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The response to a probe laser beam of a suspended, misaligned, and detuned optical cavity is examined. A
five degree of freedom dynamical model of the fluctuations of the longitudinal and transverse mirror coordi-
nates is presented. Classical and quantum mechanical effects of radiation pressure are studied with the help of
the optical stiffness coefficients and the signals provided by an FM sideband technique and a quadrant detector,
for generic values of the product �� of the fluctuation frequency times the cavity round trip. A simplified
version is presented for the case of small misalignments. Mechanical stability, mirror position entanglement,
and ponderomotive squeezing are accommodated in this model. Numerical plots refer to cavities under test at
the so-called Pisa LF facility. The presented model can describe radiation pressure effects recently appeared in
the VIRGO antenna and give a framework for designing the next generation of gravitational wave antennas
where such effects would be of critical relevance.

DOI: 10.1103/PhysRevA.74.013814 PACS number�s�: 42.50.Lc, 42.60.Da, 03.67.Mn

I. INTRODUCTION

Radiation pressure effects in optical systems, including
cavities with movable mirrors, are of interest for several ex-
perimental situations embracing different branches of Phys-
ics. They influence the dynamics of systems showing high
opto and mechanical Q factors. In these situations, radiation
pressure can become either a limiting factor, determining
mechanical instabilities for the system �1�, or an useful tool
for observing macroscopic quantum behaviors �2,3�.

So far, these effects have found experimental evidence in
a microscale optical resonator �4�, cavity cooling experi-
ments �5�, quantum limited measurement of position of mac-
roscopic objects �6�, quantum entanglement of macroscopic
systems, �7� and in suspended Fabry-Perot resonators �8,9�.

Radiation pressure acquires particular relevance in
gravitational wave �GW� antennas where long arm interfer-
ometers and recycling cavities with suspended mirrors are
designed for storing large optical powers. Its importance will
be greater in future generations of existing antennas where
even larger optical powers will be employed. Radiation-
pressure-induced instabilities can eventually become a limit-
ing factor, leading to so-called “parametric instabilities”
�10–12�. For this reason considerable effort is being made in
developing theoretical and mathematical tools for modeling
these phenomena and describing the complex dynamics of
the antenna-controlled loop-data acquisition systems.

In order to have a reliable description of the effects, a
complete description of the optomechanical system is neces-
sary. The model has to describe the sensitivity to misalign-
ments, the role of higher modes excitation and the effects on
the control signals. Moreover, in order to be used in a time-
dependent simulation describing control sequences and lock-
ing acquisition, the quasistatic approximation has been re-
moved.

This strategy can be useful for the design studies neces-
sary for the development of future gravitational antennas. It
gives the possibility to investigate noise contributions com-
ing from all optical and mechanical degrees of freedom. It
can also be used for studying instabilities, optical spring ef-
fect, entanglement, and radiative pressure squeezing associ-
ated with both axial and angular fluctuations for any degree
of detuning, misalignment, and mismatch.

The present work grew from the study of short and large
spot size resonators �13� implemented at the �low Frequency
Facility �14� �LFF�� dedicated to testing new mechanical sus-
pensions, controls, and mirrors for the VIRGO interferomet-
ric gravitational antenna, and studying the effects of radia-
tion pressure, mirror, and suspension thermal noise.

Main features of the LFF are the use of suspended mirrors
and the possibility of confining large section cavity modes.
The mirrors hang from multipendula which guarantee a dras-
tic reduction of the seismic noise above the resonance fre-
quencies of the mechanical modes. The phase-modulated
light reflected by the cavity is used by a Pound-Drever ap-
paratus �15� both for stabilizing the cavity length, and mea-
suring the noise spectrum. Several papers analyzed the dy-
namic and the alignment of cavities sharing some of the LFF
features �16–18�. Numerous specialized studies have been
produced by research groups of VIRGO, LIGO, TAMA, and
GEO projects �19�.

The aim of this paper is to give a complete description of
a suspended cavity controlled by the Drever-Pound �DP�
technique �15� working with odd harmonics of the phase
modulated laser beam. Optical cavities are generally studied
by assuming a single mode excitation and ignoring the pho-
ton scattering by mirror reflections into other modes. A
single mode description is no more reliable when a slight
misalignment is sufficient to excite different modes. This
situation is met in almost concentric or plane-parallel or con-
focal configurations. In other cases the weak amplitudes of
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modes falling outside the resonance bandwidth are of inter-
est. For example, the sensitivity of interferometers with cavi-
ties placed in their arms depends on the contribution of
higher modes as well as the error signals used for longitudi-
nal and angular alignments.

In order to deal with a large variety of situations the
model discussed in this paper accounts for misalignment,
detuning, and a generic spectrum of harmonics. Faced with
the possibility of working with approximate expressions it
has been preferred to simplify exact solutions at the end of
the calculation. This option avoids difficulty of making ad-
equate approximations in presence of a large number of pa-
rameters.

Suspended cavities have been analyzed by several authors
in different contexts, all sharing the common feature of using
a system of Langevin equations for both the mechanical and
electromagnetic modes. The coupling of cavity and mechani-
cal modes is represented by suitable potentials �20,21� lead-
ing to a complex interplay between cavity mode amplitudes,
mirror positions, and orientation fluctuations. In this paper
the resonator is regarded as a mechanical Langevin system
driven by thermal sources and shot noise. This is done by-
passing the Hamiltonian approach and hiding the optical
modes fluctuations into the mechanical ones by generalizing
an approach introduced in Ref. �22�. So doing, the Langevin
system contains ponderomotive terms, connected with the
classical part of the laser beam and the shot noise. The seis-
mic noise affecting the mechanical system has been ne-
glected. Once known, its local spectral density can be easily
added to the thermal one.

Thermal motion of mechanical oscillators has been mod-
eled as standard Brownian motion �23�, possibly corrected
by Diosi for preserving the quantum mechanical commuta-
tion relations �24�, or by non-Lindblad master equations
�MEs� �25,26�. Accordingly, in the present model different
thermal correlation functions have been introduced.

The quantum field fluctuations �shot noise� are accounted
for by splitting each mode amplitude in a classical and a
quantum parts �21,27� and relying on the input-output theory
�28�. Radiation pressure can lead to mechanical instabilities,
as predicted by Braginsky and Manukin �1�. Acting on the
suspended mirrors it provides a spring action which either
depresses or reinforces any perturbation �10,22,29–31�. It
may also be used to mechanically entangle the two mirrors
�3� or to enhance the squeezing of the output field �32�.

The paper is organized in eight sections. First of all, in
Sec. II the mathematical notation used in the paper is shortly
overview. Section III is dedicated to the optical modes ex-
cited in a cavity with moving mirrors, and to the susceptivi-
ties relative to the noise sources of the suspensions, mirror
vibrations, and shot noise. The dynamic of the mechanical
components �mirrors and suspensions� is discussed in Sec.
IV while the Drever-Pound and quadrant detector signals are
analyzed in Sec. V.

The results obtained in these sections are combined in
Sec. VI where a five degrees of freedom model of the cavity,
including radiative pressure and torques, is presented. The
model is linearized for small misalignments and resonance
enhanced effects are discussed in Sec. VII where the cavity
is examined as a bipartite system. In this context pondero-

motive squeezing of the output field and entanglement of two
mirror modes are discussed. The manuscript is completed by
six mathematical appendixes. The first three of them give the
expressions for the stiffness and the Drever-Pound signal
matrices together with their simplified expressions in case of
small misalignment and mismatch. The last ones are dedi-
cated to thermal and shot-noise sources, and their mutual
correlations.

II. NOTATION

In Fig. 1 it is represented the typical optical layout of the
apparatus that will be examined. The main features of the
present model are �i� the multimode description of the cavity
field, �ii� the inclusion of radiation pressure and shot noise
terms, �iii� the description of suspensions and mirrors in
terms of mechanical modes.

Here and in the following J=1,2 labels the mirror, x the
axial, and q=y ,z the transverse coordinates. The analysis is
focused on the fluctuations of the J’s mirror orientation
���Jq� and displacements ��xJ ,��Jq�, combined in the param-
eters

��J = �− 1�J2kl�xJ,

��Jq = i�− 1�J�2klwJ���Jq −
��Jq

RJ
� �1�

with kl the laser wavenumber, wJ the spot size, RJ the mirror

curvature radius, and ��Jq= ���� J	 x̂� ·q� depending on the

rotation’s angles ��� J. In addition the mirror vibrations are

FIG. 1. �Color online� Typical optical layout of the apparatus
examined in the present paper. The laser beam is phase modulated
at frequency 
 by the modulator M�
�. The modulated beam drives
the cavity. The front M1 and back M2 mirrors are suspended to
multipendulum chains. The beam reflected by the front mirror is
sent to a photodetector PD, and the photodetection signal is de-
modulated before going to a spectrum analyzer. The same signal is
sent to a control system �not shown� which provides a feedback
signal applied to mirror M1. The noise of the system is studied by
spectral analysis.
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accounted for by introducing matrices �Js and functions ��Js
representing, respectively, profile and amplitude of the sth
vibrational mode of the Jth mirror.

The radiation pressure force and torques are linearized
with respect to the set ���Jq	 of transverse mirror coordinates
by introducing optical stiffness coefficients. Hence, the Fou-
rier transforms ���̃Jq	 satisfy Langevin equations with driv-
ing forces proportional to these quantities. They become im-
portant in proximity of the suspensions and mirror
mechanical resonances. These stiffness coefficients are in
general frequency dependent for the presence of the phase
factor ei��, with � the cavity round trip.

A vector approach has been adopted by representing the
amplitudes of the excited cavity modes by a column vector a
while the mismatch and misalignment of the input beam is
accounted for by a vector v. The various quantities O used
for describing the system dynamics �e.g., the force acting on
a given suspension mode� have been expressed in forms such
as O=v† ·O ·v with O a matrix representation of the quantity
itself. In analogy with quantum mechanics O is seen as the

matrix representation of an operator Ô corresponding to the
quantity of interest, and v as the quantum state of the reso-
nator.

For evaluating spectral densities the symbol‡ has been
introduced which is defined by its action on frequency de-
pendent quantities

f‡��� 
 f*�− �*�

and the shorthands

Im�f���	 =
1

2i
�f��� − f‡���� ,

Re�f���	 =
1

2
�f��� + f‡���� .

The same ‡ applied to a frequency dependent matrix trans-
forms O��� into O‡���=O†�−�*�. The summation symbol
is omitted when applied to expressions containing a repeated
index.

III. CAVITY FIELD

A suspended cavity of length L excited by a time har-
monic field is described by a superposition of Hermite-Gauss
modes u��r� ,x�

e−ilt�
�=±

exp�i�kl r2

2R�x�a�
����x,t�u��r�,x�

with l the laser frequency, �=+ for a wave traveling from
mirror 1 toward 2 and contrariwise. The wavefront curvature
R�x� is matched to the mirror’s curvature: R�0�=R1�0,
R�L�=R2�0. Each mode is labeled as usual by a couple of
integer numbers ��y ,�z�
�. Here and in the following x
stands for the optical axis coordinate and �y ,z�
r� are the
two transverse ones. Each mode u� is taken with a fixed
normalization on the transverse section and without phase
factors

u��r�� = u�y
�y�u�z

�z� ,

while the amplitudes are written as

a�
����x,t� = ei��klx−��y+�z+1���x���a�

����x,t�� ,

where ��x�=arctan� x−x0

b
� is the phase delay of the Gaussian

fundamental mode with respect to a plane wave, x0 being the
distance of the waist from the input mirror and b the confocal
parameter. The field is propagated outside the resonator by
passing through the different optical components met on the
way toward the laser source and the photodetector which
provides the error signal for the DP control.

The laser beam incident on �input� mirror 1 has been split
it in a classical and in a quantum term

Ein�r�,t� = e−iltE�1 + �l�t��uin�r�� + �âSN �2�

where

E =� P

�l = 2.5 	 109� P

1W
�1/2� �l

1�
�1/2

Hz1/2.

the mean amplitude and �l the relative amplitude fluctua-
tions. Effects of the laser linewidths have been ignored.

Misalignment and mismatch effects between the input
beam and the cavity are taken into account by writing uin�r��
as a superposition of cavity modes, namely,

uin�r�� = v�u��r�� . �3�

The structure of the expansion coefficients is factorized in a
product of Hermite polynomials

v� �

�y�zH�y�vy

�y
2 − 1

�y
�2

�H�z�vz

�z
2 − 1

�z
�2

�
�2�y+�z�y ! �z!

�4�

depending on the misalignment vq and mismatch �q param-
eters defined, respectively, by

vq = − i
klw1

�2
��q −

�q

Qq
� ,

�q =�1 + i
2

klw1
2

QqQ1
*

�Qq − Q1
*�

.

For a perfect matching v=0 and �=0. Here Q1 is the com-
plex curvature radius of the cavity mode evaluated at the
input mirror, while Qq, �q, and �q stand for the curvature
radius, angular, and transverse misalignment of the input
beam.

The modal expansion �3� will be used in the following for
representing the cavity fields in correspondence of the two
mirrors as column vectors v with components v�. So doing
the multiplication of u�r�� by a function w�r�� will be repre-
sented by the product w ·v of v by a matrix w.

The coupling of the cavity with the universe modes
through the partially transmitting mirrors introduces the
quantum noise contribution �âSN�r , t� of Eq. �2�
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��âSN�r,t�,�âSN†�r�,t��� = ��3��r − r����t − t�� .

It can be expanded as a superposition of delta-correlated op-
erators �â�

SN�t�,

�âSN�r,t� = �â�
SN�t�u��r� . �5�

Before arriving at the mirror the excitation beam is passed
through a phase modulator represented by the phase factor

F = eiM sin�
t� = e−ip
tJp�M� �6�

with Jp�M� the p th Bessel function of argument M. The
input modulation F modifies the laser excited amplitude a�

l

into a sum of harmonics varying on the time scale of the
suspension fluctuations

a� = Jpe−ip
ta�p �7�

while leaving the noise unaffected.

Cavity fluctuations

Owing to the fluctuations of the suspensions the mirror
orientations change slowly in time by undergoing torsions
��Jz�t�, tiltings ��Jy�t�, and transverse displacements ���J�t�.
The mirror can rotate also around the optical axis, but this
motion is uncoupled to the cavity field in the linear approxi-
mation.

The mirror motions separate into fluctuating and average
components, the latter ones setting the reference frame for
the vector representation. So doing the average misalignment
and displacements will be included in those relative to the
input beam, which will be represented by a unit amplitude
vector vJ

v1 = v, v2 = �1/2 · v

with � a diagonal matrix of components ��=e−i2��y+�z+1��G

and �G=��L�−��0� the single-trip phase delay of the
Gaussian fundamental mode. Accordingly in the following
the parameters ��Jq �see Eq. �1�� will be small fluctuating
quantities.

The reflection at mirror 1 induces the transformation
u�a�

�−�=r1u�a�
�+� with r1�t� the phase factor

r1 = r1exp�− ikl��1
2

R1
− i2kl�x1 − i2kl�u1

def

+ i2kl���� 1 	 x̂ −
���1

R1
� · r� . �8�

Here �x1�t� is the deviation of the center from the positions
at rest �x1�t�=0+�x1�t��. �u1

def�r� , t� is the tiny deformation of
the mirror surface represented by the matrix ��1�t� of com-
ponents

��1����t� = 2kl� u��r���u1
def�r�,t�u���r��d2r� . �9�

Expanding �u1
def further into mirror modes �33,34�, ��1�t�

becomes a superposition

��1�t� = ��1s�t��1s �10�

of matrices �1s times fluctuating amplitudes ��1s�t� driven by
radiation pressure and thermal noise.

Although the frequencies of the mirror acoustic modes are
very large, the tails of their spectra contribute to the low
frequency thermal noise of the interferometers as recently
reported by Ref. �35�. Levin �36� has approximated, at very
low frequency, the many mode profiles with the steady-state
mirror surface deformation �u1

def�r�� �in matrix form �1
L� under

the action of the incident beam �positive for a compression�,
by replacing Eq. �10� with

��1�t� = �1
L��1

L�t� , �11�

��1
L�t� being a stochastic process �see Eq. �43��.
Accordingly, ignoring the quadratic expression kl��1

2 /R1
the phase factor r1 �Eq. �8�� is represented in vector form by

r1e−i�2kl�x1+��1� · D1�− ��1� �12�

with ��1= ���1y ,��1z� the combination of rotation and dis-
placement defined by Eq. �1� and D1 the displacement opera-
tor

D1�− ��1� = exp�− ��1qBq
† + ��1q

* Bq�

acting on the functions of the transverse coordinates. The
operators By and Bz act on the mode functions u� as typical
annihilation operators Bun=�nun−1 and this is the reason
why D has been called a displacement operator.

Next, the propagation from the input mirror to the oppo-
site one is described by

eiklL�D̂t��1/2 �13�

with D̂t=e−��d /dt� the delay operator by the cavity round-
trip time �. Next combining Eq. �12� with Eq. �13� a round
trip is represented by

Re−i�−i��1,cav�D̂t��1/2e2
−i�� · D2�− ��2��D̂t��1/2e−i��1

· D1�− ��1� ,

where � is the detuning phase ���0 for a cavity shorter than
the closest resonance length�, R=r1r2=e−F/� with F the cav-
ity finesse, and ��1,cav the accumulated phase shift, positive
for decreasing cavity length

��1,cav�t� = ��1�t − �� + ��2�t −
�

2
�

with ��J=−�−1�J2kl�xJ. Next, in view of the smallness of
��1,cav ,��J, and ��J, D1,2 and e−i��1,cav can be linearized thus
obtaining for the round-trip transformation

e−i�R��D̂t − iX · ��J,cav − i��J,cav� . �14�

Here X ·��J,cav indicates the sum Xi���J,cav�i and two vectors

X = �1,Xy,Xz,Yy,Yz� ,
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��J,cav = ���J,cav,��Jy,cav� ,��Jz,cav� ,��Jy,cav� ,��Jz,cav� �
�15�

collect the phase quadratures Xq=Bq+Bq
†, Yq= i�Bq−Bq

†� and
the combinations

��1q,cav�t� = ��1q�t − �� + ei�G��2q�t −
�

2
�

��� and �� are the real and imaginary part of �, respec-
tively�.

Analogously for ��J,cav

��1,cav�t� = �Js��Js�t − �� + �−1/2 · �2s� · �1/2��2s��t −
�

2
� .

The amplitude a�y�z

��� �t� of the �y�z-th mode is propagated
back and forth the cavity. The fraction t1 is injected into the
Fabry Perot through mirror 1 at time t, propagates toward
and is reflected by mirror 2 at t+ �

2 and again by 1 at t.
Hence, summing over the sequence of round-trips, the field
aJ incident on the Jth mirror reads

aJ = E�1 + �l�ĜJ · vJF + �âSN �16�

with E= t1E and

ĜJ =
1

1 − Re−i�� · �D̂t − iX · ��J,cav − i��J,cav�
.

For very small ��J,cav and ��J,cav first-order perturbation
theory can be used. On the other hand, assuming for u� either
Hermite or Laguerre-Gauss modes the various terms of the
perturbation X ·��J,cav+��J,cav do not couple the respective

degenerate modes. Hence, the Green operator ĜJ can be ex-
pressed as

ĜJ � Ĝ − iG̃ · ��J,cav − i�Ĝdef, �17�

where the first term on the right is a static propagator, the
second the contribution of the linearized motion of the mir-
rors and the third one describes the mirror deformations

Ĝ = �1 − Re−i�D̂t��−1,

G = e−i�RĜ · � · X · Ĝ

�Ĝdef = e−i�RĜ · � · ��J,cav · Ĝ . �18�

Next, the contributions of the shot noises entering the
cavity through mirror J has been split as �âSN=�â1

SN

+ t2t1
−1�â2

SN, so that the same approximation of Eq. �18� ap-
plies and

aJ = a0,J + �aJ + �âSN. �19�

Here �aJ is fluctuating with the cavity geometry and laser
intensity, while a0,J does not depend on it and on shot noise,

a0,J � EĜ · vJF ,

�aJ � E��lĜ − iG · ��J,cav − i�Ĝdef� · vJF ,

�âSN = t1Ĝ · ��â1
SN +

t2

t1
�â2

SN� . �20�

Further, the relation D̂te
−ip
t=e−ip
teip
�D̂t implies

Ĝe−ip
t=e−ip
tĜp with the suffix p indicating that R has been
replaced by Rp=eip
�R. Then, the factor e−ip
t contained in
the function F �see Eq. �6�� can be displaced from the right to
the left side of the above expressions by adding the suffix p
to the various Green’s functions. Hence

aJ = e−ip
t�a0,Jp + �âJp� + �âSN,

where

a0,Jp = EJpGp · vJ,

�aJp = e−ip
tEJp��lGp − iGp · ��J,cav − i�Ĝp
def� · vJ.

�21�

Analogously for the output field �28�

a0,Jp
out = t1EJpGp

out · v1,

�aJp
out = t1EJp�Gp

out�l − iGp · ��1,cav − i�Ĝp
def� · v1,

�âout SN = t1
2�Ĝout · �â1

SN +
t2

t1
Ĝ · �â2

SN� , �22�

where Ĝout=Ĝ−r1 / t1
2.

IV. RADIATION PRESSURE AND TORQUE

Bouncing back and forth the two mirrors the laser and
shot noise fields exert a radiation pressure resulting in an
axial force directed along the optic axis x̂ and a torque par-
allel to their surfaces, proportional to the total intensity aJ

† ·aJ
and moments aJ

† ·Xq ·aJ. They split into classical FJ rp, TJ rp

and quantum Frp
SN, TJ rp

SN components, respectively, given by

FJ rp = �− 1�JE22RJ � kl�F0,J + �FJ�x̂ ,

TJ rp = �− 1�JE22RJ � kl wJ

�2
�T0,Jq + �TJq�q̂ 	 x̂ �23�

and

FJ rp
SN 
 �− 1�JE2RJ � klX̂J�

SNx̂ ,

TJ rp
SN


 �− 1�JE2RJ � kl wJ

�2
X̂J�q

SN q̂ 	 x̂ , �24�

where RJ= �rJ�2+ 1
2AJ with AJ the Jth mirror power

absorption.
F0,J and �FJ indicate the contributions of a0,J

† ·a0,J and
a0,J

† ·�aJ+H.c. and analogously for T0,Jq ,�TJq. F0,J ,T0,Jq

split in turn into time constant terms F̄0, T̄0,Jq, balanced by
the stabilization system of the apparatus, and small terms
�F0,J ,�T0,Jq oscillating at multiples of 
. Being 
 typically
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of the order of some MHz these contributions can be ig-
nored.

For a stabilized resonator ĜJ is represented as in Eq. �17�
so that �FJ and �TJq reduce in the frequency domain, respec-
tively, to

�F̃J = F̄0,J�̃
l + F̃J · ��̃J,cav + �F̃J,cav

def ,

�T̃Jq = T̄0,Jq�̃
l + T̃Jq · ��̃J,cav + �T̃Jq,cav

def . �25�

The three pieces of Eqs. �25� represent, in the given order,
the contributions of the fluctuation of laser intensity, mirror
displacements, rotations, and surface deformations to the ra-
diation pressure forces and torques.

Being the suspension characteristic frequencies generally
smaller than the mirror modes resonances �34�, the deforma-
tions are described by a single matrix �see Eq. �11��. The

vectors F̃J= �FJ� ,FJXq ,FJYq� and T̃Jq= �TJ�q ,TJqXq� ,TJqYq��
contain five proportionality constants between the forces �the
torques� and the coordinates ���̃J,cav� which parametrize the

mirror’s displacement, so they are stiffness coefficients. F̄0,J,

F̃J, �F̃J,cav
def and T̄0,Jq, T̃Jq, �T̃Jq,cav

def depend on the steady-state
amplitudes of the cavity modes, represented by the vector vJ,

Ō0,J = vJ
† · Ō0 · vJ,

ÕJ = vJ
† · Õ · vJ �26�

with Ō0,J= F̄0,J, T̄0,Jq and Õ= F̃J, �F̃J,cav
def , TJq, and �T̃Jq,cav

def

Matrices F̄0 ,�F̃J,cav
def , and T̄0,q ,�T̃Jq,cav

def are reported in Appen-

dix A �Eqs. �A1� and �A4�� while F̃ , T̃qare collections of five
matrices �Eq. �A2��. They depend on Green’s matrices �Eqs.
�A3� and �A5�, and through them on frequency and detuning,
closeness of cavity modes with respect to linewidth and
phase modulation depth. The frequency dependence is due to

the factor ei�� appearing in different fashions in G̃p, G̃p
out,

G̃p.
Eventually, the shot-noise contributions �Eq. �24�� are ex-

pressed by

X̂Ji
SN = t1

−1JpvJ
† · Gp

† · Xi · �âSNeip
t + H . c.

with i� �� ,�y ,�z� and take in the frequency domain the form

X̃Ji
SN = t1

−12JpRe�vJ
† · Gp

† · Xi · �ãp
SN	 . �27�

Finally, on the J’s mirror mode act the forces

FJs rp
def = �− 1�JE22RJ � kl�F0,Js

def + �FJs,cav
def �x̂ ,

FJs rp
def SN 
 �− 1�JE2RJ � klX̂Js

def SNx̂ , �28�

where

�F̃Js,cav
def = ei��F̃JsJs�

def ��̃Js� + ei��/2F̃
JsJ̄s�

def
��̃J̄s�.

Here

F̃JsJ�s�
def = vJ

† · F̃JsJ�s�
def · vJ �29�

is the force acting on the Js mode due to the deformations of
the mirror surfaces. In this case the force does not factorize

as for the suspension modes. F̃JsJ�s�
def �Eq. �A6�� represent the

effects of the vibrations of the modes J�s� on the Js one.
Next, the shot-noise force is given by

X̃Js
def SN = t1

−12JpRe�vJ
† · Gp

† · �Js · �ãp
SN	 . �30�

In Fig. 2 the optically induced stiffness coefficients have
been plotted for a set of detunings and angular misalign-
ments, in an almost concentric cavity having a finesse F
=500 and output spot sizes of 2	10−3 m. Being close to the
concentric configuration also the stiffness coefficients
FX/Yq ,TzXy ,TyYz become comparable with F� ,TJqX/Yq for cav-
ity axis misaligned by �y =10−2 rad, �z=10−1 rad. The signs
of the stiffness coefficients may have important conse-
quences on the mechanical stability, as discussed by several
authors for plane-parallel and concave mirrors �22,29�.

Small misalignment and mismatch

In the limit of small misalignment and mismatch the vec-
tor v1 �Eq. �4�� reduces to �1+�v= �1, ��vy ,�vz� ,0 , . . . ,0	
with

FIG. 2. Axial F�, F1Xy, F1Xz, F1Yy and angular T1zXy, T1zXz,
T1zYy, T1zYz stiffness coefficients vs length L of a symmetric cavity
for angular misalignments �y =0.01, �z=0.1 mrad, and detunings
�=0.1,0.2,0.3 � /F. The round-trip phase factor ei�� has been
ignored.
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�vq = −
�2

w1

Q*Qq

Q* − Qq
��q −

�q

R1
� .

For mirror 2vq is multiplied by e−i�G. Splitting forces and
torques in zeroth and first order terms in these misalignment

parameters �F̃J and �T̃Jq of Eqs. �25� take the simpler forms

�F̃J = �F̃J
�0� + �F̃J

�1�,

�T̃Jq = �T̃Jq
�0� + �T̃Jq

�1�, �31�

where

�F̃J
�0� = F̄0,J�̃

l + F̃���̃J,cav + �F̃J,cav
def ,

�F̃J
�1� = �F̃JXq��̃Jq,cav� + �F̃JYq��̃Jq,cav� ,

�T̃Jq
�0� = T̃X��̃Jq,cav� + T̃Y��̃Jq,cav� ,

�T̃Jq
�1� = �T̃Jq��̃J,cav

with

�F̃JX/Yq = 2 Re�F̃X/YvJq	 ,

�T̃Jq = 2 Re�T̃�
�1�vJq	 ,

F̃X/Y , T̃� being defined in Appendix C. Accordingly, in the
ideal setting of the cavity the forces and torques are respec-

tively proportional to longitudinal ��̃J,cav and transverse
��̃Jq,cav� fluctuations through the stiffness coefficients

F̃� , T̃X/Y. A slight deviation from it introduces forces and
torques with a reverse dependence on fluctuations, say

�F̃J
�1� ,�T̃Jq

�1� depend respectively on ��̃Jq,cav and ��̃J,cav.

V. ERROR SIGNALS

The errors used for controlling the cavity are provided by
Drever-Pound �DP� and quadrant detector �QD� signals. In
the DP detection technique the photodetector current I�t�,
obtained from the light transmitted and reflected by the input
mirror, is mixed with a local oscillator �sin�k
t+�� with
positive odd integer k and low-pass filtered by an averaging
procedure to result in the error signal

sDP�t� = �
−�

t

KDP�t − t��sin�k
t� + ��I�t��dt� �32�

with the filter response KDP�t− t�� extended to a suitable in-
terval much longer than �k
�−1, and short compared to the
time scale of the phase-quadrature fluctuations. Tuning �
around 0 sDP can be maximized for a misaligned cavity.

Putting �ãp
SN=�âSN��+ p
�, sDP is represented in the fre-

quency domain by

s̃DP/K̃DP = E2�s̄DP�̃l + s̃DP · ��cav + �s̃DP def� + EX̃DP SN,

�33�

where

s̄DP = v1
† · IDP · v1,

s̃DP = v1
† · �I+

DP − I−
DP� · v1,

�s̃DP def = v1
† · ��Ĩ+

DP def − �Ĩ−
DP def� · v1,

X̃DP SN = X̃+
DP SN − X̃−

DP SN.

with IDP,�Ĩ±
DP def , Ĩ±

DP, X̃±
DP SN defined in Appendix B.

In Fig. 3 the static characteristic s̄DP versus � has been
plotted for a set of cavity lengths. The DP static characteris-
tic goes to zero for positive detunings as expected for a cav-
ity influenced by radiation pressure �9�.

Figure 4 contains plots of the coefficients s� and sXy vs
cavity length for �=0, �z=0.1 mrad, and 7 detunings. They
show that as a consequence of the misalignment sXy becomes
comparable to s�, so that the DP error signal contains con-
tributions of the torsional fluctuations around the vertical
axis.

At low frequency �s̃DP def becomes proportional to the
thermal noises ��̃L th.

The quadrant detector used for stabilizing the angular os-
cillations provides two error signals sq

QD�t� �q=y ,z�, propor-
tional to expressions similar to Eq. �32� with the current I
replaced by Iq=�† ·Qq ·�, with

FIG. 3. Drever-Pound static characteristics s̄ vs � for cavity
lengths 1–10 cm and �=0. The plots correspond to modulation
frequency 
=2c�l / ��w2�, depth M =0.1, and jaw angle ��z=0.01.

FIG. 4. Coefficients s� and sXy vs cavity length for �=0,
�z=0.1 mrad and seven detunings ranging in the interval
−0.3�

F ���0.3�
F .
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� = e−ip
tap
out + �âout SN,

the matrix Qq representing the function sgn�q̄�. Then, s̃q
QD is

given by an expression similar to Eq. �33� with Gp
out† re-

placed by Gp
out† ·Qq.

Small misalignment and mismatch. In the limit of small
misalignment and mismatch the signal can be split into
zeroth- and first-order contributions

s̃DP = s̃�0� + �s̃�1�

given, respectively, by �Eqs. �C4��

s̃�0�/K̃DP = E2�s̄��̃l + s̃���̃1,cav + �s̃�0�def� + EX̃SN�0�,

�s̃�1�/K̃DP = E2��s̃Xq��̃1q,cav� + �s̃Yq��̃1q,cav� + �s̃�1�def�

+ E�X̃SN�1� �34�

with �s̃X/Yq=2 Re�s̃X/Yv1q	 and s̃X/Y defined in Appendix C.
For a perfectly aligned and matched cavity the DP signal

is sensitive to the axial fluctuations ��̃1,cav, mirror deforma-

tion term �s̃�0�def and shot noise X̃SN�0�. In particular, a con-

tribution ��̃1,cav depending on the mirror thermal noise ��̃1,2
L

is added to the length fluctuation. A deviation from align-
ment introduces in the error signal contributions proportional
to the transverse fluctuations.

VI. 3D MODEL

The deviations of each mirror from the reference position
is described by the displacements �x, ��y, and ��z of its
vertex and the angular parameters ��z=−��y and ��y =��z.
As said ��q describes a right-handed rotations around the
axis “q,” so that ��z is a left-handed tilt and ��y a right-
handed torsion. These quantities fluctuate as a consequence
of suspension thermal fluctuations and mirror surface defor-
mations. The radiation pressure fluctuations are transferred to
the mirrors proportionally with the laser intensity. The cavity
reacts by changes of geometry which in turn changes the
stored field and closes the loop of the cavity-field system.

From a purely mechanical point of view if the design is
good �that is, symmetric enough� the suspension masses are
aligned along the vertical axis z, perpendicular to the cavity
axis x. In these conditions the torsion ��y and vertical ��z
degrees of freedom are uncoupled. A coupling between lon-
gitudinal motion �x and tilt ��z is generally speaking un-
avoidable. This is true also for the transverse displacement
��y which is coupled with the rotation around the optical
axis. It goes without saying that in a real situation it is very
difficult to avoid more general cross couplings.

Radiation pressure can increase or reduce existing cou-
plings, and it can also produce new ones. While ��q is in-
sensitive to radiation pressure, ��q responds to the radiation
torque. For this reason when asymmetric optical modes are
excited the rotations ��q modify the radiation pressure, and
ultimately couple �x and tilting, but also �x and torsion.

Before proceeding further it is worth replacing the dis-
placements ��Jq by ��Jq=2kl��Jq, the angles ��Jq by ��Jq

=�2klwJ��Jq and introducing a new five component vector
��J= ���J ,��Jq ,��Jq� which forms with the cavity mode
amplitudes a system of correlated stochastic processes. It is
usually a very good approximation to model the suspension
as a set of damped, independent oscillators coupled to an

heat bath. Each oscillator J��̂, labeled by �, specifying the
prevalent character of the mode �tilting, torsion, displace-

ments, violin modes�, and the mode index ĵ, can be param-
etrized with its effective mass MJ�ĵ, pulsation �J�ĵ, and
damping coefficient �J�ĵ. For rotations MJ��̂ is replaced by
the moment of inertia. These parameters are related to the
masses and stiffness constants of the system. The coordinates
of the mirror can be written as linear combinations of the
oscillator’s coordinates qn, and this means that each normal
mode gives in principle a contribution to the mirror’s motion.
By interacting with thermal baths these modes undergo
Brownian motions by influencing the electromagnetic field,
eventually coupling mechanical and radiation pressure fluc-
tuations.

A. Suspension Langevin system

By linearizing the equation of motion of each mirror �J�
the horizontal �x and y� and vertical �z� displacements ��̃J,

torsion ��̃Jy, tilt ��̃Jz and rotation around the cavity axis

��̃Jx are expressed in terms of the amplitudes ĂJ��̂ of the
normal modes as

��̃J� = KJ��ĵĂJ�ĵ

having indicated by J� a generic degree of freedom and by

KJ��ĵ the coupling coefficient with the mode J��̂ �37�. If the
mirror vertex coincides with the center of mass of the sus-
pension payload, and the centers of the suspended masses are
aligned along the vertical z axis, the suspension can be easily

modeled by considering only the couplings ��J−��̃Jz and

��Jy −��̃Jx, and assuming the vertical oscillations indepen-
dent of the other degrees of freedom. Being the amplitudes

of the cavity modes independent of the rotations ��̃Jx, the

suspended cavity is described by the collection ��̃J of five
fluctuating quantities, depending linearly on radiation
pressure-torques, thermal noise, DP and quadrant detector
error signals,

��̃J = �̃J�8RJ�E2�F̃J + EX̃J
SN� + �̃J��z8RJ�E2�T̃Jz + EX̃J�z

SN�

+ X̃J�
th + �J1HDPs̃DP,

��̃Jy/z = X̃Jy/z
th ,

��̃Jz = �̃J�z�8RJ�E2�F̃J + EX̃J
SN� + �̃J�z8RJ�E2�T̃Jz + EX̃J�z

SN�

+ X̃J�z
th + �J1Hz

QDs̃z
QD,
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��̃Jy = �̃J�y8RJ�E2�T̃Jy + EX̃J�y
SN � + X̃J�y

th + �J1Hy
QDs̃y

QD.

�35�

In the case of the mirror vertex and/or the centers of the
suspension wire clampings are displaced from the respective
mass centers, the vertical fluctuations are coupled to the
other ones.

The effect of the servo systems acting on the longitudinal
and angular mirror displacements have been included by in-

dicating by H̃DP and H̃q
QD the respective transfer functions.

For the mirror vibrations a Langevin equation for each mode
must be considered since their profiles are different �Eq.
�30��,

��̃Js = 8�̃Js�E2�F̃Js,cav
def + EX̃Js

def SN� + X̃Js
def th. �36�

Expressing �F̃J ,�T̃Jq in terms of displacements and rota-
tions by introducing the stiffness coefficients, and doing the
same for the error signals s̃DP, s̃q

QD the above system can be
reduced to an equivalent one relating the fluctuating dis-
placement + rotations to the thermal noise and shot noise
sources.

The axial displacement ��̃J and tilting ��̃Jz respond to the

axial force E2�F̃J+EX̃J
SN and torque �E2�T̃Jz+EX̃J�z

SN�ŷ gener-
ated by the laser beam and the shot noise. By the way they
include the contributions of the mirror thermal noise. On the

other hand, ��̃Jy responds to the torque E2�T̃Jy +EX̃J�y
SN . The

links between force torques and ��̃J are represented by the
susceptibilities �̃J��.

The terms proportional to E2 and E describe the response
of the system to radiation pressure. Their presence indicates
that a motion of the mirrors produces not only a phase
change but also an intensity change providing a spring ac-
tion.

In writing Eq. �35� the interaction with the mirror noise
was approximated with Eq. �11� while in Eq. �36� the effects
of the suspension fluctuations were ignored. Loosely speak-
ing the two systems refer, respectively, to the low and high
frequency regions. In the former one the suspensions are
mutually coupled by radiative forces represented while the
mirror vibrations generate a global thermal noise hiding the
single mode contributions. In the latter one the suspensions
appear frozen and the mirror modes are mutually coupled by

radiative forces represented by �F̃Js,cav
def .

The solutions of the homogeneous system �35� represent,
in absence of feedback forces, free mechanical oscillations of
the suspended cavity, stable or unstable in accordance with
the sign of the imaginary part of the oscillation frequency
�31�. For a more detailed analysis �35� and �36� should be

mirrored by the system relative to the quantities ��̃J
Y, ��̃J

Y

conjugate of ��̃J, ���Js	, which can be obtained from the
above one by replacing �̃J�/�q/s by �̃J�/�q/s

Y �Eq. �40�� and

X̃J�/�q
th , X̃Js

def thby ỸJ�/�q
th , ỸJs

def th �Eq. �41�� in the random force
expressions.

B. Susceptibilities

The susceptibility �̃J�� describes the action on the coordi-
nate � of the force/torque acting on �,

�̃J�� = KJ��ĵKJ��ĵ�̃J�ĵ

with �̃J�ĵ the susceptibility of the mode J�ĵ of frequency
�J�ĵ and damping coefficient �J�ĵ

�̃J�ĵ =
�J�ĵ�J��̂

LD2

�
J�ĵ

2
− �2 − i��J�ĵ

�37�

and KJ���̂, KJ���̂ the coupling coefficients with � and � mir-
ror coordinates, while the adimensional Lamb-Dicke factor

�
J�ĵ

LD
= kl� �

2MJ�ĵ�J�ĵ

�38�

depends on the mode mass MJ�ĵ=MJiKJi�ĵ

2 �the subfix i iden-
tifies the ith mass of the suspension�. For rotations MJ�ĵ is
replaced by IJ�ĵ /wJ

2 with IJ�ĵ the moment of inertia. Some
authors use the so-called optomechanical coupling constants
GJ�ĵ=2�2�

J�ĵ

LD
/� �3�. The mechanical susceptibility �̃Js is

similar to Eq. �37�while the mass appearing in the Lamb-
Dicke factor varies for the different modes, as reported in
Ref. �34�.

C. Thermal contributions

Assuming suspension masses at the same temperature T,
each mode is characterized by a thermal source �see Appen-
dix D�

X̃
J�ĵ

th
=� 4kBT

��J�ĵ

 ̃J�ĵ − i
� + i�J�ĵ

�J�ĵ

���J�ĵ

3kBT
�̃J�ĵ �39�

with �̃,  ̃ delta correlated random forces introduced by Diosi
�24� in order to remove some inconsistencies of the classical
Langevin equation.

A Y version of Eq. �35� can be easily obtained for the Y
quadratures corresponding to the above ones by replacing
�̃J��ĵ by

�̃
J�ĵ

Y
= i

�

�J�ĵ

�̃J�ĵ �40�

and X̃
J�ĵ

th
by

Ỹ
J�ĵ

th
=� 4kBT

��J�ĵ

 ̃J�ĵ − i
�J�ĵ

�
���J�ĵ

3kBT
�̃J�ĵ . �41�

The terms proportional to �̃Jĵ in Eqs. �39� and �41� can be
generally neglected except when the temperature is rather
low and the oscillation frequencies very high, a situation met
only in some mirror modes. �̃J�ĵ disappears in the simple
Brownian motion model while in Ref. �26� �̃J�ĵ has been

dropped and � 4kBT

��J�ĵ
 ̃J�ĵ replaced by a new delta correlated

random noise source Q̃J�ĵ.
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The thermal sources X̃J�
th are superpositions

X̃J�
th = KJ��ĵ�̃J�ĵ

th
X̃

J�ĵ

th

of the X̃
J�ĵ

th
weighted by the thermal susceptivities

�̃
J�ĵ

th
= !J�ĵ�̃J�ĵ . �42�

with !J�ĵ=2��J�ĵ /�
J�ĵ

LD
.

The terms of Eq. �35� contain contributions proportional
to the fluctuating quantities ��̃J

L th �36�

��̃J
L th =�4kBT

��
�2 � klcP�J�̃ �43�

with � the loss angle, �̃ a delta correlated random force and
cP depending on the illumination profile

P�r�� = P�y,�z
e−r2/2w2

u�y,�z
�r�� . �44�

For P�r�� differing notably from the Gaussian one the de-
formed profile of the mirror �u1,2

def can be expressed, neglect-
ing the finite size of the mirrors, by a suitable combination of
derivatives of the deformation �uG

def�r�� relative to a Gaussian
distribution

�udef�r�� = �
�y,�z

P�y,�z
�− w��y+�z

��y

�y�y

��z

�z�z
�uG

def�r�� .

For a Gaussian illumination cP takes the form

cG =
1 − �2

�2�EwJ

with wJ the spot size and E, � the Young’s modulus and
Poisson ratio, respectively. For a generic illumination cP can
be expressed as cP= fPcG with

fP = �
���

�− 1��y�+�z�
P�y,�z

P�y�,�z�

P00
2 f�y+�y�,�z+�z�

, �45�

f�� being the �� coefficient of the expansion of
�uG�r��e−r2/2w2

in modes u�y,�z
�r��.

VII. THE SUSPENDED CAVITY AS A BIPARTITE SYSTEM

When the frequency is in proximity of two close reso-
nances of the mirror 1 and 2 modes, the system behaves as a
quantum mechanical bipartite system described by Gaussian
continuous variables. These systems can form EPR states
characterized by their covariance matrix � which can be used
for evaluating the entanglement of the state and its content of
quantum information.

The difference between the e.m. fields used in quantum
optics and the present mechanical system concerns the
sources of the respective states. The e.m. fields are produced
by the e.m. vacuum noise entering through the mirrors of a
cavity containing a nonlinear crystal. In the present case ther-
mal and shot noises act as sources. Accordingly, the covari-
ance matrix � can be split into thermal �th and shot noise

�8E�2�SN contributions obtained by separating ��̃J into ��̃J

=8E��̃J
SN+��̃J

th satisfying the Langevin system �36�

���̃1
SN/th

��̃2
SN/th =

1

D� P̃22 − P̃12

− P̃21 P̃11

��1X̃1
def SN/th

�2X̃2
def SN/th �46�

with P̃JJ� factors representing the radiation pressure effects

P̃JJ = 1 − 8ei��E2RJ�̃JF̃JJ
def,

P̃JJ̄ = 8ei��/2E2RJ�̃JF̃JJ̄

def

and their product D̃= P̃11P̃22− P̃12P̃21. An analogous system
holds for ��̃J

Y SN with �̃J replaced by �̃J
Y.

The output field contains a component �Eqs. �18� and
�22��

�ãout � �ei��Z̃1��̃1 + ei��/2Z̃2��̃2� · v1

proportional to ��̃1,2 through the matrices Z̃J=G ·�̃ ·�J ·G̃
and a shot noise Ĝout ·�â1

SN+
t2

t1
Ĝ ·�â2

SN term. Hence, depend-

ing ��̃1,2
SN linearly on the quadratures X̃1,2

def SN the output exhib-
its some degree of squeezing., a feature exploited by several
groups in the context of gravitational antennas of the next
generation �32�. The dependence of the efficiency of the pon-
deromotive squeezing on the mirror deformation profiles

�matrices Z̃J�and residual misalignment/mismatch can be
easily analyzed by means of Eqs. �46� and the correlations of
Appendixes E and F.

The complex dynamics of cavity field and ponderomotive
effects may lead to the creation of quantum entangled states
of the two mirror modes, as shown by Mancini et al. �Ref.
�3�, and references therein�. These authors have proposed a
measure E��� of the entanglement degree �the smaller
E����1 the larger the entanglement� based on a combina-
tion of the elements of the covariance matrix

E��� =
���̃1 + ��̃2�2���̃1

Y − ��̃2
Y�2

����̃1,��̃1
Y��2

. �47�

Splitting the quadratures into shot noise and thermal con-
tributions, taking into account the many modes of the cavity
and the shapes of the mirror mechanical modes, and scaling
the ratio terms by keeping constant E���, yield for the ther-
mal and the shot noise contributions

���̃1
th + ��̃2

th�2 = ��J
th�2C̃J

thX�+�,

−
i

2
���̃1

th,��̃1
th Y� = � �

�J
�2

��J�J
th�2,

���̃1
SN + ��̃2

SN�2 = �J�J�
* C̃JJ�

SN X�+�,
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���̃1
SN,��̃1

SN Y� =
���J + �J��

2�J�J�
�̃J�̃J�

* �J��*C̃JJ�
SN Y . �48�

with �J
th defined in Eq. �42�, while ���̃1

Y th−��̃2
Y th�2 and

���̃1
Y SN−��̃2

Y SN�2 are similar to Eq. �48� with �J, C̃J
th X�+� and

C̃
JJ�
SNX�+� replaced, respectively, by �J

Y,C̃J
th Y�−� and

�2

�J�J�
C̃

JJ�
SN X�−�. On the other hand,

��1,�2� = �P̃22,P̃12��P̃1
�+�P̃2

�+�P̃1
�−�P̃2

�−��−1/2,

P̃J
�±�= P̃JJ± P̃JJ̄ and

C̃J
th X/Y�±� =

Re�C̃J
XX/YY th	

2�P̃J
�±��2

,

C̃JJ�
SN X�±� =

Re�C̃JJ�
SN	

2�P̃J
�±�*P̃J�

�±��
,

C̃JJ�
SN Y =

Im�C̃JJ�
SN	

2��P̃1
�+�P̃2

�+�P̃1
�−�P̃2

�−��

with C̃JsJ�s�
SN given by Eq. �F2�. In Appendix E thermal noise

correlations for the Lindblad-Diosi and the Giovanetti-Vitali
MEs are explicitly given.

VIII. CONCLUSIONS

In order to take into account all the optomechanical sys-
tem degrees of freedom �cavity misalignment and optical
higher order modes�, a suspended cavity illuminated by a
laser beam has been described as the mechanical response
��J of each mirror of a linear system to radiative, thermal,
and shot noise forces. These perturbations have been linked
to the mechanical responses by means of susceptibility coef-
ficients. The model includes the mirror vibrations described
by a set of mode amplitudes ��, together with their shapes �.
Moreover, the quasistatic approximation has been removed
by including the effects of the finite cavity round-trip time.

The radiative pressure forces and torques have been lin-
earized with respect to ��J and ��, by obtaining sets of stiff-
ness coefficients for the suspension �F and T� and for the
mirror modes �FJsJ�s�

def �. Accordingly the radiative forces have
been expressed as products of susceptibility coefficients, la-
ser intensity transmitted to the cavity �E2�, stiffness coeffi-
cients, and mechanical mode amplitudes. So doing ��J and
�� have been linked directly to the thermal contributions,
modeled by Lindblad and non-Lindblad master equations,
and to the shot noise forces. The mirror thermal noise has
been expressed in the low frequency limit by Levin’s for-
mula. A corrective factor, for taking into account deviations
of the cavity field from the fundamental mode, has been
introduced.

The Drever-Pound and quadrant detector signals used for
stabilizing respectively longitudinally and angularly the cav-

ity, have been expressed in a form suitable to study the mu-
tual coupling of these degrees of freedom in case of mis-
alignment. Emphasis has been put on the description of
misalignment and mismatch of the input laser beam. To this
end a vector approach has been adopted: the state of the
input beam and the amplitudes of the excited cavity modes
have been represented by vectors �v and a, respectively� and
all the contributions to the cavity dynamics by a set of ma-
trices. In this way, all the relevant quantities are given in
form of algebraic products.

In particular, the optically-induced stiffness coefficients
relative to the suspension modes have been expressed in the
form v† ·F ·v ,v† ·T ·v, with F ,T matrices. It has been shown
numerically that these coefficients may become very large in
misaligned cavities close to unstable configurations.

The quasistatic approximation has been removed by in-
cluding the finite cavity round-trip time by introducing a
delay operator. Consequently the cavity has been represented
in the frequency domain by frequency dependent matrices
containing stiffness coefficients. The nonstatic character
makes the model suitable for being included in numerical
simulations for describing the complex dynamics of the
antenna-control loop-data acquisition system.

The reported model simplifies notably in proximity of me-
chanical resonances. In particular the covariance matrix � of
two close in frequency vibrational modes has been expressed
in terms of the stiffness coefficients and used for evaluating
the system entanglement. This matrix also controls the
squeezing degree of the output field.

Mechanical resonance represents critical points for GW
antennas. In particular, control loops have to take into ac-
count the frequency positions of mechanical resonances of
the system. Recently scientists at VIRGO have found experi-
mental evidence of radiation pressure effects near mechani-
cal resonances of the suspension system for the mode cleaner
cavity �38�. They observed a frequency shift of the reso-
nances due to radiation pressure. A frequency shift, if not
accounted for in the choice of control loop parameters can
give rise to mechanical instabilities. The presented model
will be used, in a forthcoming paper, for describing and so
preventing these situations. The numerical examples refer to
almost concentric cavities of length varying between 1 and
10 cm, spot size 0.2 cm and misalignment of 0.1 mrad.

APPENDIX A: FORCE, TORQUES AND STIFFNESS
OPERATORS

F̄0 = Jp
2Gp

† · Gp,

T̄0,q = Jp
2Gp

† · Xq · Gp. �A1�

Next, the stiffness operators F̃ , T̃q are given by

F̃ = 2Jp
2Im�F̃p	 ,

T̃q = 2Jp
2Im�T̃qp	 �A2�

with
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F̃p = e−i�RpGp
† · G̃p · � · X · Gp,

T̃qp = e−i�RpGp
† · Xq · G̃p · � · X · Gp �A3�

while

�F̃J,cav
def = 2Jp

2Im��F̃Jp,cav
def 	 ,

�T̃Jq,cav
def = 2Jp

2Im��T̃Jqp,cav
def 	 �A4�

with

�F̃Jp,cav
def = e−i�RpGp

† · G̃p · � · ��̃J,cav
L · Gp,

�T̃Jqp,cav
def = e−i�RpGp

† · Xq · G̃p · � · ��̃J
L · Gp, �A5�

where ��̃J,cav
L takes the Levin’s form

��̃J,cav
L = ei���J

L��̃J
L + ei��/2�

J̄

L
��̃

J̄

L
.

Finally the action of the modes J�s� on the Js one is
represented by the ensemble of matrices

F̃JsJ�s�
def = 2Jp

2Im�F̃pJsJ�s�
def 	 �A6�

with

F̃pJsJ�s�
def = e−i�RpGp

† · �Js · G̃p · � · �J�s� · Gp. �A7�

APPENDIX B: DREVER-POUND SIGNAL

IDP = 2Jp−kJpIm�ei�Gp
out † · Gp−k

out 	 ,

Ĩ±
DP = 2Jp±kJpRe�e−i��"��Rp±kGp

out † · G̃p±k · � · X · Gp±k	 ,

�Ĩ±
DP def = 2Jp±kJp

	 Re�e−i��"��Rp±kGp
out † · G̃p±k · � · ��̃1,cav

def · Gp±k	 ,

X̃±
DP SN = 2JpRe�v1

† · Gp
out † · �ãp±k

out SN	 . �B1�

APPENDIX C: SMALL MISALIGNMENT
AND MISMATCH

Assuming R=1 and p=0 the ponderomotive force and
torques read

F̄0 = �G0�00,00��2,

T̄0,Jq = 2 Re�G0�00,00�
* G0�10,10�vJq	

while the stiffness vectors reduce to

F̃J = F̃�0� + 2 Re�F̃J
�1�	 ,

T̃Jq = T̃�0� + 2 Re�T̃J
�1�	 �C1�

with

F̃�0� = �F̃�,0,0,0,0� ,

T̃�0� = �0,T̃X,T̃X,T̃Y,T̃Y� ,

F̃J
�1� = �0,F̃XvJy,F̃XvJz,F̃YvJy,F̃YvJz� ,

T̃J
�1� = �T̃��vJy + vJz�,0,0,0,0� , �C2�

where

F̃� = 2 Im�e−i�−i2�GG̃0�00,00��G0�00,00��2	 ,

T̃X = 2 Im�e−i�−i4�GG̃0�10,10��G0�00,00��2	 .

Similar expression holds for F̃X and T̃� with �G0�00,00��2 re-

placed by G0�00,00�
* G0�10,10� while F̃Y is similar to F̃X with Im

replaced by Re.
Analogously, for the Drever-Pound error signal

s̄DP = s̄�0�

s̃DP = s̃�0� + 2 Re�s̃�1�	

�s̃cav
DP def = �s̃cav

�0�def + 2 Re��s̃cav
�1�def	 �C3�

with

s̄�0� = �s̄�,0,0,0,0� ,

s̃�0� = �s̃�,0,0,0,0� ,

s̃�1� = �0, s̃Xv1y, s̃Xv1z, s̃Yv1y, s̃Yv1z� ,

�s̃�0�def = s̃��ei��1s�00,00���̃1s + ei�/2�2s�00,00���̃2s� ,

�s̃�1�def = s̃X
�1��ei��v1y�1s�00,01� + s̃Xv1z�1s�00,10����̃1s

+ ei�/2�v1y�2s�00,01� + s̃Xv1z�2s�00,10����̃2s� ,

�C4�

where

s̄� = Jp+kJp2 Im�ei�Gp+k�00,00�
out * Gp�00,00�

out 	

s̃� = 2Jp+kJpRe�e−i�−i2�G�ei�Rp+kGp�00,00�
out *

	G̃p+k�00,00�
out Gp+k�00,00�

out ���

− e−i�RpGp+k�00,00�
out * G̃p�00,00�

out Gp�00,00�
out � . �C5�

s̃X is similar to s̃� with Gp+k�00,00�
out ,Gp�00,00�

out replaced by
Gp+k�10,10�

out ,Gp�10,10�
out , while s̃Y is similar to s̃X with Re replaced

by Im.
Finally the shot noise contribution reads

X̃DP SN = X̃DP SN �0� + X̃DP SN �1�,

where
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X̃DPSN�0� = 2JpRe�Gp�00,00�
out * ��ãp+k�00�

SN − �ãp−k�00�
SN �	

X̃DP SN �1� = 2 Re�Gp�10,10�
out * ���ãp+k�10�

SN − �ãp−k�10�
SN �v1y

*

+ ��ãp+k�01�
SN − �ãp−k�01�

SN �v1z
* �	 .

APPENDIX D: THERMAL AND SHOT-NOISE
SOURCES

X̃J�
th/SN = �̃J�X̃J�

th/SN + �̃J��zX̃J�z
th/SN + �1JH

DPE2s̃DP th/SN,

X̃Jq
th = �̃JqX̃Jq

th ,

X̃J�z
th/SN = �̃J�z�X̃J�

th/SN + �̃J�zX̃J�z
th/SN + �1JHz

QDE2s̃z
QD th/SN,

X̃J�y
th = �̃J�yX̃J�y

th + �1JHy
QDE2s̃y

QD th �D1�

while for the mirror modes

X̃Js
def th/SN = �JsX̃Js

def th/SN.

APPENDIX E: THERMAL NOISE CORRELATIONS

The correlations X̃th���X̃th����=CXXth���+��� , . . ., of
the thermal sources �39� and �41� for the Diosi master equa-
tion �see Ref. �24�� are given by

C̃XX th =
4kBT

��J
+

�� + i�J�2

�J
2

��J

3kBT
+ 2

�

�J
,

C̃YYth

=
4kBT

��J
+
�J

2

�2

��J

3kBT
+ 2

�J

�
,

C̃XY th = C̃YX th*��� =
4kBT

��J
+
� + i�J��̂

�

��J

3kBT
+
�J��̂

�

+
� + i�J��̂

�J��̂
�E1�

while for the master equation of Ref. �26�

C̃XXth = C̃YYth = C̃XYth = 2
�

�J
�1 + coth� ��

2KBT
� .

On the other hand, the commutators coincide

��X̃def th,X̃/Ỹdef th�� = 4
�

�J
. �E2�

APPENDIX F: SHOT NOISE CORRELATIONS

The Fourier transforms of the shot noise force and torque
�27� are characterized by the correlations

X̃Ji
SN���X̃J�i�

SN ���� = �1 +
t2
2

t1
2�C̃JiJ�i�

SN ��� + ��� ,

where

C̃JiJ�i�
SN = vJ

† · C̃ii�
SN · vJ�

with

C̃ii�
SN = Jp

2Gp
* · Xi · �G̃p�2 · Xi� · Gp.

and i , i�=1,2 ,3. In particular, C̃JiJ�i�
SN = C̃J�i�Ji

SN‡ .

Analogously for X̃Js
def SN �see �28��,

X̃Js
def SN���X̃J�s�

def SN���� = �1 +
t2
2

t1
2�C̃JsJ�s�

def SN��� + ��� ,

where

C̃JsJ�s�
def SN = vJ

† · C̃JsJ�s�
def SN · vJ� �F1�

with

C̃JsJ�s�
def SN = Jp

2Gp
* · �Js · �G̃p�2 	 �J�s� · Gp. �F2�

In addition,

�X̃Js
def SN���,X̃J�s�

def SN����� = i2�1 +
t2
2

t1
2�Im�C̃JsJ�s�

def SN	��� + ��� .
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