the number density na=3.6
�10−7, which corresponds to a pressure of 0.1 atmospheres
at temperature 300 K.

From the solution of the TDSE, the polarization of the
medium can be calculated. The polarization consists of the
time-dependent atomic polarization Pa

slow�t� and the polariza-
tion of the plasma of free electrons generated,

Pslow�t� = Pa
slow�t� + Pfree

slow�t� . �13�

Pa
slow is determined by the norm decaying state ��t�,

Pa
slow�t� = na
��t��ẑ���t�� . �14�

For the polarization of the electron plasma we employ a gen-
eralization of the Drude model taking into account the fre-
quency components to Pfree

slow due to the time dependence nfree,

Pfree
slow�t� = − nfree�t�F−1
Fslow���

�2 � . �15�

The Fourier transform of Pslow�t�, Eq. �13�, together with
Eqs. �7� and �8� results in the self-consistent coupling of the
wave equation and the Schrödinger equation. We typically
need jmax=200 steps in the propagation direction x for a
propagation length of 16 mm.

III. RESULTS FOR HCP SHAPING

A. Control parameters
for the driving pulse

We first consider the interaction of a two-color laser field
with a gas of atomic hydrogen �V=−1/r�. Two-color driving
is required to break the inversion symmetry and to obtain
both odd and even harmonics. We parametrize the vector
potential of the two-color drive as

A�t� = a�t�� �1 − AR�
�

sin��t� +
AR

2�
sin�2�t + A
�� �16�

with �=�1 the fundamental driving frequency, a�t� an enve-
lope function, and AR and A� the relative amplitude and
phase of the second harmonic. The corresponding electric
field is given by

F�t� = −
1

c

dA�t�
dt

. �17�

We search now for optimal driving conditions both in terms
of the laser parameters Eq. �16� as well as propagation length
x for generating the output field that resembles that of a train
of UHCP’s.
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An “ideal” UHCP train would have a Fourier decomposi-
tion

FUHCP = f�t�� f0 + �
n=1

fn cos�n�t + 
n�� �18�

with f�t� an envelope function and fn the amplitude of the
harmonic components. The phases of the harmonic compo-
nents �with both odd and even present� should be aligned as


n = k� + n�
 �19�

with k an integer and �
 related to a time delay as �t=
−�
 /�. With k even, the HCP are pointing in the positive z
direction �i.e., the direction of the maximum of the driving
field� and with k odd, they point in the negative z direction.
Ideally, fn is almost constant for the first few n before de-
creasing for the high harmonic order n�1. If the amplitudes
of the harmonics decrease as

fn = exp�− �n/n0�2� , �20�

corresponding to a Gaussian shape of the individual HCP’s, a
minimum of field fluctuations between the HCP’s results.
The damping of the high harmonics controlled by n0 is re-
lated to the temporal FWHM of each individual Gaussian
HCP by �F=4�ln 2 / �� n0�. A zero-frequency component of
f0= 1

2 that appears for an ideal UHCP and is realized by elec-
tric pulse generators �10� cannot be present for a freely
propagating wave. We will, therefore, search for an output
field pulse resembling Eq. �18�, however with f0=0. For Ry-
dberg states it has been shown that the absence of an average
field changes the dynamics close to and above the ionization
threshold while being immaterial for the dynamics close to
the initial state �17�. An example of an ideal train of HCP’s
with Gaussian shape of the individual HCP’s is show in Fig.
1.

B. Results for hydrogen

We present in the following a few examples of UHCP
output fields. In the first case �Fig. 2� we study propagation
through a hydrogen gas of a driving field with intensity ID
=1014 W/cm2 and fundamental wavelength �1=1064 nm.
Here and in the following we express the intensity �in atomic
units� of the driving field in terms of the maximum of the
field, ID=max�F�t��2 /2 and the intensity In of the different
harmonics with respect to the maximum of the individual
harmonics, In=max�Fn�t��2 /2 with Fn�t� the time-dependent
field corresponding to harmonic n. The result presented in
Fig. 2 was found by a scan over AR and A
 �see Eq. �16��.

Figure 2�a� displays the few-cycle flat-top driving field.
Around the frequency corresponding to resonant coupling to
the first excited state, the power spectrum �Fig. 2�b�� in the
single atom response approximation �defined via Eq. �8�� is
strongly enhanced. Including propagation through the gas,
strong absorption at the resonance takes place leading to a
much lower radiation close to the resonance. The nonlinear
response of the medium mimics the UHCP requirements Eq.
�18� both in terms of the harmonic intensities as well as the
phases quite well �Fig. 2�c��. The only mismatch is caused by

the strong dominance of the original driving field at the fun-
damental wavelength �1. We will assume that the intensities
and phases of the two driving colors can be appropriately
adjusted after the HHG in the gaseous medium. For compari-

FIG. 2. �a� The few-cycle flat-top driving pulse with ID=1
�1014 W/cm2, AR=0.1, A
=−0.7, and �1=1064 nm. �b� Power
spectrum after 9 mm propagation through hydrogen �full line� com-
pared to that of the single-atom response Eq. �7�, dashed line. �c�
Intensities and phases �inset� of the harmonics as found after 9 mm
propagation �points�. Dashed lines: Dependence for an optimal train
of UHCP, �see Eq. �18�; the individual HCP’s are assumed Gauss-
ian, Eq. �20��. Diamonds: values for the driving field.
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son, we present in Fig. 3�a� the field resulting when com-
pletely removing the two driving colors. The resulting field
after adjustment of the two driving colors, displayed in Fig.
3�b�, resembles a train of UHCP �Fig. 1�b�� quite well. The
train has an intensity of IHCP=4.2�1012 W/cm2 and width

�P �FWHM� of the individual HCP’s as directly determined
from FUHCP, �P=650 as. The ratio of the width to the optical
cycle, T=3.5 fs, �P /T=0.18 characterizes the temporal width
of the HCP spikes in the electrical field. The width is effec-
tively controlled by the number of harmonics that can be
phase-aligned and follow an appropriate exponential decay
of the intensity with n. The number of phases possible to
align is limited by the frequency necessary for resonant cou-
pling to the first excited state 2p, corresponding to harmonics
n�8 in Fig. 2�b�.

We note that the existence of HCP’s in the trains is not
critically dependent on the exact choice of intensity adjust-
ments of the two driving colors �Fig. 3�c��. Without adjusting
the intensity of the second color but adjusting the intensity of
the first color to that of the second color and the phases for
both colors, a train of HCP’s �full line� with somewhat lower
intensity of the train, IHCP=1.3�1012 W/cm2, but also with
narrower spikes, �P=550 as, is found. On the contrary,
choosing the intensities of the two driving colors a factor 2
stronger than the Gaussian fit �dashed-dotted line� the inten-
sity of the UHCP train doubles, but also the width of the
HCP’s increases to �P=790 as.

The degree of unipolarity of the field can be characterized
by the directionality of the ionization. Even though the inte-
gral of the field presented in Fig. 3�b� is zero, the total ion-
ization is strongly asymmetric: By solving the time-
dependent Schrödinger equation, we find about 5 times more
ionization during the spikes as compared to the smooth field
in the opposite direction. The evolution of the UHCP train as
a function of propagation distance x, displayed in Fig. 4,
shows that in the present case an optimum in terms of am-
plitude is reached near x=9 mm.

As an example for the dependence of the HCP output on
various driving parameters, we present the dependence on
the driving intensity ID under otherwise identical conditions
in Fig. 5. The intensities of the higher harmonics �Fig. 5�a��
decreases rapidly with the intensity ID due to the strong non-
linearity of the process of harmonic generation. For the low-
est intensity studied, the intensity of the first harmonic with
frequency �1 after propagation is a factor of 190 too large
relative to the desired intensity for a UHCP �Eq. �18��, when
requiring a Gaussian dependence of fn. For ID=1�1014, f1 is
23 too large, i.e., the intensity fraction that has to be filtered
out is a factor of 8 smaller for the stronger driving field.

FIG. 3. �a� Generated field after completely removing the two
driving components. �b� Pulse after adjustment of the intensities and
phases of the two driving colors according to Eqs. �18� and �20�. �c�
Magnification of the field in �b� compared with two other choices of
the intensity adjustments �see text for details�. The propagation
length x=9 mm and the driving field is the same as in Fig. 2�a�.

FIG. 4. �Color online� Train of UHCP for different propagation
lengths. The driving components are adjusted to a Gaussian and the
driving field is the same as in Fig. 2�a�.
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Together with the fact that there is considerable flexibility
concerning the exact intensity adjustment of the driving in-
tensities �Fig. 3�c�� it thus seems possible to find experimen-
tal means of adjusting the two driving colors provided the
intensity is high enough.

The present scheme for producing UHCP can be extended
to longer pulses encompassing a larger number of spikes.
The extension is, however, limited by the increased ioniza-
tion for longer pulses. When using a 30 cycles long field with
ID=1�1014 W/cm2 ionization on a 15% level results. Due
to the strong distortion caused by free electrons, we were not
able to find a well-defined train of UHCP in this case. At
lower intensities �ID=5�1013 W/cm2� the ionization for x
→0 is reduced 5.5%, and further reduced at x=9 mm to
2.5%. In this case a train of UHCP extending over 30 pro-
nounced spikes as shown in Fig. 6 results.

It is also of interest to explore the wavelength dependence
of the UHCP generation. We, therefore, consider the case
�1=2148 nm. The major benefit of the reduction in driving
frequency is that more harmonics fit energetically in between
the ground state and the first excited state, thus allowing for
an increased number of phase-aligned harmonics �Fig. 7�a��.
The downside is a strong reduction in intensity of high har-

FIG. 5. �a� Intensities of harmonics and �b� the resulting field
after 9 mm propagation for different intensities. The driving com-
ponents are adjusted to a Gaussian and the driving field is the same
as in Fig. 2�a�.

FIG. 6. A 30-cycle train of UHCP generated by a driving pulse
with intensity ID=5�1013 W/cm2; other parameters are as in Fig.
2�a�.

FIG. 7. �a� Harmonic intensity and phase alignment for two-
color driving of a hydrogen gas with the fundamental wavelength
�1=2148 nm, intensity ID=5�1013 W/cm2, and A
=−0.3, other
parameters are as in Fig. 2. �b� Resulting output field.
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monics since a larger number of photons is needed to transfer
the electron to the continuum. The train �Fig. 7�b�� has an
intensity of IHCP�5.7�1010 W/cm2. The absolute width
�P�1.1 fs of each HCP is larger than for the case of driving
at �1=1064 nm. This is due to the scaling of �P��1

−1 for the
same number of aligned harmonics. However, expressed in
terms of the period T, �P /T�0.16, the spikes become nar-
rower by a factor 1.2. Further optimization exploring the
possibility of obtaining a larger number of aligned harmonics
for the case with longer fundamental wavelength appears
possible.

C. Results for argon

So far we have analyzed propagation through a gas jet
consisting of hydrogen atoms which allows for the ab initio
calculation of the atomic response. However, for future ex-
perimental realizations propagation in rare gas media is of
interest. We therefore study the UHCP generation in argon.
We calculate the atomic response within the SAE approxi-
mation employing the core potential �18�,

V�r� = − �1 + 5.4e−r + �17 − 5.4�e−3.682r�/r , �21�

which reproduces the relevant bound-state energies �3p, 4s,
4p, and 4d� within an accuracy of 1%. Since the ground state
of argon is the 3p state, we need to block the transition to
lower-lying states �3s, 2s, 2p, and 1s�. We achieve this by
replacing H0 in the subspace spanned by the low-lying states

by an artificial Hamiltonian submatrix H̃0 which leads to a
population less than 10−8 of the blocked states. The resulting
dynamic polarizability ���=�1�=8.7 is quite close to the
experimental value �=10.6.

The resulting UHCP train for the same parameters of the
driving field as for atomic hydrogen �see Fig. 2� is displayed
in Fig. 8. The temporal width of each spike, �P=520 as
��P /T�0.15� is narrower than for hydrogen. This results
from the larger number of aligned phases. Their number is
limited by the number of harmonics energetically fitting in
between the ground state and the first excited state, which is
approximately 10 for argon, but only 8 for hydrogen. The
output intensity IHCP=2�1013 W/cm2 is a factor of 3
smaller than for hydrogen, which we attribute to the larger
ionization potential for argon, IP=15.8 eV for argon �versus
IP=13.6 eV for hydrogen�. Evidently, the basic properties of
generation and propagation of UHCP trains for rare gases are
very similar to those of atomic hydrogen.

IV. SUMMARY AND OUTLOOK

We investigated in this paper a protocol for producing
UHCP in the attosecond regime. In our simulations, we take
both the fully quantum-mechanical single-atom response as
well as macroscopic propagation effects into account by cou-

pling the solution of the time-dependent Schrödinger equa-
tion to the solution �in 1D� of Maxwell’s equations. Our
proposal consists of a strong infrared laser with fundamental
frequency � and a small admixture of the frequency doubled
component 2� interacting with a gas jet to produce odd and
even harmonics. By carefully choosing the length of the gas
target and the parameters of the two-color driving field, the
harmonics generated up to the frequency corresponding to
the excitation from the ground state to the first excited state
can be tuned to what is needed for the UHCP. The two driv-
ing components have to be tuned after the harmonic produc-
tion to the appropriate intensities and phases. Using a funda-
mental wavelength �=1064 nm and intensities of the driving
field up to ID=1�1014 W/cm2 interacting with atomic hy-
drogen, we found trains of UHCP’s with width of each HCP
down to �P=650 as and intensity up to IHCP=4.2
�1012 W/cm2. Depending on the length of the driving field,
we found UHCP trains from the few-cycle regime up to 30
cycles long. Moreover, the gas target dependence was stud-
ied within the single-active electron approximation for argon,
yielding similar results as for hydrogen.

Future work will focus on studies necessary for the
experimental realization of the protocol such as the
characterization of the UHCP pulse, for example, by the
FROG CRAB technique �frequency resolved optical gating
for complete reconstruction of attosecond burst� �19�, and
methods for controlling intensities and phases of the compo-
nents of the driving field present in the output.

ACKNOWLEDGMENTS

This work was supported by the Austrian FWF under
Grant No. SFB-016. Valuable discussions with A. Baltuška,
M. Lezius, and V. Yakovlev are gratefully acknowledged.

FIG. 8. Train of UHCP after x=5.4 mm propagation through
argon. The parameters of the driving field are as in Fig. 2�a�.

GENERATION OF ATTOSECOND UNIDIRECTIONAL¼ PHYSICAL REVIEW A 74, 013818 �2006�

013818-7



�1� M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N.
Milosevic, T. Brabec, P. Corkum, U. Heinzmann, and M.
Drescher, Nature �London� 414, 509 �2001�.

�2� R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska,
V. Yakovlev, F. Bammer, A. Scrinzi, Th. Westerwalbesloh, U.
Kleinberg, U. Heinzmann, M. Drescher, and F. Krausz, Nature
�London� 427, 817 �2004�.

�3� P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, Ph.
Balcou, H. G. Muller, and P. Agostini, Science 292, 1689
�2001�.

�4� D. G. Arbó, C. O. Reinhold, J. Burgdörfer, A. K. Pattanayak,
C. L. Stokely, W. Zhao, J. C. Lancaster, and F. B. Dunning,
Phys. Rev. A 67, 063401 �2003�.

�5� C. Wesdorp, F. Robicheaux, and L. D. Noordam, Phys. Rev.
Lett. 87, 083001 �2001�.

�6� J. Ahn, D. N. Hutchinson, C. Rangan, and P. H. Bucksbaum,
Phys. Rev. Lett. 86, 1179 �2001�.

�7� S. Yoshida, C. O. Reinhold, E. Persson, J. Burgdörfer, and F.
B. Dunning, J. Phys. B 38, S209 �2005�.

�8� S. Yoshida, C. O. Reinhold, P. Kristöfel, and J. Burgdörfer,
Phys. Rev. A 62, 023408 �2000�.

�9� E. Persson, S. Yoshida, X. M. Tong, C. O. Reinhold, and J.
Burgdörfer, Phys. Rev. A 68, 063406 �2003�.

�10� J. Burgdörfer, Nucl. Instrum. Methods Phys. Res. B 42, 500

�1989�; M. Melles, C. O. Reinhold, and J. Burgdörfer, ibid.
79, 109 �1993�; C. O. Reinhold, J. Burgdörfer, M. T. Frey, and
F. B. Dunning, Phys. Rev. Lett. 79, 5226 �1997�.

�11� R. R. Jones, D. You, and P. H. Bucksbaum, Phys. Rev. Lett.
70, 1236 �1993�.

�12� E. Persson, S. Puschkarski, X.-M. Tong, and J. Burgdörfer, in
Ultrafast Optics IV, edited by F. Krausz et al., Springer Series
in Optical Sciences Vol. 95 �Springer, New York, 2004�, pp.
253.

�13� N. H. Shon, A. Suda. and K. Midorikawa, Phys. Rev. A 62,
023801 �2000�.

�14� T. Brabec and F. Krausz, Phys. Rev. Lett. 78, 3282 �1997�; M.
Geissler, G. Tempea, A. Scrinzi, M. Schnürer, F. Krausz, and
T. Brabec, ibid. 83, 2930 �1999�.

�15� T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 �2000�.
�16� X.-M. Tong and S.-I. Shu, Chem. Phys. 217, 119 �1997�.
�17� W. Zhao, J. C. Lancaster, F. B. Dunning, C. O. Reinhold, and

J. Burgdörfer, J. Phys. B 38, S191 �2005�.
�18� H. G. Muller and F. C. Kooiman, Phys. Rev. Lett. 81, 1207

�1998�.
�19� P. Johnsson, R. Lopez-Martens, S. Kazamias, J. Mauritsson, C.

Valentin, T. Remetter, K. Varju, M. B. Gaarde, Y. Mairesse, H.
Wabnitz, P. Salieres, P. Balcou, K. J. Schafer, and A.
L’Huillier, Phys. Rev. Lett. 95, 013001 �2005�.

PERSSON et al. PHYSICAL REVIEW A 74, 013818 �2006�

013818-8


