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We present a theory describing the transients and rise times of the refractive Kerr nonlinearity which is
enhanced using electromagnetically induced transparency �EIT�. We restrict our analysis to the case of a pulsed
signal field with continuous-wave EIT fields, and all fields are well below saturation. These restrictions enable
the reduction of an EIT Kerr, four-level, density-matrix equation to a two-level Bloch-vector equation which
has a simple and physically intuitive algebraic solution. The physically intuitive picture of a two-level Bloch
vector provides insights that are easily generalized to more complex and experimentally realistic models. We
consider generalization to the cases of Doppler broadening, many-level EIT systems �we consider the D1 line
of 87Rb�, and optically thick media. For the case of optically thick media we find that the rise time of the
refractive EIT Kerr effect is proportional to the optical thickness. The rise time of the refractive EIT Kerr effect
sets important limitations for potential few-photon applications.
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I. INTRODUCTION

The large optical nonlinearities resulting from electro-
magnetically induced transparency �EIT� have created the
potential for many low-light-level and few-photon applica-
tions �1–6�. The refractive Kerr, effect, in particular, has
been the subject of much interest �7–11�. This optical
nonlinearity results when a signal laser field ac-Stark-shifts
one of the ground states in a �-type EIT system, perturbing
the system away from Raman resonance and resulting in a
cross phase shift between the signal and EIT laser fields
�see Fig. 1�. Schmidt and Imamoglu proposed the giant EIT
Kerr nonlinearity and speculated that it may create “condi-
tional phase shifts of the order of � with single photons,
which should be beneficial for quantum nondemolition
measurements of weak signals and quantum logic gate
operation” �7�. For a review of EIT-enhanced nonlinear op-
tics see Refs. �6,5�.

For few-photon applications such as quantum nondemoli-
tion measurements and quantum-logic gates the signal field
must be pulsed such that it contains only a small number of
photons. Because the number of photons in a pulse is directly
proportional to the product of the intensity and the quantiza-
tion volume �the quantization volume being given by the
pulse volume V=Ac�pulse, where A is the pulse area, c is the
speed of light, and �pulse is the pulse duration� and because
the area A has a lower bound given by the diffraction limit,
tailoring EIT optical nonlinearities to be responsive to few-
photon pulses is essentially a trade-off between increasing
low-light-level sensitivity and decreasing the rise time. Ulti-
mately, few-photon applications require optical nonlinear
processes that are both fast and low light level. Thus,
quantum-optical and few-photon applications require a
sound understanding of the optical nonlinearity’s transients
and the trade-offs between optical intensity and pulse dura-
tion.

Initial proposals for the absorptive �12� and refractive �7�
EIT Kerr nonlinearities limited their treatments to the
continuous-wave �cw� or quasi-cw regime. More recent treat-
ments discuss some time-dependent aspects. Transients of
the absorptive Kerr effect for a pulsed signal and cw EIT
fields have been well studied both theoretically �13� and ex-
perimentally �14–16�. Several researchers have also consid-
ered the dynamics of pulsed EIT fields for both types of Kerr
effects �4,8,17�.

Recently, refractive EIT Kerr transients for the case of
pulsed signal fields have also drawn increased attention. For
example, Deng et al. used Fourier transforms of coupled am-
plitude and Maxwell equations to derive a complex double
integral describing the refractive EIT Kerr dynamics in the
short-signal-pulse limit �18�. This solution has the limitation
that the signal pulse must be very short and weak such that
ground-state coherence “can be frozen out during the calcu-
lation of the nonlinear response” �18�. Also, Ottaviani et al.
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FIG. 1. Simple EIT Kerr system with four levels �a� and a
three-level approximation to the EIT Kerr system �b�. The
detunings are defined as �P���3−�2�−�P, �C���3−�1�−�C,
�S���4−�2�−�S, ����P+�C� /2, and �R��P−�C. Also, the
Rabi frequencies are defined as �i��iEi /	 where i= �P ,C ,S�, �i

is the dipole moment, and Ei is the electric field. The spontaneous
emission rate out of the excited state is given by 
, and � is the
decoherence rate for the ground states.
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have shown theoretically that, in a five-level M system, a fast
two-qubit quantum phase gate can be realized due to the
transients arising from a pulsed signal �19�.

EIT Kerr dynamics are also closely related to the more
general topic of coherent transients in multilevel systems.
Chen et al. and Park et al. have observed absorption tran-
sients in �-EIT media induced by rapid changes to the
Raman—i.e., two-photon—detuning �20,21�. Similarly,
Godone et al. have observed transients due to phase modu-
lation of Raman beams in a � system �22�. Many others have
also studied transients in three-level EIT systems under a
number of different contexts such as coherent Raman beats
�23�, lasing without inversion �24–26�, Zeeman splitting
�27–29�, adiabatic rapid passage �30,31�, EIT in semiconduc-
tors �32,33�, and coherent population trapping in closed-loop
systems �34,35�.

In this paper we use a density matrix formalism to derive
simple analytic expressions for the evolution of a perturbed
�-EIT system in the weak-field limit �the weak-field limit
assumes that all Rabi frequencies are much smaller than the
spontaneous emission rates�. Using a reduction of the density
matrix to a two-level Bloch equation �36�, we show that the
susceptibilities are primarily determined by the evolution of
the ground-state coherences. From these transient solutions
we derive the nonlinear susceptibilities and their rise times.
Finally, we show how insights obtained from studying the
optically thin � system apply to more physically realistic
models of EIT systems in which Doppler broadening, opti-
cally thick media, and more than three EIT levels are in-
cluded.

II. TRANSIENTS DUE TO PERTURBATIONS
IN A � SYSTEM

Figures 1�a� and 1�b� show the reduction of a four-level N
system to three-level � system with the Stark shift due to �S
explicitly accounted for. This is one of the simplest systems
displaying EIT Kerr optical nonlinearities.

Levels �1	, �3	, and �2	 together with the probe and cou-
pling fields �P and �C make the �-EIT system. The Rabi
frequencies, detunings, and decay rates are defined in the
caption of Fig. 1. The far-detuned signal field �S ac-Stark-
shifts state �2	 and modifies the probe detuning such that
�P��S�=�P�0�+�S

2 /�S. In Fig. 1�b� we explicitly account
for the Stark shift by shifting the energy of level �2	 by
−�S

2 /�S and removing the signal beam. In Fig. 1�b�, we also
introduce the one-photon detuning ����P+�C� /2 and two-
photon detuning �Raman detuning� �R��P−�C. The defini-
tions for all detunings are such that the detunings are all
positive as depicted in Figs. 1�a� and 1�b�.

In addition to shifting the energy of level �2	, the signal
field also increases the decoherence rate for level �2	 by
�S

2
 /�S
2. However, by choosing the signal detuning suffi-

ciently large the increased decoherence can be negligible
while the Stark shift remains significant. Thus, we assume
large signal detuning and ignore the increased decoherence.

The model for the refractive EIT Kerr effect is simply a
three-level system in which the two-photon detuning under-
goes a sudden perturbation. Therefore, we expect the tran-

sients to be similar to other perturbations that create sudden
changes in Raman detuning such as frequency modulating
the laser frequency �20,21� or Zeeman splitting �27,28�.

Before specializing to the case of Stark shifts, we derive
analytic expressions for transients due to general perturba-
tions to the � system. In the next section we return to the
special case of Stark shifts. The Hamiltonian describing the
coherent evolution of Fig. 1�b� is given by

Ĥ = 	

�R

2
0

�C
*

2

0 −
�R

2

�P
*

2

�C

2

�P

2
�
� . �1�

Including the decay and decoherence terms shown in Fig.
1�b� and going to a rotating reference frame, the density
matrix equations describing the evolution of the atoms are

�̇33 = − 
�33 + Im��2
*�32 + �1

*�31� , �2�

�̇22 =



2
�33 − ���22 −

1

2

 − Im��2

*�32� , �3�

�̇11 =



2
�33 − ���11 −

1

2

 − Im��1

*�31� , �4�

�̇32 = �i�� − �R/2� − ����32 + i
�P

2
��22 − �33� + i

�1

2
�21

* ,

�5�

�̇31 = �i�� + �R/2� − ����31 + i
�C

2
��11 − �33� + i

�2

2
�21,

�6�

�̇21 = �i�R − ���21 − i
�C

2
�32

* + i
�P

*

2
�31, �7�

where ��= �
+�� /2 is the transverse decay rate for coher-
ences with the excited state. The spontaneous emission from
the excited state, at rate 
, repopulates both ground states
with equal probability. The ground-state decay rate � is due
to diffusion of coherent atoms out of the laser beam and
diffusion of maximally mixed thermal atoms into the beam
�the energy between ground states, 	��1−�2�, is assumed to
be much less than the thermal energy kBT�.

When the two-photon detuning is zero, the dark state

�− 	 �
�P�1	 − �C�2	

��P
2 + �C

2
�8�

becomes an energy eigenstate of the Hamiltonian and is de-
coupled from the excited state. Additionally, the bright state,
which is the superposition of ground states orthogonal to the
dark state, is coupled to the excited state with Rabi frequency
�=��P

2 +�C
2 . As atoms are excited from the bright state and

PACK, CAMACHO, AND HOWELL PHYSICAL REVIEW A 74, 013812 �2006�

013812-2



spontaneously decay, there is a 50% probability they will
decay into the dark state and become trapped. This is known
as coherent population trapping �CPT� and is a common
mechanism for obtaining EIT.

When the two-photon detuning is nonzero, the dark state
is still a useful concept, even though it is no longer an energy
eigenstate. The dark state is always the coherent superposi-
tion of ground states for which all probability amplitudes for
excitation destructively interfere completely. Because the
dark state describes the interference between excitation am-
plitudes and this interference is crucial to understanding the
optical susceptibilities, the density matrix elements for the
dark state—i.e., �11

�−�= ��P�2 /�2, �22
�−�= ��C�2 /�2, and

�21
�−�=−�C�P

* /�2=−ei
��C�P� /�2 where ��� denotes the
dark state—reoccur often in equations throughout this paper.

In order to obtain simple analytical solutions to Eqs.
�2�–�7� we restrict our analysis to the weak-field–low-light
limit �i.e., ��
�. We also assume the EIT condition
�2�
� is satisfied. The low-light assumption justifies adia-
batically eliminating the excited-state coherences, and as
shown by Bennink in Ref. �36� the excited-state coherences
become

�32 � −

�P

2
��22 − �33� +

�C

2
�21

*

� + i��

�9�

and

�31 � −

�C

2
��11 − �33� +

�P

2
�21

� + i��

. �10�

Bennink �36� also shows that the remaining master equations
�2�–�4� and �7� reduce to a two-level Bloch vector equation
for the ground states,

d

dt
�� = �R + ���− �� + T� � �� + �1 − 3�33�F� � , �11�

and a first-order differential equation

d

dt
�33 = − 
�33 − �R + ���� · F� + �1 − 3�33�R . �12�

In the above we have used the following definitions:

�� � 
u

v

w
� = 
2 Re�e−i
�21�

2 Im�e−i
�21�
�22 − �11

� , �13�

F� �
R�1 − 3�33�

R + � 
 2e−i
�21
�−�

0

�22
�−� − �11

�−� � , �14�

T� �
�R

R + �
ŵ +

�

��1 − 3�33�
F� , �15�

R �
�2��/4

�2 + ��
2 , �16�

where ŵ= �0,0 ,1�T is the unit vector in the direction of w
and without loss of generality we will assume 
=0. The use

of the symbols T� and F� is intentionally suggestive of a torque

and a force, and although T� and F� are dimensionless and not
forces, we will refer to them as the torque and force vector.
To avoid confusion we note that there are no true forces
discussed in this paper.

It has also been shown in Ref. �36� that the steady-state
solutions to Eqs. �11� and �12� are

��ss = �1 − 3�33�
F� + T� � F� + T� �T� · F� �

1 + T2 �17�

and

�33
ss =

R − �R + ��F� · ����33=0


 + 3��R − �R + ��F� · �� ��33=0�
, �18�

where T= �T� �.
The weak-field approximation implies that �33�1 and the

term �33 can be ignored and dropped in Eqs. �11� and �17�.
Thus, the three-level density-matrix problem reduces to a
two-level Bloch-vector equation.

Setting �33=0, we solve Eq. �11� for a constant perturba-
tion at time t�0. By rotating into a new primed coordinate

system such that T�� lies along the new w� axis, Eq. �11�
decouples into three separate ordinary differential equations

� d2

d�2 + 2
d

d�
+ 1 + T2
�u� − uf�

v� − v f�
� = 0 �19�

and

� d

d�
+ 1
�w� − wf�� = 0, �20�

where �= �R+��t. The initial conditions are given by
���0�=�� i and

u̇��0� = − Tvi� − ui� + �1 + T2�uf� �21�

and

v̇��0� = Tui� − vi�. �22�

The subscript f denotes the final steady-state values which
are derived from Eq. �17� with �33=0.

The solutions are

u���� − uf� = Ae−� cos�T� + �� �23�

and

v���� − v f� = Ae−� sin�T� + �� , �24�

w���� − wf� = �wi� − wf��e
−�, �25�

where
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tan � =
v f� − vi�

uf� − ui�
�26�

and

A =
ui� − uf�

cos �
=

vi� − v f�

sin �
. �27�

The conversion back to the unprimed coordinate system is


u

v

w
� =

1

T
 Tw 0 Tu

0 T 0

− Tu 0 Tw
�
u�

v�

w�
� . �28�

It is straightforward to apply this solution to more com-
plicated piecewise constant perturbations by solving each
piecewise constant segment separately using the above for-
malism.

Finally, since we are primarily interested in atom-photon
interactions, we derive the probe and coupling susceptibili-
ties which are

�P =
N��32�2

�0	�P
�32 �29�

and

�C =
N��31�2

�0	�C
�31, �30�

where N is the number of atoms, � is the dipole moment, and
the remaining terms have their usual meanings. The suscep-
tibilities simplify significantly if we assume moderate to
small two-photon detuning �
��R�. This moderate-two-
photon-detuning assumption is not very restrictive since
most EIT measurements are performed with a two-photon
detuning near the same order of magnitude as the optical
pumping rate R and we have already assumed the fields and
pumping to be weak. Also, the moderate-two-photon-
detuning assumption justifies the approximations �11
���P�2 /�2 and �22���C�2 /�2, and Eqs. �9� and �10� can be
rewritten as

�32 �
�22�P�1 − �21/�21

�−��*

2�� + i���
�31�

and

�31 �
�11�C�1 − �21/�21

�−��*

2�� + i���
. �32�

The only term in Eqs. �31� and �32� significantly affected by
perturbations to the two-photon detuning is the ground-state
coherence �21. Thus, we see that to a good approximation the
changes in the probe and coupling susceptibilities are pre-
dominantly determined by the ground-state coherence.

III. DYNAMICS OF EIT KERR REFRACTIVE SWITCHING

The susceptibilities consist of a linear part �p
�1� which is

field independent and a nonlinear term which is field depen-

dent �i.e., �P=�P
�1�+�P

�3� �ES�2+�P
�5� �ES�4+¯�. The cross Kerr

effect is given by �P
�3�, which in steady state can be found by

taking the limit

�P
�3� = lim

ES→0

�P�ES� − �P�0�
�ES�2

.

Because we will see that the dynamics depends on the size of
the signal field, we do not restrict ourselves to this limit.
Instead, we define the dynamical Kerr nonlinearity as

XKerr��S,t� � �
n=0

�

�P
�2n+3��ES�2n

=
��32�4��P�t� − �P�0��

	2��S�2

= − i
N��32�4

�0	

�u − i�v
2	2��S�2�� + i���

, �33�

where �u=u���−ui and �v=v���−vi; at time t=0 the atoms
are in steady state with �S=0 and for time t�0 �S is a
constant. Although referring to XKerr as the Kerr nonlinearity
is a bit of a misnomer, it preserves the idea of a field-
dependent change in the index of refraction, and in the limit
of small signal field XKerr approaches the true definition of
Kerr nonlinearity. Finally, the only time-dependent terms in
Eq. �33� are the real and imaginary parts u and v of the
ground-state coherence. Thus, it is sufficient to look at the
evolution of u and v in order to understand the transients of
the EIT Kerr nonlinearity.

For the refractive EIT Kerr effect we are primarily inter-
ested in the case in which the unperturbed system is in Ra-
man resonance; i.e., the two-photon detuning is zero. Figure
2 shows the evolution of u and v for the somewhat artificial
case when ���S�=��0�=0, �C=10−2
, �P=10−3
,

FIG. 2. Time dynamics of u and v for the special case of a single
velocity class with �=0, �C=10−2
, �P=10−3
, and �=10−5
.
Initially the atom is prepared with �R=0. Thus, the atoms are as
close to the dark state as the nonzero decoherence rate � allows. At
time t=0 there is a sudden change such that �R=−3�2 /
�−3/2R
and all other parameters remain the same.
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�=10−5
�R�0�=0, and �R��S�=3�2 /
�3R. This choice of
parameters was motivated by the fact that for �=0 the dy-
namics and steady state are constrained to the same plane;
i.e., the prime and unprimed coordinate systems are the
same, making them easier to plot. Chen et al. and Park et al.
have observed absorption transients which are very similar to
u in Fig. 2 �20,21�.

There are several features of the atomic evolution which
merit discussion. First, the atoms evolve toward their new
steady state via damped harmonic oscillations with decay
constant R+� and oscillation frequency T�R+��. These two
time constants suggest dividing the dynamics into two re-
gimes: a large-torque regime and a small-torque regime. In
the large-torque regime in which T�1 ��R�R� the oscilla-
tions dominate the exponential decay. This is the regime
shown in Fig. 2. In the small-torque regime in which T�1
��R�R� the exponential decay dominates. In the small-
torque regime XKerr approaches the true definition of the
Kerr nonlinearity.

The u and v rise times change significantly depending on
whether they are in the small- or large-torque regime. Figure
3 shows a log-log plot of the 1/e rise times for u and v
versus induced two-photon detuning. The same parameters
as those in Fig. 2 are used. For small two-photon
detunings—i.e., in the small-torque regime—the rise times
asymptotically approach constants

lim
�R→0

tu =
1 + ln�2 + ln�2 + ln�2 + ¯ ���

R + �
�34�

and

lim
�R→0

tv =
1

R + �
. �35�

These rise times can be understood by considering that
the phase of the ground-state coherence—i.e., 

=arg��21/�21

�−��—increases at approximately the two-photon

detuning rate �
̇��R�. Also, u and v approach their final
values when the change in 
 approaches �
��R / �R+��.
Thus, the rise times are approximately the ratio of the rota-

tion rate and rotation angle of 
 �t��
 / 
̇= �R+��−1�. Since
both the rotation rate and rotation angle have the same de-
pendence on �R for T�1, the rise times are constants.

For large detunings—i.e., the large-torque regime—the
rise times asymptotically approach the curves

lim
�R→�

tu =
arccos�e−1 + �R + ��/�R�

�R
�36�

and

lim
�R→�

tv =
�1 − e−1��R + ��

�R
2 . �37�

To understand these rise times physically we once again con-

sider the ratio between the rotation rate 
̇��R and rotation
angle �
. The coherence first approaches its final value of v
for a phase angle of �
��R+�� /�R, giving tv��R+�� /�R

2 .
u approaches its final value for �
�� /2, resulting in
tu�� /2�R. For very large Stark shifts the moderate-two-
photon-detuning approximation breaks down.

In the large-torque regime the coherence and susceptibili-
ties can significantly overshoot their final steady-state values.
As u goes from positive to negative the susceptibility goes
from EIT to EIA �electromagnetically induced absorption�.
For EIA the interference paths for absorption constructively
interfere and the absorption is greater than it would be for the
case of completely incoherent probe and coupling fields. EIA
has been observed for transients due to rapid changes of
Raman detuning �20,21�.

Plotting v versus u parametrically as a function of time
yields the spiral plot �dashed line� shown in Fig. 4. This plot

suggests the analogy between T� and a torque. The steady-
state values, shown as the solid line in Fig. 4, are those

values for which the “torque” T� ��� , and the analogs to

“force” vectors—i.e., the optical pumping “force” F� and de-
cay −��—balance each other. When a new “torque” is intro-
duced the phase 
 increases until damping mechanisms—i.e.,
optical pumping and decoherence—bring it to its new
steady-state value. The unit circle in Fig. 4 shows the largest
possible values for u and v.

IV. GENERALIZATIONS TO REALISTIC MODELS

The intuitive picture of coherences spiraling to their new
steady-state values is helpful in generalizing the three-level
EIT Kerr calculations to more realistic models which include
Doppler broadening, additional atomic levels, and optically
thick media. We discuss Doppler broadening first.

A. Doppler broadening

In a Doppler-broadened medium, atoms with different ve-
locities see different one-photon and two-photon detunings.
The one-photon detuning becomes

FIG. 3. Solid lines show the 1/e rise time for the real part u
�imaginary part v� of the ground-state coherence plotted logo-
graphically as a function of the magnitude of the two-photon detun-
ing �R. All quantities are dimensionless and normalized by the op-
tical pumping rate R, and � /R=0.2. For small detunings the rise
times asymptotically approach tu�2.15/ �R+�� and tv=1/ �R+��.
For large two-photon detunings the rise times asymptotically ap-
proach tu�1.2/�R and tv�0.63�R+�� /�R

2 . The asymptotes are
shown as dashed lines.
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��v� = ��0� +
v
2c

�2�3 − �1 − �2� ,

and the two-photon detuning becomes

�R�v� = �R�0� +
v
c

��1 − �2�/c +
�S

2

�S +
v
c

��3 − �2�
,

where v is the velocity of the atom �not to be confused with
second element in the Bloch vector�. Thus, different velocity
classes will oscillate and relax to steady state at different
rates due to the dependence of R and T on these detunings.
The total susceptibility is found by integrating over all ve-
locities classes,

�P =
1

�2�vp
�

−�

�

dv �p�v�exp�− v2/2vp
2� , �38�

where vp is the most probable velocity.
One significant effect of Doppler broadening is seen in the

large-torque regime, where oscillations of the susceptibilities
damp out faster than for a single velocity. The velocity de-
pendence of T�v� creates phase diffusion among the ground-
state coherences for atoms of different velocity classes. This
phase diffusion is similar to free-induction decay. Another
factor contributing to the rapid oscillation decay is that each
velocity class begins its evolution with a different phase
��v�. Like spin echoes in free-induction decay, a dark-state
echo can be created in an EIT medium at time t= tf by chang-
ing the sign of the Stark shift at time t= tf /2.

Other effects of Doppler broadening result from Doppler
narrowing of the EIT line. Since Doppler narrowing of EIT
lines has been discussed at length elsewhere �37�, we do not
discuss it here.

B. Multilevel systems

The same principles which describe EIT Kerr transients in
� systems also apply in more complex systems. As the com-
plexity of the system increases, an intuitive physical picture
becomes more important because solving the complete den-
sity matrix, although possible, becomes algebraically less
tractable and less insightful. Thus, it is helpful to be able to
make some intuitive physical arguments about the fields and
atoms without solving the exact density matrix.

As an example of a realistic atomic system we consider
the D1 line in 87Rb shown in Fig. 5. EIT is created by the
coupling �solid black lines� and probe �dotted black lines�
fields which have the same frequency but opposite polariza-
tions. The coupling �probe� field is �+ ��−� polarized and is
resonant with the �F=2	↔ �F�=1	 transitions. The signal
field �dashed gray lines� is detuned from the �F=2	↔ �F�
=2	 transition and is also �+ polarized. For simplicity we
assume the probe and coupling fields have equal intensities.

As seen in Fig. 6, the transients of the probe susceptibility
are more complicated than a damped simple harmonic oscil-
lator. The complexity of the transients is most evident in the
spiral plot �see Fig. 6, inset�, in which the real and imaginary
parts of the susceptibility are plotted parametrically as a
function of time. The rich structure of these transients arises
from multiple two-photon detunings.

These transients can be understood as a simple extension
of the � system by subdividing the EIT system into three �
systems corresponding with transitions directly involving the
three EIT excited states �� F�=1

m=−1 	, � F�=1
m=0 	, and � F�=1

m=1 	�. In Fig. 5
the excited state of each � is explicitly labeled. Two of the
�’s are the left and right halves of the M dark state,

�M	 =

� F = 2

m = − 2
� − �6�F = 2

m = 0
� + �F = 2

m = 2
�

�8
, �39�

and the third � is the middle or � dark state:

��	 =

� F = 2

m = − 1
� − �F = 2

m = 1
�

�2
. �40�

Although the state �M	 is in reality a single dark state, for
understanding EIT Kerr transients it is more helpful to think

FIG. 4. The spiral pattern of the atomic coherence for the
case �=0, �C=10−2
, �P=10−3
, �=10−5
, and �R=−3�2 /

�−3/2R. The dashed line shows the path taken by �21�t� as a
function of time. The solid circle shows all possible steady-state
values for �21 with each point along the circle corresponding to a
different value of �R and all other parameters remaining fixed. Fi-
nally, the dotted circle shows the maximum possible values for
�21�t�.

FIG. 5. The dipole moment elements for the EIT cross-phase
modulation using the D1 line in 87Rb. See text for a description of
the transitions.
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of �M	 as two dark states corresponding to �left and �right.
Each sublevel of the ground state experiences a different

Stark shift determined by the dipole moments for the signal
transitions. Thus, each � experiences a different two-photon
detuning: �middle=�S

2 /12�S, �left=−�S
2 /12�S, and �right

=�S
2 /4�S. Figure 7 shows a progression for the spiral plots

of the ground-state coherences �top� and probe susceptibili-
ties �bottom� at times 5 �s, 10 �s, and 15 �s. The ground-
state coherences are normalized by their initial value. Both
Figs. 6 and 7 were obtained by solving the complete density
matrix numerically. However, Fig. 7 is almost exactly what
we find if we apply the three-level theory to each � sepa-
rately. The coherence for each individual �—i.e., �left,
�middle, and �right—spirals as predicted by Eqs. �23� and �24�
and each individual susceptibility—i.e., �left, �middle, and
�right—follows its corresponding coherence as predicted by
the three-level theory in Eqs. �30� and �31�.

Although the dynamics of each individual � is simple, the
superposition of different �’s with their Stark shifts of dif-
fering signs and magnitudes creates a total susceptibility
with complex dynamics. Because the left and middle coher-
ences rotate in opposite directions with the same frequency,
the coherence terms vleft and vmiddle destructively interfere
while uleft and umiddle constructively interfere, which is why
Re��p� is much smaller than Im��p� in Fig. 6. Also, the fact
that �right rotates 3 times as fast as the other �’s is the source
of the nonsinusoidal periodic oscillations.

Initially, the population is shared between the �M	 and ��	
dark states in an approximately 50%-50% ratio. The popula-
tion of state �M	 is spread approximately equally between
�left and �right, which is the reason the �middle susceptibility
is roughly twice as large either �left or �right. In the bottom
plot it is straightforward to see that the total susceptibility
�total is simply the sum of susceptibilities for each �. Thus,
by treating each � separately we could have estimated the

dynamics of the entire system rather than solving the density
matrix exactly.

C. Optically thick media

One advantage of the refractive EIT Kerr nonlinearity is
that an arbitrarily long medium of constant optical density
should provide an arbitrarily large cross-phase shift of the
probe field, even for an arbitrarily small signal field. For this
reason few-photon applications of EIT Kerr effects generally
assume optically thick media. In this section we restrict our
analysis to small Stark shifts—i.e., the small-torque regime.
Also, we only consider signal pulse durations such that the
pulse is much longer than the medium.

For optically thick media we must consider the dynamics
of the fields in addition to atomic evolution. The interaction
between medium and fields lengthens the rise time propor-
tionally to the optical thickness. The increased rise time can
be seen in numerical simulations of the coupled Maxwell-
density-matrix equations, but it can also be accurately esti-
mated using the three-level theory presented in this paper.

The rise times may be found by first solving for the
steady-state phase of the ground-state coherences and then
taking the ratio between the phase rotation angle and the

phase rotation rate �tu� tv��
 / 
̇�. This is similar to the
discussion of rise times for optically thin media.

For resonant cw fields, the susceptibilities are

�P � − i
�32c

�32
�22�1 − �21/�21

�−��* �41�

and

FIG. 6. Evolution of the real and imaginary parts of the probe
susceptibility for EIT on the D1 line in 87Rb. Before time t=0 the
system is in steady state with �P=�C=
 /10 and �=
 /100. For
time t�0 a signal field �S=
 /10 detuned by �S=100
 Stark-shifts
the ground states. The inset shows a parametric plot of real part of
the susceptibility versus the imaginary part plotted parametrically as
a function of time for 0� t�50 �s. L=1 cm and N=1016 m−3.

FIG. 7. �Color online� Parametric �spiral� plots of the probe
susceptibility �bottom� and ground-state coherences �top� plotted
real part versus imaginary part as a function of time. Plots are
shown for times t=5 �s, t=10 �s, and t=15 �s. The ground-state
coherences �top� are normalized by their initial magnitude. The total
probe susceptibility �bottom� ��total� is the sum of individual sus-
ceptibilities for the � F=2

m=0 	↔ � F�=1
m=−1 	 ��left�, � F=2

m=1 	↔ � F�=1
m=0 	 ��middle�,

and � F=2
m=2 	↔ � F�=1

m=1 	 ��right� transitions. The susceptibilities are not
normalized and are plotted with arbitrary units.
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�C � − i
�31c

�31
�11�1 − �21/�21

�−�� , �42�

where the cross sections are �32=N ��32�2�32/�0c	
 and
�31=N ��31�2�31/�0c	
. In the slowly-varying-envelope ap-
proximation, the Maxwell equations for the evolution of the
fields are

� �

�z
+

1

c

�

�t

�P = −

�32�22

2
�1 −

�21
*

�21
�−�*
�P �43�

and

� �

�z
+

1

c

�

�t

�C = −

�31�11

2
�1 −

�21

�21
�−�
�C. �44�

Assuming negligible absorption �this assumption is implied
by the previous assumptions of small torque T�1 and the
EIT condition �2�
��, we can make the approximation
��P�z� � ���P�0��, and Eq. �43� can be integrated to obtain

�P�z� � �P�0�e−�32�22
�−��z−�0

z�21
* �z��/�21

�−�*�z��dz��

� �P�0�e−z�32�22
�−���i�
��, �45�

where we have used the fact that in steady state the ratio
�21�z� /�21

�−��z��ei�
 for all z and �
=�R / �R+�� is the thin-
medium phase rotation angle for the ground-state coherence.
Similarly,

�C�z� � �C�0�e−z�31�11
�−��−i�
�. �46�

Finally, the ground-state coherence as a function of position
is

�21�z� = ei�
�21
�−��z�

= − ei�

�C�z��P

* �z�
�2

� �21
�−��0�ei�
�1+z��31�11

�−�+�32�22
�−���. �47�

Letting �=�31=�32, Eq. �47� simplifies to

�21�z� � �21
�−��0�exp�i�
�1 + �z�� . �48�

There are two rise times that must be considered: the rise
time of the ground-state coherence phase and the rise time of
the field phases �the field phase shift is the refractive Kerr
effect�. The rise time for the coherences monotonically in-
creases with position z. This is because for larger z, the co-
herence must rotate through a larger rotation angle

�
�z�=�R�1+�z� / �R+��, but the rotation rate 
̇��R is in-
dependent of position. Thus, for optically thick media the
coherence 1/e rise time is

tu�z� � tv�z� � �1 − e−1��1 + �z�/�R + �� . �49�

The rise time for the refractive Kerr effect—i.e., the rise
time for the phase of the field leaving the medium—is almost
equal to the rise time for the ground-state coherences at
z=L, where L is the length of the medium. Figure 8 shows
the phase of the ground-state coherence and probe field as a
function of position along an optically thick medium at sev-

eral different times. At z=L for early times in the evolution,
the phase of the probe field and the phase of the medium
ground-state coherence are equal. This is because the size of
the Kerr effect is given by the area between the coherence
and field phase curves in Fig. 8. For early times in the evo-
lution, the Kerr effect due to the medium near z=0 maintains
the EIT phase condition �i.e., �21

�−��z� /�21�z�=1� for the down-
stream medium and the downstream medium does not con-
tribute to the Kerr effect �i.e., it contributes zero “area”�. As
the system evolves the length of medium contributing to the
Kerr effect grows until steady state is reached �in Fig. 8
steady state corresponds to times t�64 �s� and there is a
uniform phase difference between the ground-state coher-
ence and fields along the entire medium. Based on these
considerations, the 1/e rise time for the Kerr effect in an
optically thick medium is approximately given by

tKerr � �1 − e−1�
�L

�R + ��
. �50�

The linear relationship between the EIT Kerr rise time and
the optical thickness sets some limitations on potential appli-
cations. For example, given a particular signal pulse duration
the largest Kerr phase shift achievable is limited to the opti-
cal depth for which the rise time and pulse durations are
equal. In cw one can theoretically make the Kerr phase shift
arbitrarily large by making the medium arbitrarily optically
thick.

However, this limitation on the EIT Kerr effect for pulsed
beams may not be absolute. It may be possible to use some
slow-light tricks with EIT and signal pulses in order to in-
crease the interaction time of the signal in the medium as
suggested by Lukin and Imamoglu �8�. Also, we have not
considered what happens if the medium is sufficiently long

FIG. 8. Snap shots at times t=8 �s, t=16 �s, t=32 �s, and
t=64 �s of the field phase �thick solid line� and ground-state co-
herence phase �thin solid line with dots� for an optically thick me-
dium. The EIT fields are traveling from left to right. The evolution
of the fields and atoms was simulated numerically using the finite-
element method �FEM� Crank-Nicholson algorithm with staggered
time steps for the fields and medium.
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that the signal pulse can be entirely contained within the
medium, which may lead to different results.

V. SUMMARY

In summary, we have discussed refractive EIT Kerr tran-
sients for the case of a square signal pulse ac Stark shifting a
�-EIT system with cw EIT fields. When all fields are well
below saturation the four-level EIT Kerr system can be re-
duced to a two-level Bloch-vector equation and solved ana-
lytically. By parametrically plotting the real and imaginary
parts of the optical susceptibilities, it is seen that the trajec-
tory of the EIT Kerr transients is a spiral from their initial
state to their final-steady-state value. As a function of time,
the real and imaginary parts of the susceptibilities are
damped sinusoids and the refractive EIT Kerr rise time is
approximately given by the inverse of the optical pumping
rate R �this rise time is valid as along as the optical pumping
rate is much larger than the two-photon or Raman
detuning—i.e., R��R�.

Although the intuitive picture of “spiraling” optical sus-
ceptibilities was derived for a four-level system, it can also
be applied to more experimentally realistic and complex
models. In particular, we have considered how Doppler
broadening, additional levels, and optically thick media
modify the refractive EIT Kerr transients. Doppler broaden-
ing damps out the coherence oscillations more quickly than
for atoms of a single-velocity class. The EIT Kerr system
with additional levels can result in coherence oscillations
with rich structure due to differing two-photon detunings.
Finally, optically thick media have much longer rise times
than optically thin media because the ground-state coher-
ences for the atoms at the end of the medium must pass
through a much larger phase rotation. In the limit that R
��R, the refractive EIT Kerr rise time in optically thick me-
dia is proportional to the optical thickness and inversely pro-
portional to the optical pumping rate.
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